Basic Electrical Engineering
 First Semester B.E. Degree
 Model Question Paper

SUB CODE: 06 ELE 15/25

Time: 3 hrs
Max. Marks:100
Note: 1. Answer any FIVE full question selecting atleast TWO questions from each Part
2. Answer all objective types questions only in first and second writing pages.
3. Objective types questions should not be repeated.

PART - A

1. a) i) The current in a circuit having constant resistance is doubled. The power consumed by resistance increases by \qquad times.
A) $1 / 4$
B) 4
C) $1 / 2$
D) 2
ii) A voltage drop of 10 V develops across a $1 \mathrm{~K} \Omega$ resistor. The power consumed in the resistance is
A) 1000 W
B) 100 W
C) 1 W
D) 0.1 W
iii) At / m is unit of \qquad .
A) mmf
B) reluctance
C) magnetizing force
1) magnetic fieldintensity
iv) Inductance opposes \qquad in current in eircuit
A) increase
B) decrease
C) change
D) none of these
(1mx4)
b) A resistance of 5Ω is connected in series with a parakel combination of $\mathrm{R} \Omega$ and 10Ω. The total power consumed by circuit is 1200 W . The applied voltage is 100 V . Find R. ($\mathbf{8} \mathbf{~ M}$) c) State and explain Faraday's laws of electromagnetic induction.
d) A coil of 300 turns wound on a non-magnetic material has an inductance of 10 mh . Calculate, (i) Flux produced by a current of 5A (ii) The average value of emf induced when current is reversed in 8 ms
2. a) i) The ac voltage is $V=20 \sin 157$ t. The frequency is \qquad
A) 50 Hz
B) 75 HZ
C) 25 Hz
D) 100 Hz
ii) An ac voltage is $V=100 \sin$ 314t. Average value of its half wave is \qquad
A) 70.7 V
B) 50 V
C) 63.7 V
D) 100 V
iii) In an ac circoxit electrical energy is consumed in \qquad
A) $\mathrm{L} \quad \mathrm{B}$)
C) $L \& C$
D) R
iv) In RL- Sexies circuit $R=10 \Omega, X_{1}=10 \Omega$. The phase angle between V and I is \qquad .
A) 45°
B) 80°
D) 36.8°
(1mx4)
b) Prove that power in 1ϕ circuit is VI $\cos \phi$ for a RL series circuit energized by 1ϕ ac voltage.
c) When a resistorand an inductor are series connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply a current of

3 A flows lagging 37° behind the supply voltage, while the voltage across the inductor corlis 17 V . Find resistance of resistor, resistance in inductor and reactance of inductor.
3. a) i) In, 3ϕ system power equation $\sqrt{3}$ VI $\cos \phi, \phi$ is the angle between \qquad
A) line voltage and line current.
B) line voltage and phase current
C) phase voltage and line current
D) phase voltage and phase current.
ii) The algebraic sum of instantaneous phase voltages in a 3ϕ balanced s
A) O
B) line Voltage
C) phase voltage
D) none of these
iii) A 3ϕ equipment has a size \qquad that of a 1ϕ equipment for same power capacity.
A) bigger than B) same as C) smaller than D) none of these
iv) In 2 wattmeter method of power measurement the load is resistive. If the wattmeter's readings are $\mathrm{W}_{1} \& \mathrm{~W}_{2}$ then,
A) $\mathrm{W}_{1}>\mathrm{W}_{2}$
B) $\mathrm{W}_{1}<\mathrm{W}_{2}$
C) $\mathrm{W}_{1}=\mathrm{W}_{2}$
D) $W_{1}=0, W_{2}=0$
$(\operatorname{lm} x 4)$
b) Prove that 2 wattmeters are sufficient to measure 3ϕ power. Dray relevant vector diagram.
c) A star connected load has impedance of $(6+j 8) \Omega$ per phase. A is applied to load. Two wattmeters are used to measure the pewer consumed. Find readings of 2 wattmeters.
(4 M)
4. a) i) A fuse is a \qquad -
A) protective device
C) voltage limiting device
B) curren limiting device
D) none of these
ii) In a dynamometer wattmeter moving eoil is \qquad
A) current coil B) potential coikC) urrent coil or potential coil D) none of these iii) Creeping in an energy meter is reduced be
A) brake magnet
B) a hole in dise
C) shunt magnet
D) series magnet
iv) A good earthing should provide \qquad resistance in earthing path
A) low
B) high
C) medium
D) none of /hese
(1mx4)
b) Explain necessity of earthing. Explain plate earthing with neat diagram
c) Explain with a neat diagram zorking of induction type energy meter.
5. a) i) Armature ofa $D C$ machine is anninated to reduce \qquad
D) friction loss
A)eddy current poss
B) hysterisis loss
C) copper loss
ii) Highroltage generators use winding
A) lap
B) wave
G) lap or wave
D) none of these
iii) motor sbould never be started on no load.
A) Sexies B) Shunt
C) Cumulatively compounded
D) Differentially compounded.
iv) Moter draws a large current at starting due to \qquad
A) high value of Ra
B) low back emf
C) flux low in shunt field
d) none of these
(1mx4)
b) Derive the expression for induced emf in a dc generator
c) A $250 \mathrm{~V}, \mathrm{DC}$ shunt motor takes 6 A line current on no load \& runs at 1000 rpm . The resistance of the field winding and armature are $250 \Omega, 0.2 \Omega$ respectively. If the full load line current is 26 A , calculate the full load speed.
(10 M)
6) a) i) The primary and secondary of a transformer are \qquad coupled
A) electrically B) magnetically
C) electrically \& magnetically D) none of these
ii) The voltage per turn of primary of a transformer is \qquad the voltage per turn of secondary A) greater than
B) less than
C) equal to
D) none of these
iii) When load on a transformer is reduced \qquad decreases
A) eddy current loss
B) hysterisis loss
C) copper loss
D) friction loss
iv) The no load ratio of $50 \mathrm{~Hz}, 1 \phi$ transformer is $6000 / 250 \mathrm{~V}$. If the max flux in core $=0.00563$ Weber, the number of turns N_{1} on LV side is
A) 450
B) 900
C) 350
D) 200
b) Explain working principle of transformer. Derive expression for induced emf in Priphary \& Secondary.
c) The max η of a 10 KVA TFR is 98% at 75% full load 0.8 pf lag. Find η at UPF
7) a) i) In a 3ϕ Induction motor, motor speed is \qquad synchronous speed
A) greater than
B) less than
C) equal to
D) none of these
ii) 3ϕ wound rotor motors are also called as
A) synchronous
B) slipring
C) series D) commutator motors
\qquad e ค 1 ii) The Induction motor has lagging pf at
A) starting only
B) operation only \square
g \& operation
v) Rotor of an Induction motor revolves in direction of stator flux
A) same
B) opposite
C) non- determinable \quad D) none of these
(1mx4)
b) Explain with neat sketch the construction of $3 \$$ Induction motors
(8 M)
c) A 4 Pole Induction motor is supplied from a 50 Hz source. The rotor emf makes 2 alternations per second. Find slip \& speed of motor
d) Explain necessity of starter for a $\$ \phi$ Induction motor
(4 M)
8) a) i) The frequency of emf generated in an \& pole alternator running at 900 rpm is \qquad
A) 50 hz
B) 25 hz
C) 60 hz
D) 100 hz
ii) The armature winding of an alternator is generally
A) star connected
B) delta connected G) star delta
D) none of these
iii) A non salient pole field construction is used for alternator having \qquad rotor.
A) low speed
B.) medium speed
C) large speed
D) none of these
iv) Smootheylmirical rotor have
A) smaller diameter \& lng axial length
B) larger diameter \& long a rial length
C) larger diametex \& smaller axial length
D) same diameter \& spiller axial length
b) Obtain expression for emf induced in an alternator. What is effect of K_{p} and $K_{d} \quad(6 \mathbf{M})$
c) Explain construction of salient pole alternator
d) A6 pole, $\$ \phi$ tar connected alternator has armature turns per phase $=120$. The $\phi_{\mathrm{m}}=0.05 \mathrm{wb}, \mathrm{K} \omega=0.97$. Find E_{L}.

