Basic Electrical Engineering First Semester B.E. Degree Model Question Paper

SUB CODE: 06 ELE 15/25

Time: 3 hrs

Max. Marks:100

- Note: 1. Answer any FIVE full question selecting atleast TWO questions from each Part
 - 2. Answer all objective types questions only in first and second writing pages.
 - 3. Objective types questions should not be repeated.

PART – A

- 1. a) i) The current in a circuit having constant resistance is doubled. The power consumed by resistance increases by _____ times.
 - A) $\frac{1}{4}$ B) 4 C) $\frac{1}{2}$ D) 2
 - ii) A voltage drop of 10V develops across a 1K Ω resistor. The power consumed in the resistance is _____

D)0.1W

- A) 1000W B) 100W C) 1W
- iii) At/m is unit of
- A) mmf B) reluctance C) magnetizing force D) magnetic field intensity
- iv) Inductance opposes _____ in current in circuit
- A) increase B) decrease C) change D) none of these (1m x 4)

b) A resistance of 5Ω is connected in series with a parallel combination of $R\Omega$ and 10Ω . The total power consumed by circuit is 1200W. The applied voltage is 100V. Find R. (8 M) c) State and explain Faraday's laws of electromagnetic induction. (4 M) d) A coil of 300 turns wound on a non – magnetic material has an inductance of 10mh. Calculate, (i) Flux produced by a current of 5A (ii) The average value of emf induced when current is reversed in 8ms. (4 M)

- 2. a) i) The ac voltage is $V = 20 \sin 157t$. The frequency is _____
 - A) 50Hz B) 75Hz C) 25Hz D) 100Hz

ii) An ac voltage is V = 100 sin 314t. Average value of its half wave is_____

- A) 70.7V B) 50V C) 63.7V D) 100V
- iii) In an ac circuit electrical energy is consumed in ______ A) L B) C C L&C D) R
- iv) In RL- Series circuit R=10 Ω , X_I=10 Ω . The phase angle between V and I is _____. A)45° B)50° D) 36.8° (1m x 4)
- b) Prove that power in 1φ circuit is VI cos φ for a RL series circuit energized by 1φ ac voltage. (8 M)

c) When a resistor and an inductor are series connected to a 240V, 50Hz supply a current of 3A flows lagging 37° behind the supply voltage, while the voltage across the inductor coil is 17NV. Find resistance of resistor, resistance in inductor and reactance of inductor.

(8 M)

3. a) i) In, 3 ϕ system power equation $\sqrt{3}$ VI cos ϕ , ϕ is the angle between
A) line voltage and line current. B) line voltage and phase current
C) phase voltage and line current D) phase voltage and phase current.
11) The algebraic sum of instantaneous phase voltages in a 3ϕ balanced system is
A) O B) line Voltage C) phase voltage D) none of these
capacity
A) bigger than B) same as C) smaller than D) none of these
iv) In 2 wattmeter method of power measurement the load is resistive. If the wattmeter's
readings are $W_1 \& W_2$ then,
A) $W_1 > W_2$ B) $W_1 < W_2$ C) $W_1 = W_2$ D) $W_1 = 0$, $W_2 = 0$ (Im x 4)
b) Prove that 2 wattmeters are sufficient to measure 3ϕ power. Draw relevant vector
diagram.
c) A star connected load has impedance of $(6+i8)O$ per phase A 36 supply of $400V$ at $50Hz$
is applied to load. Two wattmeters are used to measure the power consumed. Find
readings of 2 wattmeters. (4 M)
4. a) i) A fuse is a
A) protective device B) current limiting device
C) voltage limiting device D) none of these
1) In a dynamometer wattmeter moving coll is
iii) Creeping in an energy meter is reduced be
A) brake magnet B) a hole in disc C) shunt magnet D) series magnet
iv) A good earthing should provide resistance in earthing path
A) low B) high C) medium D) none of these (1m x 4)
b) Explain necessity of earthing. Explain plate earthing with neat diagram (8 M)
c) Explain with a heat diagram working of induction type energy meter. (8 M)
PART – B
5. a) i) Armature of a DC machine is laminated to reduce
A)eddy current loss B) hysterisis loss C) copper loss D) friction loss
(1) High voltage generators use winding
iii) motor should never be started on no load.
A) Series B) Shunt C) Cumulatively compounded D) Differentially compounded.
iv) Motor draws a large current at starting due to
A) high value of Ra B) low back emf C) flux low in shunt field d) none of these
$(1m \times 4)$
b) Derive the expression for induced emf in a dc generator (6 M)
c) A 250V, DC shunt motor takes 6A line current on no load & runs at 1000rpm. The
resistance of the field winding and armature are 250Ω , 0.2Ω respectively. If the full load
line current is 26A, calculate the full load speed. (10 M)

6) a) i) The primary and secondary of a transformer are coupled
A) electrically B) magnetically C) electrically & magnetically D) none of these
ii) The voltage per turn of primary of a transformer is the voltage per turn of
secondary
A) greater than B) less than C) equal to D) none of these
iii) When load on a transformer is reduced decreases
A) eddy current loss B) hysterisis loss C) copper loss D) friction loss
iv) The no load ratio of 50Hz, 1¢ transformer is 6000/250V. If the max flux in
core = 0.00563 Weber, the number of turns N ₁ on LV side is
A) 450 B) 900 C) 350 D) 200 (1m x 4)
b) Explain working principle of transformer. Derive expression for induced emf in Primary &
Secondary. (8 M) \checkmark
c) The max η of a TOKVA TER is 98% at 75% full load 0.8pt lag. Find η at OPF (8 M)
7) a) i) In a 3 th Induction motor motor speed is synchronous speed
A) greater than B) less than C) equal to D) none of these
ii) 36 wound rotor motors are also called as motors
A) synchronous B) slipring C) series D) commutator
iii) The Induction motor has lagging pf at
A) starting only B) operation only C) starting & operation D) none of these
iv) Rotor of an Induction motor revolves in direction of stator flux
A) same B) opposite C) non- determinable D) none of these (1m x 4)
b) Explain with neat sketch the construction of 34 Induction motors (8 M)
c) A 4 Pole Induction motor is supplied from a 50Hz source. The rotor emf makes 2
alternations per second. Find slip & speed of motor (4 M)
d) Explain necessity of starter for a 30 Induction motor (4 M)
(2) a) i) The frequency of amf generated in an 2 note alternator running at 000rpm is
A) 50hz B) 25hz C) 60hz D) 100hz
ii) The armature winding of an alternator is generally
A) star connected B) delta connected C) star delta D) none of these
iii) A non salient pole field construction is used for alternator having rotor.
A) low speed B) medium speed C) large speed D) none of these
iv) Smooth cylindrical rotor have
A) smaller diameter & long axial length
B) larger diameter & long axial length
C) larger drameter & smaller axial length
b) Obtain purposition for emfinduced in an alternator. What is affect of V and V (6 M)
c) Explain construction of salient note alternator. What is effect of \mathbf{K}_p and \mathbf{K}_d (6 M)
d) A6 note 3ϕ star connected alternator has armature turns per phase = 120. The
$\phi_m = 0.05$ wb. Key = 0.97. Find E ₁ (4 M)