Object Oriented Modeling and Design 10CS71

OBJECT ORIENTED MODELING AND DESING

Subject Code: 10CS71 LLA. Marks : 25
Hours/Week : 04 Exam Hours: 03
Total Hours : 52 Exam Marks: 100
PART - A
UNIT -1 7 Hours

INTRODUCTION, MODELING CONCEPTS, CLASS MODELING: What is
Object Orientation? What is OO development? OO themes; Evidence for usefulness
of OO development; OO modeling history. Modeling as Design Technique:
Modeling; abstraction; The three models. Class Modeling: Object and class
concepts; Link and associations concepts; Generalization and inheritance; A sample
class model; Navigation of class models; Practical tips.

UNIT -2 6 Hours

ADVANCED CLASS MODELING, STATE MODELING: Advanced object and
class concepts; Association ends; N-ary associations; Aggregation; Abstract classes;
Multiple inheritance; Metadata; Reification; Constraints; Derived data; Packages;
Practical tips. State Modeling: Events, States, Transitions and Conditions; State
diagrams; State diagram behavior; Practical tips.

UNIT -3 6 Hours

ADVANCED STATE MODELING, INTERACTION MODELING: Advanced
State Modeling: Nested state diagrams; Nested states; Signal generalization;
Concurrency; A sample state model; Relation of class and state models; Practical
tips. Interaction Modeling: Use case models; Sequence models; Activity models. Use
case relationships; Procedural sequence models; Special constructs for activity
models.

UNIT -4 7 Hours

PROCESS OVERVIEW, SYSTEM CONCEPTION, DOMAIN ANALYSIS:
Process Overview: Development stages; Development life cycle. System
Conception: Devising a system concept; Elaborating a concept; Preparing a problem
statement. Domain Analysis: Overview of analysis; Domain class model; Domain
state model; Domain interaction model; Iterating the analysis.

PART -B
UNIT -5 7 Hours

APPLICATION ANALYSIS, SYSTEM DESIGN: Application Analysis:
Application interaction model; Application class model; Application state model;
Adding operations. Overview of system design; Estimating performance; Making a
reuse plan; Breaking a system in to sub-systems; Identifying concurrency; Allocation
of sub-systems; Management of data storage; Handling global resources; Choosing a

Dept. of ISE, S]BIT Page 1

Object Oriented Modeling and Design 10CS71

software control strategy; Handling boundary conditions; Setting the trade-off
priorities; Common architectural styles; Architecture of the ATM system as the
example.

UNIT -6 7 Hours

CLASS DESIGN, IMPLEMENTATION MODELING, LEGACY SYSTEMS:
Class Design: Overview of class design; Bridging the gap; Realizing use cases;
Designing algorithms; Recursing downwards, Refactoring; Design optimization;
Reification of behavior; Adjustment of inheritance; Organizing a class design; ATM
example. Implementation Modeling: Overview of implementation; Fine-tuning
classes; Fine-tuning generalizations; Realizing associations; Testing. Legacy
Systems: Reverse engineering; Building the class models; Building the interaction
model; Building the state model; Reverse engineering tips; Wrapping; Maintenance.

UNIT -7 6 Hours

DESIGN PATTERNS - 1: What is a pattern and what makes a pattern? Pattern
categories; Relationships between patterns; Pattern description.

Communication Patterns: Forwarder-Receiver; Client-Dispatcher-Server; Publisher-
Subscriber.

UNIT -8 6 Hours

DESIGN PATTERNS - 2, IDIOMS: Management Patterns: Command processor;
View handler. Idioms: Introduction; What can idioms provide? Idioms and style;
Where to find idioms; Counted Pointer example.

TEXT BOOKS:

Text Books:

1. Michael Blaha, James Rumbaugh: Object-Oriented Modeling and Design with
UML, 2™ Edition, Pearson Education, 2005. (Chapters 1 to 17, 23)

2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael
Stal: Pattern-Oriented Software Architecture, A System of Patterns, Volume 1, John
Wiley and Sons, 2007. (Chapters 1, 3.5, 3.6, 4)

Reference Books:

1. Grady Booch et al: Object-Oriented Analysis and Design with Applications, 31
Edition, Pearson Education, 2007.

2. Brahma Dathan, Sarnath Ramnath: Object-Oriented Analysis, Design, and
Implementation, Universities Press, 2009.

3. Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado: UML 2 Toolkit,
Wiley- Dreamtech India, 2004.

4. Simon Bennett, Steve McRobb and Ray Farmer: Object-Oriented Systems
Analysis and Design Using UML, 2" Edition, Tata McGraw-Hill, 2002.

Dept. of ISE, S]BIT Page 2

Object Oriented Modeling and Design 10CS71

INDEX SHEET

PART A : Page no.
UNIT 1: | INTRODUCTION, MODELING 4-31
CONCEPTS, CLASS MODELING:
UNIT 2: | ADVANCED CLASS MODELING, 32-49
STATE MODELING
UNIT 3: | ADVANCED STATE MODELING, 50-179
INTERACTION MODELING
UNIT 4: | PROCESS OVERVIEW, SYSTEM 80 — 83
CONCEPTION, DOMAIN ANALYSIS
PART - B Page no.
UNIT 5: | APPLICATION ANALYSIS, SYSTEM 84 -112
DESIGN
UNIT 6: | CLASS DESIGN, IMPLEMENTATION 113 -127
MODELING, LEGACY SYSTEMS
UNIT 7: | DESIGN PATTERNS — 1 128 — 145
UNIT 8: | DESIGN PATTERNS -2, IDIOMS 146 - 162

Dept. of ISE, S]BIT Page 3

Object Oriented Modeling and Design 10CS71

Unitl: INTRODUCTION, MODELING CONCEPTS, CLASS
MODELING:

Syllabus ---7hr

* What is object orientation?

* What is oo development?

+ Oo themes

+ Evidence for usefulness of oo development
* Oo modeling history

* Modeling

+ Abstraction

* The tree models

+ Objects and class concepts

+ Link and association concepts
+ Generalization and inheritance
* A sample class model

+ Navigation of class models

+ Practical tips

INTRODUCTION
Note 1:
Intention of this subject (object oriented modeling and design) is to learn how to
apply object -oriented concepts to all the stages of the software development life
cycle.
Note 2:
Object-oriented modeling and design is a way of thinking about problems using
models organized around real world concepts. The fundamental construct is the
object, which combines both data structure and behavior.
WHAT IS OBJECT ORIENTATION?
Definition: OO means that we organize software as a collection of discrete objects
(that incorporate both data structure and behavior).
[IThere are four aspects (characteristics) required by an OO approacho
Identity.

o C(lassification.

e Inheritance.

e Polymorphism.
/1dentity:

e Identity means that data is quantized into discrete, distinguishable entities
called objects.
e E.g. for objects: personal computer, bicycle, queen in chess etc.

Dept. of ISE, S]BIT Page 4

Object Oriented Modeling and Design 10CS71

e Objects can be concrete (such as a file in a file system) or conceptual (such
as scheduling policy in a multiprocessing OS). Each object has its own inherent
identity. (i.e two objects are distinct even if all their attribute values are identical).

e In programming languages, an object is referenced by a unique handle.

[IClassification:

e Classification means that objects with the same data structure (attribute) and
behavior (operations) are grouped into a class.

e E.g. paragraph, monitor, chess piece.

e FEach object is said to be an instance of its class.

e Fig below shows objects and classes: Each class describes a possibly infinite
set of individual objects.

Eg iyg
Palrean class:
Arribuces-
-wertices,
abstrace barder class,
_—D' fill color.
o
Cperations-
selram
-2rase.
-Move.
e
Bycycle class:
Aftributes-
- frame size
-nheel size
no. of gears
, -Mmaterial
Operations-
. -shift
-IMICh e
-repair
Inheritance:

e [t is the sharing of attributes and operations (features) among classes based
on a hierarchical relationship. A super class has general information that sub classes
refine and elaborate.

e E.g. Scrolling window and fixed window are sub classes of window.

/Polymorphism:

e Polymorphism means that the same operation may behave differently for
different classes.

e For E.g. move operation behaves differently for a pawn than for the queen in
a chess game.

Dept. of ISE, S]BIT Page 5

Object Oriented Modeling and Design 10CS71

Note: An operation is a procedure/transformation that an object performs or is
subjected to. An implementation of an operation by a specific class is called a
method.

WHAT IS OO DEVELOPMENT?

Object-Oriented Development =
R
i Object-Crentad i
Q Analysis [DOA) 7
""\-\.__‘_‘__ = -

+*

i T
I:I Object-Oriented \‘I
L Design (QOLC)

S — L -
+
— T,
" Object-Oriented ™

{ AragrAmimin /
(CIO0F)
- & g r’_‘_/

— —

Figure 1-3 Object-vriented development

[/Development refers to the software life cycle: Analysis, Design and
Implementation. The essence of OO Development is the identification and
organization of application concepts, rather than their final representation in a
programming language. It’s a conceptual process independent of programming
languages. OO development is fundamentally a way of thinking and not a
programming technique.

0O methodology

[/Here we present a process for OO development and a graphical notation for
representing OO concepts. The process consists of building a model of an
application and then adding details to it during design.

/The methodology has the following stages

e System conception: Software development begins with business analysis or
users conceiving an application and formulating tentative requirements.

e Analysis: The analyst scrutinizes and rigorously restates the requirements
from the system conception by constructing models. The analysis model is a concise,
precise abstraction of what the desired system must do, not how it will be done.

e The analysis model has two parts-

Dept. of ISE, S]BIT Page 6

Object Oriented Modeling and Design 10CS71

e [] Domain Model- a description of real world objects reflected within the
system.

e [] Application Model- a description of parts of the application system itself
that are visible to the user.

e E.g. In case of stock broker application-

e Domain objects may include- stock, bond, trade & commission.

e Application objects might control the execution of trades and present the
results.

e System Design: The development teams devise a high-level strategy- The
System Architecture- for solving the application problem. The system designer
should decide what performance characteristics to optimize, chose a strategy of
attacking the problem, and make tentative resource allocations.

o Class Design: The class designer adds details to the analysis model in
accordance with the system design strategy. His focus is the data structures and
algorithms needed to implement each class.

e Implementation: Implementers translate the classes and relationships
developed during class design into a particular programming language, database or
hardware. During implementation, it is important to follow good software
engineering practice.

Three models
[JWe use three kinds of models to describe a system from different view points.

1. Class Model—for the objects in the system & their relationships.

It describes the static structure of the objects in the system and their
relationships.

Class model contains class diagrams- a graph whose nodes are classes and arcs
are relationships among the classes.

2. State model—for the life history of objects.

It describes the aspects of an object that change over time. It specifies and
implements control with state diagrams-a graph whose nodes are states and whose
arcs are transition between states caused by events.

3. Interaction Model—for the interaction among objects.

It describes how the objects in the system co-operate to achieve broader results.
This model starts with use cases that are then elaborated with sequence and activity
diagrams.

Use case — focuses on functionality of a system — i.e what a system does for
users.

Sequence diagrams — shows the object that interact and the time sequence of their
interactions.
Activity diagrams — elaborates important processing steps.

OO THEMES

Dept. of ISE, S]BIT Page 7

Object Oriented Modeling and Design 10CS71

Several themes pervade OO technology. Few are —
1. Abstraction

» Abstraction lets you focus on essential aspects of an application while
ignoring details i.e focusing on what an object is and does, before deciding how to
implement it.

» It’s the most important skill required for OO development.

2. Encapsulation (information hiding)

» It separates the external aspects of an object (that are accessible to other
objects) from the internal implementation details (that are hidden from other objects)

» Encapsulation prevents portions of a program from becoming so
interdependent that a small change has massive ripple effects.

3. Combining data and behavior

» Caller of an operation need not consider how many implementations exist.

» In OO system the data structure hierarchy matches the operation inheritance

» hierarchy (fig).

2

data seruceurs hlerarehyr

Ik repliced wid =l

=7
/ class hler archiy

pirecedurs hicrarchy

\ / Y /

old appieach OO appraach

4. Sharing

e OO techniques provide sharing at different levels.

e Inheritance of both data structure and behavior lets sub classes share
common code.

e OO development not only lets you share information within an application,
but also offers the prospect of reusing designs and code on future projects.

5. Emphasis on the essence of an object

e OO development places a greater emphasis on data structure and a lesser
emphasis on procedure structure than functional-decomposition methodologies.

6. Synergy

e Identity, classification, polymorphism and inheritance characterize OO
languages.

Dept. of ISE, S]BIT Page 8

Object Oriented Modeling and Design 10CS71

e FEach of these concepts can be used in isolation, but together they
complement each other synergistically.

MODELLING AS A DESIGN TECHNIQUE

Note: A model is an abstraction of something for the purpose of understanding it
before building it.

MODELLING

[1Designers build many kinds of models for various purposes before constructing
things.

[/Models serve several purposes —

» Testing a physical entity before building it: Medieval built scale models of
Gothic Cathedrals to test the forces on the structures. Engineers test scale models of
airplanes, cars and boats to improve their dynamics.

» Communication with customers: Architects and product designers build
models to show their customers (note: mock-ups are demonstration products that
imitate some of the external behavior of a system).

» Visualization: Storyboards of movies, TV shows and advertisements let
writers see how their ideas flow.

» Reduction of complexity: Models reduce complexity to understand directly
by separating out a small number of important things to do with at a time.
ABSTRACTION
[JAbstraction is the selective examination of certain aspects of a problem.

[IThe goal of abstraction is to isolate those aspects that are important for some
purpose and suppress those aspects that are unimportant.

THE THREE MODELS

1. Class Model: represents the static, structural, “data” aspects of a system.

e [t describes the structure of objects in a system- their identity, their
relationships to other objects, their attributes, and their operations.

e (Goal in constructing class model is to capture those concepts from the real
world that are important to an application.

e (lass diagrams express the class model.

2. State Model: represents the temporal, behavioral, “control” aspects of a
system.

e State model describes those aspects of objects concerned with time and the
sequencing of operations — events that mark changes, states that define the context
for events, and the organization of events and states.

e State diagram express the state model.

e Each state diagram shows the state and event sequences permitted in a
system for one class of objects.

e State diagram refer to the other models.

Dept. of ISE, S]BIT Page 9

Object Oriented Modeling and Design 10CS71

e Actions and events in a state diagram become operations on objects in the
class model. References between state diagrams become interactions in the
interaction model.

3. Interaction model — represents the collaboration of individual objects, the
“interaction” aspects of a system.

e Interaction model describes interactions between objects — how individual
objects collaborate to achieve the behavior of the system as a whole.

e The state and interaction models describe different aspects of behavior, and
you need both to describe behavior fully.

e Use cases, sequence diagrams and activity diagrams document the interaction
model.

CLASS MODELLING

Note: A class model captures the static structure of a system by characterizing the
objects in the system, the relationships between the objects, and the attributes and
operations for each class of objects.

OBJECT AND CLASS CONCEPT

Objects

[JPurpose of class modeling is to describe objects.

JAn object is a concept, abstraction or thing with identity that has meaning for an
application.

Ex: Joe Smith, Infosys Company, process number 7648 and top window are objects.
Classes

[JAn object is an instance or occurrence of a class.

JA class describes a group of objects with the same properties (attributes), behavior
(operations), kinds of relationships and semantics.

Ex: Person, company, process and window are classes.

Note: All objects have identity and are distinguishable. Two apples with same color,
shape and texture are still individual apples: a person can eat one and then the other.
The term identity means that the objects are distinguished by their inherent existence
and not by descriptive properties that they may have.

Dept. of ISE, S]BIT Page 10

Object Oriented Modeling and Design 10CS71

CLASS MODELLING

+ OBJECT AND CLASS CONCEPT

« An object has three characteristics: state,
behavior and a unique identification. or

* An object is a concept, abstraction or thing
with identity that has meaning for an
application. Eg: — T 1

* Note: The term _

identity means |

that the objects are ig*ﬁ'“ﬂ &
distinguished by their | ‘;fg ' ’“_’-*.“’“:"'
inherent existence and 'F‘-‘rﬁ I

not by descriptive ¥
properties that they I
may have. e 1] I TR

Class diagrams

[JClass diagrams provide a graphic notation for modeling classes and their
relationships, thereby describing possible objects.

Note: An object diagram shows individual objects and their relationships.

Useful for documenting test cases and discussing examples.

[/Class diagrams are useful both for abstract modeling and for designing actual
programs.

Note: A class diagram corresponds to infinite set of object diagrams.

[IFigure below shows a class (left) and instances (right) described by it.

Person [JoeSmith-Persen ! MarySharp:Persoh | :Person
|
-\1".- i T vl =
Class Objects

[JConventions used (UML):

e UML symbol for both classes and objects is box.

e Objects are modeled using box with object name followed by colon followed
by class name.

e Use boldface to list class name, center the name in the box and capitalize the
first letter. Use singular nouns for names of classes.

e To run together multiword names (such as JoeSmith), separate the words
with

e intervening capital letter.
Values and Attributes:
/Value is a piece of data.

Dept. of ISE, S]BIT Page 11

Object Oriented Modeling and Design 10CS71

Attribute is a named property of a class that describes a value held by each object of
the class.

[JFollowing analogy holds:

Object is to class as value is to attribute.

[JE.g. Attributes: Name, bdate, weight.

Values: JoeSmith, 21 October 1983, 64. (Of person object).
[/Fig shows modeling notation

Person | ..j_m;—ﬁmiih:Person { MarvSh r_ :Person
name: string = | name="Joe Smith" ‘ name="Mary Shamp”
birthdate: date birthdate=21 October 1983 | | birthdate=16 March 1950 |

A T

Class with Aitributes (Bjecis with Values

[/Conventions used (UML):

e List attributes in the 2nd compartment of the class box. Optional details (like
default value) may follow each attribute.

e A colon precedes the type, an equal sign precedes default value.

e Show attribute name in regular face, left align the name in the box and use
small case for the first letter.

[ISimilarly we may also include attribute values in the 2nd compartment of
object boxes with same conventions.

Note: Do not list object identifiers; they are implicit in models.
E.g.

Person 3 F Person
1 // ..

i name: string
| hirthidate: date

homeTelephoneNumber:string

personiD:
nams; sirin

he elephoneMumberrsiging

Wrong Correct

An operation is a function or procedure that maybe applied to or by objects in a
class.

E.g. Hire, fire and pay dividend are operations on Class Company. Open, close, hide
and redisplay are operations on class window.

A method is the implementation of an operation for a class.

E.g. In class file, print is an operation you could implement different methods to
print files.

[/Note: Same operation may apply to many different classes. Such an operation is
polymorphic.

[/Fig shows modeling notation.

Dept. of ISE, S]BIT Page 12

Object Oriented Modeling and Design 10CS71

|

File . Gec:-rne-tr icObject

Persan =
name fileName 'colqr_ ™
birthdate sizelnBytes nosition
| changeJob ﬂ‘ |a.':%lLdeate 3 | mr:rn.,re. [l:!;el't:—l:l"u’?{:tor} i
| changeAddress | print | | fﬁ:tcé {fﬁ{aigllgl{'fﬁzg?lfﬁu}

[JUML conventions used —

e List operations in 3rd compartment of class box.

e List operation name in regular face, left align and use lower case for first
letter.

e Optional details like argument list and return type may follow each operation
name.

e Parenthesis enclose an argument list, commas separate the arguments. A
colon precedes the result type.

[/Note: We do not list operations for objects, because they do not vary among
objects of same class.
Summary of Notation for classes

e :
ClassMame

attributeName1 : dataTypel = def_au'ﬂvalum
attributeName?2 : dataType2 = defaullValueZ

+ & @

operalionNamet (argumentl.!stj} ; resultTyped
pperationName2 {argumentl ist?) : resultType2

Fig: Summary of modeling notation for classes

direction argumentName : type = defauliValue
Fig: Notation for an argument of an operation

Dept. of ISE, S]BIT Page 13

Object Oriented Modeling and Design 10CS71

Class Digarms: Relationships

+ Classes can related to each other through
different relationships:

— Dependency [Class] J------ 1Class2 |

— Association (delegation) ~ [Classl |———Class2|

— Generalization (inheritance)| Base <+— sub |

— Realization (interfaces) | Base <7 | sub |

1) Dependency: A Uses Relationship

» Dependencies
— occurs when one object depends on another

—if you change one object's interface, you
need to change the dependent object

—arrow points from dependent to needed

objects
' CardReader
-33 % CDCollection
h SongSelector

2)Association: Structural Relationship

‘ Jukebox

= Association

— a relationship between classes indicates some
meaningful and interesting connection

— (Zan label associations with a hyphen connected
verh phrase which reads well hetween concepts

Dept. of ISE, S]BIT Page 14

Object Oriented Modeling and Design 10CS71

association

ass0ciation narne
| Class 1 I I Jdass 2 |

if agsaciation name is replaced with “owns=",
it wiould read “Class 1 owns Class 2¢

LINK AND ASSOCIATION CONCEPTS
Note: Links and associations are the means for establishing relationships among
objects and classes.
Links and associations
JA link is a physical or conceptual connection among objects.
E.g. JoeSmith WorksFor Simplex Company.
[/Mathematically, we define a link as a tuple — that is, a list of objects.
[JA link is an instance of an association.
[JAn association is a description of a group of links with common structure and
common semantics.
E.g. a person WorksFor a company.
[JAn association describes a set of potential links in the same way that a class
describes a set of potential objects.
" Fig shows many-to-many association (model for a financial application).

- ut Sl

[Ferson OwnsStock [company
(lasy diggram — ———| # W =
| namea | TS
Jghﬁ:ﬁermn
name="Jdohn* |—
Mary:Perzon — GE:Company
name¥==rdan“' —— nama="GE" |
SusPerson | — I [BMiCompany |
biect dingrom ¢ o] P o e ST
| name="5ua" | — nameo="IBM" |
EIEE:PEfED;‘I
name-"Alice" |

_[Jeff:-Pareon

| AR S
name="Jeff"

[/Conventions used (UML):
e Link is a line between objects; a line may consist of several line segments.
e Ifthe link has the name, it is underlined.
e Association connects related classes and is also denoted by a line.

e Show link and association names in italics.
[INote:

Dept. of ISE, S]BIT Page 15

Object Oriented Modeling and Design 10CS71

e Association name is optional, if the model is unambiguous. Ambiguity arises
when a model has multiple associations among same classes.

e Developers often implement associations in programming languages as
references from one object to another. A reference is an attribute in one object that
refers to another object.

Association Relationships
We van specily dnal associalions.

rJ:?’J!.lq.\'.'f.'n'.'.l I

) E
crres sy Ameoeiend on
Member of
1.t 1.+
Shidant Tem
1 Fresident of 1%

Class Diagrams (cont)

a Twres ot as=nrlatioes Aggrenation (has-a)

lam L))
NinAsy P
Fesn Sz p Food
cormpnslthnne (15-0n mqn and-nf
o e
——
n ary I I
."""'»_
Mas=t Hassd GianwalicAdinn (is-aA-kirnl-nl}
—, Mt
R o Vol
] 3
Cliee

Dept. of ISE, S]BIT Page 16

Object Oriented Modeling and Design 10CS71

Class Diagrams {cont)

sdctabepes
Hi rien Riesnirres
{}""I
1
e prrrenry Realiratinn :
Frogest —
I_______ F'DI;;“T?EF:HIE' CTTTTTTT il
: Rl
Project Maager | ___ __I
T -.; FLE il EM
I Tearm Cyst=m Adrrinist=tor 1
1
Class suppor s all
The source class aperatizns of taget cless
depends on (Uses) but not all attrizuzes or
the target class agscciations.
Multiplicity

/Multiplicity specifies the number of instances of one class that may relate to a
single instance of an associated class. Multiplicity constrains the number of related
objects.
[JUML conventions:

e UML diagrams explicitly lists multiplicity at the ends of association lines.

e UML specifies multiplicity with an interval, such as

“1” (exactly one).
“1..”(one or more).

“3..5”(three to five, inclusive).

k9

(many, i.e zero or more).

* notations
1 Class exactly one
many
0.” (zero or more)
Class
0.1 optional
- Class (zero or one)
numerically
. m.n Class Specified
Example: (mto n, inclucive)
0.*
Course 1 CourseOffering

Dept. of ISE, S]BIT Page 17

Object Oriented Modeling and Design 10CS71

[IPrevious figure illustrates many-to-many multiplicity. Below figure illustrates
one-to-one multiplicity.

[[Country Rty CapitalCity |
ey diagran v L 3 ST o e R e
I name rarme

|' Canads:Country HasCapial | | :CapitalCit
name="Canada” name="Ottawa"
France:Country
Bpect diagram < |

) nama="France”

HasCapital | Paris:CapitaiCity |

name="Faris" i
| Senegal:Country | HasGapital | Dekar:CapialClty
| nam g="Senegal” J name="Dakar"

IBelow figure illustrates zero-or-one multiplicity.

o | 0.1 W—l'
. indow
I._ Workstation I—— ey i)

[JNote 1: Association vs Link.
andsaaciaticn R i LB_B :
i e anfih ———— 2
E:* *|_E_| |:] J
- — —_— R —
Obfuet dingram
Figare 3.1 Assnciation vs. link. A pair of oljects can he inatantizmd ac

o

. -\...
Cluvs diwsrom

vEt oo Per asmodiaion (gxoept for bags smil sequenoes),

— andseociation & i | ik =
e R S e
L% momerdssociation *L— [

gnotherling ¢

Clase dicpram Chfect dimgram

Figure 311 Association vs, Hnk. You canuse multiple ussosiations fo
rislel multiple links betwesn the same ebjects.

Dept. of ISE, S]BIT

Page 18

Object Oriented Modeling and Design 10CS71

Multiplicity of Associations
« Many-to-one
— Bank has many ATMs, ATM knows only 1 bank

A
w1 s |

* One-to-many
— Inventory has many items, items know 1 inventory

Inventory Icam

sames: Eleing
st o 1Mum: St-ing

okl swasd sl Lol .
dlesleLed) swald lebdean: Bhring
medifyd) v d CEpaTtment s STring
_ozatadl: Ltem

Association - Multiplicity

» AShudent caniake up to fve Courses.

« Shudent hasta be enrdled in at least one course.
L ta 300 sludents can enroll in a8 course.

v Aclass should have at [east 10 students.

Student Course
hn..300 Takes- 1.

Dept. of ISE, S]BIT Page 19

Object Oriented Modeling and Design 10CS71

Association — Multiplicity

A teacher teaches 1 to 3 courses (subjects)
» Each course is taught by only one teacher.
A student can take between 1 to 5 courses.
» Acourse can have 10 to 300 students.

1 S
Teacher Teaches L3 Course
1..5
Students Takes»
10..300
Multiplicity

+ Multiplicity defines how many instances
oftype A can be associated with ong
instance of type B at some point

Game Player
1 28—

Mother Child

erforms-in . Actor isassocated
Acorf—F - Film | with 0 to any filems
& filnis associated
can label associations with 0 to tany actars

Dept. of ISE, S]BIT Page 20

Object Oriented Modeling and Design

10CS71

Course | o Teaches B rofessor
-name
-schede 0.r 0= —;r?nm:a e id
e C PICrE
1.7 ﬂ
1.7
offers
N B
Depatment) g vanages chair
-narme -is chair

MULTIPLICITIES IN ASSOCIATIONS

min.max notation |0..* related to zero or more objects

(related to at 0.1 related to no object or at most one object
least min 1.* | related to at least one object

objects and 1.1 related to exactly one object.

at maost max 1.5 related to at least three objects and at
objects) most five objects

short hand 1 same as 1.1

notation . same as 0.*

[/Note 2: Multiplicity vs Cardinality.

e Multiplicity is a constraint on the size of a collection.
e Cardinality is a count of elements that are actually in a collection.

Therefore, multiplicity is a constraint on cardinality.
[/Note 3: The literature often describes multiplicity as being “one” or “many”,

but more generally it is a subset of the non negative numbers.

Association end names
/Multiplicity implicitly refers to the ends of associations. For E.g. A one-to-

many association has two ends —

e an end with a multiplicity of “one”

e an end with a multiplicity of “many”
You can not only assign a multiplicity to an association end, but you can give it a

name as well.

Dept. of ISE, S]BIT

Page 21

Object Oriented Modeling and Design 10CS71

: employes amplayer
Person [- Company
I WarksFor ¢.1

employes employer

Joe Doe Simplex
Mary Brown Simplex
Jean Smith United Widgets

Assyeiation end oames, Each end of an association can have a name.

A person is an employee with respect to company.

A company is an employer with respect to a person.

[/Note 1: Association end names are optional.

[JNote 2: Association end names are necessary for associations between two objects
of the same class. They can also distinguish multiple associations between a pair of
classes.

E.g. each directory has exactly one user who is an owner and many users who are
authorized to use the directory. When there is only a single association between a
pair of distinct classes, the names of the classes often suffice, and you may omit
association end names.

iy i

owner| | 0. mntamer ~
Il- User ‘ rectur;r

: Y nts
authorizedUser | ¥ ' cnte

"/Note 3: Association end names let you unify multiple references to the same class.
When constructing class diagrams you should properly use association end names
and not introduce a separate class for each reference as below fig shows.

| parant
| PEI'SGI'I u-—,.l'|

T Tenidl® |
e

Correct model

Wrong midel

Sometimes, the objects on a “many” association end have an explicit order.

E.g. Workstation screen containing a number of overlapping windows. Each window
on a screen occurs at most once. The windows have explicit order so only the top
most windows are visible at any point on the screen.

JOrdering is an inherent part of association. You can indicate an ordered set of
objects by writing “{ordered}” next to the appropriate association end.

Dept. of ISE, S]BIT Page 22

Object Oriented Modeling and Design 10CS71

ey orderod) T T
Screen : P l_ Window
2 VisibleOn e

Fig: ordering sometimes occurs for “many” multiplicity

Bags and Sequences

[/Normally, a binary association has at most one link for a pair of objects.
[/However, you can permit multiple links for a pair of objects by annotating an
association end with {bag} or {sequence}.

A bag is a collection of elements with duplicates allowed.

A sequence is an ordered collection of elements with duplicates allowed.

Example:

T lsequencel
itinerary — 3 Alrportl

=t |1 .
fig: an itinerary may visit multiple airports, so you should use {sequence} and not
{ordered}

[INote: {ordered} and {sequence} annotations are same, except that the first
disallows duplicates and the other allows them.

Association classes

[JAn association class is an association that is also a class.

Like the links of an association, the instances of an association class derive identity
from instances of the constituent classes.

Like a class, an association class can have attributes and operations and participate in
associations.

[Ex:

[_-;lie_F e T T g E‘[_Eer-‘
v e Accegsll_ihleﬂ’f |

Fu: cessPa rmisah:-_n

John Doe
jetc/termcap read Mary Brown
Jelcitermecap. ;‘ggﬂ E‘}}}E ..In::uhr:}'sr Doe

fusrdoe/.login
JUML notation for association class is a box attached to the association by a
dashed line.
/Note: Attributes for association class unmistakably belong to the link and cannot
be ascribed to either object. In the above figure, accessPermission is a joint property
of File and user cannot be attached to either file or user alone without losing
information.

Dept. of ISE, S]BIT Page 23

Object Oriented Modeling and Design 10CS71

[/Below figure presents attributes for two one-to-many relationships. Each person

working for a company receives a salary and has job title. The boss evaluates the
performance of each worker. Attributes may also occur for one-to-one associations.

= i T e |
person |-—— ———— Company I
e | TR SR name
s WorksFor - N
hoss | birthDate | [we __* | address

0.1 address salary
R iobTitle J
MH’THQ'ESL & | worker e
il

SRR

Pperfﬂﬂﬁeﬂati” g_l

/Note 1: Figure shows how it’s possible to fold attributes for one-to-one and one-
to-many associations into the class opposite a “one” end. This is not possible for
many-to-many associations.

As a rule, you should not fold such attributes into a class because the multiplicity of
the association may change.

e e e
Person , 111 company
.I]
i S | name | P name
—~ % | vinnDate | WarksFor | | address
address | salary
E == ljnl:rTitIe

WorksFor 0.1 _E_‘E;ﬂ?“?
o name i name 1
wraged < birthDate: | address {

address

e

[/Note 2: An association class participating in an association.

% =1 ;
User ; 1 Workstation
Authorization !
pricrity homeDirestary [. . |
privilages 5 - Dirsctory |
startSession

[JNote 3: Association class vs ordinary class.

Dept. of ISE, S]BIT Page 24

Object Oriented Modeling and Design 10CS71

——
| Person : Company
fecistion |, 1% ' %
chass 5 Lol OwneStock | et
quantity
{ Parson Purghase Company
S R TR | 1
T ~ |r ET T quantty name
MERE S e date
cost

eg:

| o % emiploycr :
[FPerson T : 0.1 Company

__—-Aageciakon Class
Employment o

perinduiateanges

Figure 6-11: Association Class

JSemployer

“- 1
| 0.1
] ; Employment o | i
1 0.1 - s 1
! IJprlej — | Pperiod : dalcRange e} CUIHPHI‘[}'
|) | TR 1
R Rl I

Qualified associations

[JA Qualified Association is an association in which an attribute called the
qualifier disambiguates the objects for a “many” association ends. It is possible to
define qualifiers for one-to-many and many-to-many associations.

[JA qualifier selects among the target objects, reducing the effective multiplicity
from “many” to “one”.

[JEx 1: qualifier for associations with one to many multiplicity. A bank services
multiple accounts. An account belongs to single bank. Within the context of a bank,
the Account Number specifies a unique account. Bank and account are classes, and
Account Number is a qualifier. Qualification reduces effective multiplicity of this
association from one-to-many to one-to-one.

Dept. of ISE, S]BIT Page 25

Object Oriented Modeling and Design 10CS71

- 2] ?ﬁ?unt
=
IR oo : Eank ‘| tNumber
|r Bank I'aocﬂ gL ! rn_bEtr e E‘“"“ "‘t_|I |_ accountNumber |
T SR s R i E o —— o —_
e e Ao qﬂaﬂﬁﬂf

fyualified
Fig: qualification increases the precision of a model. (note: however, both are
acceptable)
[JEx 2: a stock exchange lists many companies. However, it lists only one company
with a given ticker symbol. A company maybe listed on many stock exchanges,
possibly under different symbols.

StockExchange i StockExchange
fickersymbol | SR - R
Lists [-4 ——&——
fait N tickerSymbol |
0.1
Company |
Company ‘ \;—
Qua;’.:ﬁed Not gualified

Eqg 3: Qualified Association

(&) Froduct ‘ Contains ‘ Product

Catalog ‘ 1 4 *| Description
1 . 1
Procuct Contains | Product
() Calzlog temiD Description
lqual'rﬁt-zr_lh mulfidlicity redused to 1 A
eg 4:

Dept. of ISE, S]BIT Page 26

Object Oriented Modeling and Design 10CS71

quaiif eri

- |
i
Array index| e ArrayValue
| i
. —IB‘
guaiified object target objecti

GENERALIZATION AND INHERITANCE

IGeneralization is the relationship between a class (the superclass) and one or
more variations of the class (the subclasses). Generalization organizes classes by
their similarities and differences, structuring the description of objects.

[JThe superclass holds common attributes, operations and associations; the
subclasses add specific attributes, operations and associations. Each subclass is said
to inherit the features of its superclass.

[IThere can be multiple levels of generalization.

[JFig(a) and Fig(b) (given in the following page) shows examples of generalization.
[1Fig(a) — Example of generalization for equipment.

Each object inherits features from one class at each level of generalization.

[JUML convention used:

Use large hollow arrowhead to denote generalization. The arrowhead points to
superclass.

[/Fig(b) — inheritance for graphic figures.

The word written next to the generalization line in the diagram (i.e dimensionality) is
a generalization set name. A generalization set name is an enumerated attribute that
indicates which aspect of an object is being abstracted by a particular generalization.
It is optional.

Dept. of ISE, S]BIT Page 27

Object Oriented Modeling and Design 10CS71

. H Equipment
name INote: Tha listing of equipmant,

manutacturer | sumps, and tarks s incomplete)
waight _
| cost |
I e : i . B e
Pump | HeztExchanger | Tank
suctionPrassure surfaceArsa | volume
dischargePressurs tubeliametar | prassure
flowRate I tubalength
tubePressure
Z‘}“ shellPressure
- : Bige
CentrifugalPump | | DlaphragmPump | FlungerPump

impellerDiamele: |_ disgphragmblaterial | | plungerLength
numberCiBlades — plungerDiametear
axisCMRoalon | numberfCylindars

| e i el 1]
| SpherlcaiTank |_Fressurizad'!' ank FloatingRoofTank
'| diameter diameter | diameter
Fizight | height

P101:DaphragmPump | | E302:HeatExchanger T111:FloatingRoofTank
nams = "F101" | | name =*E3c2" name ="T111"
manufacturer = "Simplex” manufacturer = “Brown” manufacturer = “Simplex"
waight = 100 kg weight = 5000 kg [| weaht = 10000 kg
oot = $5000 cogt = 320000 5 cost = S50000
suctionPres = 1.1 atm surfacefrea = 300 m | voelume = 400000 liter
dischargaPres = 3.3 aim tubeDiameter = 2 om | pressure = 1.1 aim
flowRate = 300 'hr tubelength =6 m | diameter = 8 m
diaphragmbiatl = Teflon tubePressure = 15 atr | height =9 m

shellPressurs = 1.7 atmi

Fig(a)

Dept. of ISE, SJBIT Page 28

Object Oriented Modeling and Design 10CS71
Figure |
color
i " centerPosition
Diagram_l —| penThickness
' penType
name -
—_ mowve
select
rotate
ispla
disp 1;1\ i
dimensionality '
[=
—— 3 [. !
Zerolmenslonal Gnenlmensmna_l -! TquuTiensmnﬂi |
= n arientation
Bentaho ‘ ke
‘ cme scale [
ill |
o A -
s
1 i e
P : 1T & 1 circle |
Point | | Lina || Arc Polygen |
| II- andPoints }‘radms controiPis numCisides | diameiar l
A starthngle T vertices dnsplay
:;._play — dnspla}r SInade Epiay 'T:Jlspiﬂ‘; :' rotate
d15p|ay4
Fig (b)

‘move’, ‘select’, ‘rotate’, and ‘display’ are operations that all subclasses inherit.
‘scale’ applies to one-dimensional and two-dimensional figures.

“fill” applies only to two-dimensional figures.

[1Use of generalization: Generalization has three purposes —

1. To support polymorphism: You can call an operation at the superclass
level, and the OO language complier automatically resolves the call to the method
that matches the calling object’s class.

2. To structure the description of objects: i.e to frame a taxonomy and
organizing objects on the basis of their similarities and differences.

3. To enable reuse of code: Reuse is more productive than repeatedly writing
code from scratch.

[/Note: The terms generalization, specialization and inheritance all refer to aspects
of the same idea.
Overriding features
[JA subclass may override a superclass feature by defining a feature with the same
name. The overriding feature (subclass feature) refines and replaces the overridden
feature (superclass feature) .
"/Why override feature?

e To specify behavior that depends on subclass.

e To tighten the specification of a feature.

Dept. of ISE, S]BIT Page 29

Object Oriented Modeling and Design

10CS71

e To improve performance.

[In fig(b) (previous page) each leaf subclasses had overridden ‘display’ feature.

[/Note: You may override methods and default values of attributes. You should
never override the signature, or form of a feature.

A SAMPLE CLASS MODEL
i |
Window
b
=1
o \
e
¥ 4
display
undisplay
[RISE
1.:.wes
e T L r e
SorolingWindow | B _ canvas |
1
#G‘I‘IEH il ﬁ«.
| yOiteat | it}
ST &
e ful =Y
I_s o —-——l hda—lnmunl |
Lk : _._.L d.g|eTﬂE|B|'|'|Hm
| | 1 | ainio
’ ‘ %= gloments
| i Shaps |
| r,-ml-::-r
| | Tmewvichh |
E e AR
ook FERE
e i |osad
I Text || seroiling| | Line | | %ﬁapa
window | | Canvas | 1 i
e 2L T o |
| swing X mn:rencfn
; V2 J o
| msert | e
d e e
| S] ool J—_l
S
i BENSRE

NAVIGATION OF CLASS MODELS

_Pane'- |

| |1BIT‘NE|1'|1?_|F
!
—]
| 1| Event
|| | -m"_lf',tuﬁnﬂ"l_;ia.j
oL i T
e E| I o
b | |
AL o ﬂ
iaba!
::___l
P
J‘T_ b5 st v
3 a -‘I?niltarn |
Bution | | Choice | | TE0
'|| maxl angth
g:-;r?rgasﬂa:q 0l 1| current=inng
= | i
|{su‘.:¢.-r:3
==
curreniChuice ik alﬂDhF‘E
e ChmmEmﬁr |
_| | blflng
value \

e —

Class models are useful for more than just data structure. In particular, navigation
of class model lets you express certain behavior. Furthermore, navigation exercises
a class model and uncovers hidden flaws and omission, which you can then repair.

[JUML incorporates a language that can be used for navigation, the object

constraint language(OCL).

OCL constructs for traversing class models

Dept. of ISE, S]BIT

Page 30

Object Oriented Modeling and Design 10CS71

[JOCL can traverse the constructs in class models.

1. Attributes: You can traverse from an object to an attribute value.

Syntax: source object followed by dot and then attribute name.

Ex: aCreditCardAccount.maximumcredit

2. Operations: You can also invoke an operation for an object or collection of
objects. Syntax: source object or object collection, followed by dot and then the
operation followed by parenthesis even if it has no arguments. OCL has special
operations that operate on entire collections (as opposed to operating on each object
in a collection). Syntax for collection operation is: source object collection followed
by “->”, followed by the operation.

3. Simple associations: Dot notation is also used to traverse an association to a
target end. Target end maybe indicated by an association end name, or class name (
if there is no ambiguity).

Ex: refer fig in next page.

> aCustomer.MailingAddress yields a set of addresses for a customer (
the target end has “many” multiplicity).
> aCreditCardAccount.MailingAddress yields a single address(the

target end has multiplicity of “one”).

4. Qualified associations: The expression aCreditCardAccount.Statement [30
November 1999] finds the statement for a credit card account with the statement date
of November 1999. The syntax is to enclose the qualifier value in brackets.

5. Associations classes: Given a link of an association class, you can find the
constituent objects and vice versa.

6. Generalization: Traversal of a generalization hierarchy is implicit for the
OCL notation.

7. Filters: Most common filter is ‘select’ operation.

Ex: aStatement. Transaction->select(amount>$100).

Examples of OCL expressions

Dept. of ISE, S]BIT Page 31

Object Oriented Modeling and Design 10CS71

— —— ¥ 1 | 3 -
ailing At redi t stitukion
Maili ng Addrass ! — CredilCand Aocount] z ; __Ill ol
I g (R _— o o poourtMOmber e
acddress rr-:-.-i..l'hi_;'n-..ll..'l.jl. I 1 n - | S |
pnanetumber currertla Bk _| A
t s TaotameniDaie | e St
e
.1
s M -
¥ ._--':I'-f'lllr'l.l'E..t!l = SEmum I [ravEiaaen
P T T e ciils
[customer | — ranzacticnvanbar —— ansachcnDate |

e — E
—_ payrer DL eEie |- el e
TR | finaceCharge | S ‘

I = | mir i ~g et | amaurt |
O RO G Sl v e
s 2 L - g _ L~ - - —
CashAdvanca interest | Purchasc Fas | Adjustme
[T |-_ g l_'sa:-:i','jc]
[YL Mt i o R —
_I ——
WMerchant |
TS
-

[Write an OCL expression for —

1. What transactions occurred for a credit card account within a time
interval?

Soln: aCreditCardAccount.Statement. Transaction ->
select(aStartDate<=TransactionDate and

TransactionDate<=anEndDate)

2. What volumes of transactions were handled by an institution in the last
year?

Soln: anlInstitution.CreditCard Account.Statement. Transaction ->

select(aStartDate<=TransactionDate and TransactionDate<=anEndDate).amount-
>sum()

3. What customers patronized a merchant in the last year by any kind of
credit card?

Soln: aMerchant.Purchase -> select(aStartDate<=TransactionDate
andtransactionDate<=anEndDate).Statement.CreditCardAccount.MailingAddress.Cu
stomer ->asset()

4. How many credit card accounts does a customer currently have?

Soln: aCustomer.MailingAddress.CreditCardAccount -> size()

5. What is the total maximum credit for a customer for all accounts?

Soln: acustomer.MailingAddress.CreditCard Account. Maximumcredit -> sum()

Dept. of ISE, S]BIT Page 32

Y VYV

Object Oriented Modeling and Design 10CS71

Unit 2: Advanced Class Modeling 6 Hours

Toipics :
* Advanced object and class concepts
* Asoociation ends
* N-ary association
* Aggregation
» Abstract classes
* Multiple inheritance
* Metadata
* Reification
* Constraints
* Derived data
* Packages
2.1 Advanced object and class concepts

2.1.1 Enumerations

A data type is a description of values, includes numbers, strings, enumerations
Enumerations: A Data type that has a finite set of values.

When constructing a model, we should carefully note enumerations, because they
often occur and are important to users.

Enumerations are also significant for an implantation; we may display the possible
values with a pick list and you must restrict data to the legitimate values.

Do not use a generalization to capture the values of an Enumerated attribute.

An Enumeration is merely a list of values; generalization is a means for structuring
the description of objects.

Introduce generalization only when at least one subclass has significant attributes,
operations, or associations that do not apply to the superclass.

In the UML an enumeration is a data type.

We can declare an enumeration by listing the keyword enumeration in guillemets
(<< >>) above the enumeration name in the top section of a box. The second section
lists the enumeration values.

Eg: Boolean type= { TRUE, FALSE}

Eg: figure.pentype S m e -

Two diml.filltype

Dept. of ISE, S]BIT Page 33

Object Oriented Modeling and Design 10CS71

Card
rank

Wrong %
| A >~ |

Spades Clubs Hearts Diamonds

Card X .
<<enumeration>>| |<<enumeration>>
Correct rapk: rank Suit Rank
suit: suit Clubs]
King
Hearts Queen
Diamonds
Spades

Modeling enumerations. Do not use a generalization to capture the values
of an enumerated attribute

2.1.2 Multiplicity

Multiplicity is a collection on the cardinality of a set, also applied to attributes
(database application).

Multiplicity of an attribute specifies the number of possible values for each
instantiation of an attribute. i.e., whether an attribute is mandatory ([1]) or an
optional value ([0..1] or * 1.e., null value for database attributes) .

Multiplicity also indicates whether an attribute is single valued or can be a
collection.

Person

ra-e s =hing [1]
sdoress . =bng [1.7)
phonzfuniber | sting[*]

Lir-hCrate : zaxc[1]

2.1.3 Scope

Scope indicates if a feature applies to an object or a class.

An underline distinguishes feature with class scope (static) from those with object
scope.

Our convention is to list attributes and operations with class scope at the top of the
attribute and operation boxes, respectively.

Dept. of ISE, S]BIT Page 34

Object Oriented Modeling and Design 10CS71

It is acceptable to use an attribute with class scope to hole the extent of a class (the
set of objects for a class) - this is common with OO databases. Otherwise, you
should avoid attributes with class scope because they can lead to an inferior model.

It is better to model groups explicitly and assigns attributes to them.

In contrast to attributes, it is acceptable to define operations of class scope. The most
common use of class-scoped operations is to create new instances of a class,
sometimes for summary data as well.

2.1.4 Visibility

Visibility refers to the ability of a method to reference a feature from another class
and has the possible values of public, protected, private, and package.

Any method can access public features.

Only methods of the containing class and its descendants via inheritance can access
protected features.

Only methods of the containing class can access private features.

Methods of classes defined in the same package as the target class can access
package features

The UML denotes visibility with a prefix. “+”-> public, “-”-> private,
“#”->protected, “~”-> package. Lack of a prefix reveals no information about
visibility.

Several issues to consider when choosing visibility are

Comprehension: understand all public features to understand the capabilities of a
class. In contrast we can ignore private, protected, package features — they are
merely an implementation convince.

Extensibility: many classes can depend on public methods, so it can be highly
disruptive to change their signature. Since fewer classes depend on private,
protected, and package methods, there is more latitude to change them.

Context: private, protected, and package methods may rely on preconditions or state
information created by other methods in the class. Applied out of context, a private
method may calculate incorrect results or cause the object to fail.

2.2 Associations ends

Association End is an end of association.

A binary association has 2 ends; a ternary association has 3 ends.

2.3 N-ary Association

We may occasionally encounter n-ary associations (association among 3 or more

classes). But we should try to avoid n-ary associations- most of them can be
decomposed into binary associations, with possible qualifiers and attributes.

Dept. of ISE, S]BIT Page 35

Object Oriented Modeling and Design

Team

Year

>

10CS71

Player
goalkeopor
|
|
|
Record
fdls lor
gaals against
WITRE
lossos
TS
Person
1
. 1
Car \/ Bank
inventoryl D X bankID
Make bName
model .
Finance
loanAmpount
' Perscn
pId
pName
1
"

Car | Finance Person
inventoryId bankId
make 1 1|ToanAmount |« bName
mode

» The UML symbol for n-ary associations is a diamond with lines connecting to
related classes. If the association has a name, it is written in italics next to the

diamond.

» The OCL does not define notation for traversing n-ary associations.

Dept. of ISE, S]BIT

Page 36

>

YV V V

Object Oriented Modeling and Design 10CS71

A typical programming language cannot express n-ary associations. So, promote n-
ary associations to classes. Be aware that you change the meaning of a model, when
you promote n-ary associations to classes.

An n-ary association enforces that there is at most one link for each combination.

Person
Eg: _ Lrngrammer
Project | - Pt Languag

Class e o

diagram
Instance see prescribed text book page no. 65 and fing no. 4.6
diagram
2.4 Aggregation

Aggregation is a strong form of association in which an aggregate object is made of
constituent parts.
Constituents are the parts of aggregate.
The aggregate is semantically an extended object that is treated as a unit in many
operations, although physically it is made of several lesser objects.

We define an aggregation as relating an assembly class to one constituent part
class.
An assembly with many kinds of constituent parts corresponds to many
aggregations.
We define each individual pairing as an aggregation so that we can specify the
multiplicity of each constituent part within the assembly. This definition emphasizes
that aggregation is a special form of binary association.
The most significant property of aggregation is transitivity (if A is part of B and B
is part of C, then A is part of C) and antisymmetric (if A is part of B then B is not
part of A)

.* 1.
Car = | Doer —<“>| llouse

YWhale ‘ Fart

2.4.1 Aggregation versus Association

Aggregation is a special form of association, not an independent concept.
Aggregation adds semantic connotations.

If two objects are tightly bound by a part-whole relationship, it is an aggregation. If
the two objects are usually considered as independent, even though they may often
be linked, it is an association.

Aggregation is drawn like association, except a small (hollow) diamond indicates the
assembly end.

Dept. of ISE, S]BIT Page 37

>

Object Oriented Modeling and Design 10CS71

The decision to use aggregation is a matter of judgment and can be arbitrary.

2.4.2 Aggregation versus Composition

The UML has 2 forms of part-whole relationships: a general form called
Aggregation and a more restrictive form called composition.
Composition is a form of aggregation with two additional constraints.

A constitute part can belong to at most one assembly.

Once a constitute part has been assigned an assembly, it has a coincident lifetime
with the assembly. Thus composition implies ownership of the parts by the whole.
This can be convenient for programming: Deletion of an assembly object triggers
deletion of all constituent objects via composition.

Notation for composition is a small solid diamond next to the assembly class.

Eg: see text book examples also

Composition

Hand

* Finger
CCIF'I[JOQ'MI'I L
|
E3 Suare
[rn:qur

COMISEN Means k
-1part inslarce (5quate) can crly be part of ang
compsity (Boerd) al 4 fime

=he compaste hes soke responsibilty for management ol
i pars, 2specely oreaton and deelor

cPu | T}

1?} O
L.* T

database

1.%

table

query

Dept. of ISE, S]BIT

Page 38

YV V V

Object Oriented Modeling and Design 10CS71

Aggregation
Composition
L. Feody ; (.. Selsdrder
: | yooor 1
: AMLLuue 4 |F. Em e === ; _______ I
et 17 ¢
_______ 0L i
| Aemraelemcning E E%‘f’f‘?‘f‘f‘ﬁ‘f LT,
: :] : !
IR AT SR o 2 R ' {Rna e TR e 2 e
,1
Person o | FacultyRole ‘
0.1
4 &
0.1
StudentRole

Zrole

Cirde If L Feart pn Tt
Falyoan |Q L T

2.4.3 Propagation of Operations

L 3

Propagation (triggering) is the automatic application of an operation to a network of
objects when the operation is applied to some starting object.

For example, moving an aggregate moves its parts; the move operation propagates to
the parts.

Provides concise and powerful way of specifying a continuum behavior.

Propagation is possible for other operations including save/restore, destroy, print,
lock, display.

Notation (not an UML notation): a small arrow indicating the direction and operation
name next to the affected association.

Eg: see page no: 68 fig: 4.11

2.5 Abstract Classes

Abstract class is a class that has no direct instances but whose descendant classes
have direct instances.

A concert class is a class that is insatiable; that is, it can have direct instances.

A concrete class may have abstract class.

Only concrete classes may be leaf classes in an inheritance tree.

Eg: see text book page no: 69, 70 fig: 4.12, 4.13,4.14

Dept. of ISE, S]BIT Page 39

Y VYV

Object Oriented Modeling and Design 10CS71

In UML notation an abstract class name is listed in an italic (or place the keyword
{abstract} below or after the name).

We can use abstract classes to define the methods that can be inherited by
subclasses.

Alternatively, an abstract class can define the signature for an operation with out
supplying a corresponding method. We call this an abstract operation.

Abstract operation defines the signature of an operation for which each concrete
subclass must provid4 its own implementation.

A concrete class may not contain abstract operations, because objects of the concrete
class would have undefined operations.

2.6 Multiple Inheritance

Multiple inheritance permits a class to have more than one superclass and to inherit
features from all parents.

We can mix information from 2 or more sources.

This is a more complicated from of generalization than single inheritance, which
restricts the class hierarchy to a tree.

The advantage of multiple inheritance is greater power in specifying classes and an
increased opportunity for reuse.

The disadvantage is a loss of conceptual and implementation simplicity.

The term multiple inheritance is used somewhat imprecisely to mean either the
conceptual relationship between classes or the language mechanism that implements
that relationship.

2.6.1 Kinds of Multiple Inheritance

The most common form of multiple inheritance is from sets of disjoint classes. Each
subclass inherits from one class in each set.

The appropriate combinations depend on the needs of an application.

Each generalization should cover a single aspect.

We should use multiple generalizations if a class can be refined on several distinct
and independent aspects.

A subclass inherits a feature from the same ancestor class found along more than one
path only once; it is the same feature.

Conflicts among parallel definitions create ambiguities that implementations must
resolve. In practice, avoid such conflicts in models or explicitly resolve them, even if
a particular language provides a priority rule for resolving conflicts.

The UML uses a constraint to indicate an overlapping generalization set; the notation
is a dotted line cutting across the affected generalization with keywords in braces.
Eg: see text book page no: 71,72 fig: 4.15,4.16

2.6.2 Multiple Classification

An instance of a class is inherently an instance of all ancestors of the class.

For example, an instructor could be both faculty and student. But what about a
Harvard Professor taking classes at MIT? There is no class to describe the

Dept. of ISE, S]BIT Page 40

Object Oriented Modeling and Design 10CS71

combination. This is an example of multiple classification, in which one instance
happens to participate in two overlapping classes.

Eg: see text book page no: 73 fig: 4.17

2.6.3 Workarounds

Dealing with lack of multiple inheritance is really an implementation issue, but early
restructuring of a model is often the easiest way to work around its absence.

Here we list 2 approaches for restructuring techniques (it uses delegation)
Delegation is an implementation mechanism by which an object forwards an
operation to another object for execution.

Delegation using composition of parts: Here we can recast a superclass with
multiple independent generalization as a composition in which each constituent part
replaces a generalization. This is similar to multiple classification. This approach
replaces a single object having a unique ID by a group of related objects that
compose an extended object. Inheritance of operations across the composition is not
automatic. The composite must catch operations and delegate them to the
appropriate part.

In this approach, we need not create the various combinations as explicit
classes. All combinations of subclasses from the different generalization are
possible.

Inherit the most important class and delegate the rest:

Fig 4.19 preserves identity and inheritance across the most important generalization.
We degrade the remaining generalization to composition and delegate their
operations as in previous alternative.

Nested generalization: this approach multiplies out all possible combinations. This
preserves inheritance but duplicates declarations and code and violets the spirit of
OO programming.

Superclasses of equal importance: if a subclass has several superclasses, all of
equal importance, it may be best to use delegation and preserve symmetry in the
model.

Dominant superclass: if one superclass clearly dominates and the others are less
important, preserve inheritance through this path.

Few subclasses: if the number of combinations is small, consider nested
generalization. If the number of combinations is large, avoid it.

Sequencing generalization sets: if we use generalization, factor on the most
important criterion first, the next most important second, and so forth.

Large quantities of code: try to avoid nested generalization if we must duplicate
large quantities of code.

Identity: consider the importance of maintaining strict identity. Only nested
generalization preserves this.

Dept. of ISE, S]BIT Page 41

Object Oriented Modeling and Design 10CS71

2.7 Metadata

Metadata is data that describes other data. For example, a class definition is a
metadata.

Models are inherently metadata, since they describe the things being modeled (rather
than being the things).

Many real-world applications have metadata, such as parts catalogs, blueprints, and
dictionaries. Computer-languages implementations also use metadata heavily.

We can also consider classes as objects, but classes are meta-objects and not real-
world objects. Class descriptor object have features, and they in turn have their own
classes, which are called metaclasses.

Eg: see text book page no: 75 fig: 4.21

2.8 Reification

Reification is the promotion of something that is not an object into an object.
Reification is a helpful technique for Meta applications because it lets you shift the
level of abstraction.

On occasion it is useful to promote attributes, methods, constraints, and control
information into objects so you can describe and manipulate them as data.

As an example of reification, consider a database manager. A developer could write
code for each application so that it can read and write from files. Instead, for many
applications, it is better idea to reify the notion of data services and use a database
manager. A database manager has abstract functionality that provides a general-
purpose solution to accessing data reliably and quickly for multiple users.

Eg: see text book page no: 75 fig: 4.22

2.9 Constraints

Constraint is a condition involving model elements, such as objects, classes,
attributes, links, associations, and generalization sets.

A Constraint restricts the values that elements can assume by using OCL.

2.9.1 Constraints on objects

Eg: see text book page no: 77 fig: 4.23
2.9.2 Constraints on generalization sets

Class models capture many Constraints through their very structure. For example,
the semantics of generalization imply certain structural constraints.
With single inheritance the subclasses are mutually exclusive. Furthermore, each
instance of an abstract superclass corresponds to exactly one subclass instance. Each
instance of a concrete superclass corresponds to at most one subclass instance.
The UML defines the following keyword s for generalization.

Disjoint: The subclasses are mutually exclusive. Each object belongs
to exactly one of the subclasses.

Overlapping: The subclasses can share some objects. An object may
belong to more than one subclass.

Dept. of ISE, S]BIT Page 42

Object Oriented Modeling and Design 10CS71

Complete: The generalization lists all the possible subclasses.
Incomplete: The generalization may be missing some subclasses.
2.9.3 Constraints on Links

Multiplicity is a constraint on the cardinality of a set. Multiplicity for an association
restricts the number of objects related to a given object.

Multiplicity for an attribute specifies the number of values that are possible for each
instantiation of an attribute.

Qualification also constraints an association. A qualifier attribute does not merely
describe the links of an association but is also significant in resolving the “many”
objects at an association end.

An association class implies a constraint. An association class is a class in every
right; for example, it can have attribute and operations, participate in associations,
and participate in generalization. But an association class has a constraint that an
ordinary class does not; it derives identity from instances of the related classes.

An ordinary association presumes no particular order on the object of a “many” end.
The constraint {ordered} indicates that the elements of a “many” association end
have an explicit order that must be preserved.

Eg: see text book page no: 78 fig: 4.24

2.9.4 Use of constraints

It is good to express constraints in a declarative manner. Declaration lets you express
a constraint’s intent, without supposing an implementation.

Typically, we need to convert constraints to procedural form before we can
implement them in a programming language, but this conversion is usually
straightforward.

A “good” class model captures many constraints through its structure. It often
requires several iterations to get the structure of a model right from the prospective
of constraints. Enforce only the important constraints.

The UML has two alternative notations for constraints; either delimit a constraint
with braces or place it in a “dog-earned” comment box. We can use dashed lines to
connect constrained elements. A dashed arrow can connect a constrained element to
the element on which it depends.

2.10. Derived Data

A derived element is a function of one or more elements, which in turn may be
derived. A derived element is redundant, because the other elements completely
determine it. Ultimately, the derivation tree terminates with base elements. Classes,
associations, and attributes may be derived. The notation for a derived element is a
slash in front of the element name along with constraint that determines the
derivation.

Date of biﬂ:h/ age

Dept. of ISE, S]BIT Page 43

Object Oriented Modeling and Design 10CS71

A class model should generally distinguish independent base attributes from
dependent derived attributes.

Eg: see text book page no: 79 fig: 4.25

2.11 Packages

A package is a group of elements (classes, association, generalization, and lesser
packages) with a common theme.

A package partitions a model, making it easier to understand and manage.

A package partitions a model making it easier to understand and manage. Large
applications my require several tiers of packages.

Packages form a tree with increasing abstraction toward the root, which is the
application, the top-level package.

Notation for pakage is a box with a tab.

1

PackageName

Tips for devising packages
Carefully delineate each packages’s scope
Define each class in a single package
Make packages cohesive.
State Modeling

State model describes the sequences of operations that occur in response to external
stimuli.
The state model consists of multiple state diagrams, one for each class with temporal
behavior that is important to an application.
The state diagram is a standard computer science concept that relates events and
states.
Events represent external stimuli and states represent values objects.
Events
An event is an occurrence at a point in time, such as user depresses left button or Air
Deccan flight departs from Bombay.
An event happens instantaneously with regard to time scale of an application.
One event may logically precede or follow another, or the two events may be
unrelated (concurrent; they have no effect on each other).
Events include error conditions as well as normal conditions.
Three types of events:

e signal event,

e change event,

Dept. of ISE, S]BIT Page 44

Object Oriented Modeling and Design 10CS71

e time event.

Signal Event

= A signal is an explicit one-way transmission of information from one object
to another.

» [tis different form a subroutine call that returns a value.

* An object sending a signal to another object may expect a reply, but the reply
is a separate signal under the control of the second object, which may or may not
choose to send it.

= A signal event is the event of sending or receiving a signal (concern about
receipt of a signal).

* Eg: :
¢ <<signal>> <<signal>> <<signal>>
StringEntered DigitDialed MouseButton Pushed
text digit button
location

The difference between signal and signal event
a signal is a message between objects
a signal event is an occurrence in time.
Change Event
= A change event is an event that is caused by the satisfaction of a Boolean
expression.
= UML notation for a change event is keyword when followed by a
parenthesized Boolean expression.
Eg:

®when (room temperature < heating set point)
® when (room temperature > cooling set point)
® when (battery power < lower limit)

® when (tire pressure < minimum pressure)

Time Event

* Time event is an event caused by the occurrence of an absolute time or the
elapse of a time interval.

= UML notation for an absolute time is the keyword when followed by a
parenthesized expression involving time.

» The notation for a time interval is the keyword after followed by a
parenthesized expression that evaluates to a time duration.
Eg:

® when (date = jan 1, 2000)

® after (10 seconds)

ISE-SIBIF Page 45

Object Oriented Modeling and Design 10CS71

States

= A state is an abstraction of the values and links of an object.

* Sets of values and links are grouped together into a state according to the
gross behavior of objects

= UML notation for state- a rounded box Containing an optional state name,
list the state name in boldface, center the name near the top of the box, capitalize the
fist letter.

= Ignore attributes that do not affect the behavior of the object.

* The objects in a class have a finite number of possible states.

= Each object can be in one state at a time.

= A state specifies the response of an object to input events.

= All events are ignored in a state, except those for which behavior is explicitly
prescribed.
Event vs. States

» Event represents points in time.

» State represents intervals of time.

Eg: power turned on power turned off power turned on

N A

J

Y Y

Powered Not powered

A state corresponds to the interval between two events received by an object.
The state of an object depends on past events.
Both events and states depend on the level of abstraction.

Dept. of ISE, S]BIT Page 46

Object Oriented Modeling and Design 10CS71

State Alarm ringing on a watch

« State : Alorm Ringing
» Description : alarm onwatch is ringing to indicate target time
+ Event sequence that produces the state
setdlarm {targetTime)
any sequence notincluding cleardiarm
when { currentTime = targetTime)
« Condition that characterrizes the state:

alarm = on, alarm set to targetTime,
targetTime <= currentTime <=targetTime+20 sec , and no button has
been pushed since targetTime

« Events accepted in the state:

event response next state
when (currentTime =targetTime+20) resetdlarm normal
bhuttonPushed{any button) resetdlarm normal

Fig: various characterizations of a state. A state specifies the response of an object
to input events
Transitions & Conditions

e A transition is an instantaneous change from one state to another.

e The transition is said to fire upon the change from the source state to target
state.

e The origin and target of a transition usually are different states, but
sometimes may be the same.

e A transition fires when its events (multiple objects) occurs.

e A guard condition is a Boolean expression that must be true in order for a
transition to occur.

e A guard condition is checked only once, at the time the event occurs, and the
transition fires if the condition is true.
Guard condition Vs. change event

Guard condition change event

a guard condition is checked only once a change event is checked continuously

UML notation for a transition is a line may include event label in italics

followed by guard condition in square | from the origin state to the target state

brackets an arrowhead points to the target state.

Dept. of ISE, S]BIT Page 47

Object Oriented Modeling and Design 10CS71

o = fimeout [cars in N/S lefl lanes] -
North/south x\T [e MNorthfsouth
\ may go straight/ ~__ _ may turn left

-

o limeout [No cars

- —f—*ék . in N/S left lanes]

" "

. .

timeout | T o timeout
timaout [no cars ~—_ N, L :

o B in EAN left lanes i S

¢ East/west b] ./ Eastiwest .

y may turn left [; '\, may go strmgh_p
i — fimecut[cars in E'W left lanes] — -

Fignre 5.7 Guarded transitions. A transition i3 an instantaneous change

from one state 1o another. A guard condition is a boolean ex
pression that must be true in order for a ransilion to occur

State Diagram

e A state diagram is a graph whose nodes are states and whose directed arcs are
transitions between states.

e A state diagram specifies the state sequence caused by event sequences.

e State names must be unique within the scope of a state diagram.

e All objects in a class execute the state diagram for that class, which models
their common behavior.

e A state model consists of multiple state diagrams one state diagram for each
class with important temporal behavior.

e State diagrams interact by passing events and through the side effects of
guard conditions.

e UML notation for a state diagram is a rectangle with its name in small
pentagonal tag in the upper left corner.

e The constituent states and transitions lie within the rectangle.

e States do not totally define all values of an object.

e If more than one transition leaves a state, then the first event to occur causes
the corresponding transition to fire.

e [fan event occurs and no transition matches it, then the event is ignored.

e If more than one transition matches an event, only one transition will fire, but
the choice is nondeterministic.

Dept. of ISE, S]BIT Page 48

Object Oriented Modeling and Design 10CS71

Eg: Sample state diagram

PhoneLine

Recorded
imvalid numbay \, Message

agit[_{ blating
W

ANSWars

called phona

| Connected i
called phana hangs up

{ nattnd p———————————

€ Discon

Figure 5.5 Siate diagram for phone line

One shot state diagrams

e State diagrams can represent continuous loops or one-shot life cycles

Diagram for the [hone line is a continuous loop

One — shot state diagrams represent objects with finite lives and have initial and
final states.

o Tine initial state is entered on creation of an object

o Entry of the final state implies destruction of the object.

Dept. of ISE, S]BIT Page 49

Object Oriented Modeling and Design 10CS71

|_Che$5) |

g e checkmate
& ———={ White’sturn | 7~
N e S
black ' white stalamate “hx:..r”.'\b
moves| Moves sraremgggf:gax

o e

A - =

-\H-"'_ _'_'_,—""-
Black’s turn | — checkmate

L |
Figure 5.9 State diagram for chess game. One-shot diagrams represent
objects with finite lives.

.
Ches_s)
T ~~— ———, checkmate :
;J\%White’s turn | : Black wins
- ff’f/!;ack | white ;:a_;r;;?ha_féh‘" 7
Start (:f moves Moves Sm;ﬂm‘igf""?T
g i il
: — =) White wins
{RElack s turn e jn

Figure 5.10 State diagram for chess gamc. You can also show one-shot

diagrams by using entry and exil points,

5.4.3 Summary of Basic State Diagram Notation

Fizure 5.11 summarizes the basic UML syntax for state diagrams.
State diagram name J —‘
/7~ Statel svent (attribs} [condition] / effect J/ State2 “\l ‘
do / activity { i
"n\ event [effect /;; _ _;/f
- |
L

Figure 5.11 Summary of basic notation for state diagrams.

rileenl marmaa A cnacial notation 1% avi

Dept. of ISE, SJBIT Page 50

Object Oriented Modeling and Design 10CS71

State diagram Behaviour
Activity effects
=>» An effect is a reference to a behavior that is executed in response to an event.

=>» An activity is the actual behavior that can be invoked by any number of
effects.

=>» Eg: disconnectPhoneLine might be an activity that executed in response to an
onHook event for Figure5.8.

Dept. of ISE, S]BIT Page 51

Object Oriented Modeling and Design 10CS71

Unit 3: Advanced State Diagrams

Sylabus e 7Thr
. Nested state diagram
. Nested states
. Signal generalization
. Concurrency
. A sample state mode
. Relation of class and state models
. Relation of class and state models
. Use case models
. Sequence models
. Activity models

Problem with flat state diagrams

@ Flat unstructured state diagram are impractical for large problems, because —
representing an object with n independent Boolean attribute requires 2" states. By
partitioning the state into n independent sate diagram requires 2n states only.

%

o

\

Above figure requires n2 transition to connect every state to other state. This can be
reduced to as low as n by using sub diagrams structure.

%

Expanding states

e One way to organize a model is by having high level diagram with sub diagrams
expanding certain state. This is like a macro substitution in programming language

e A submachine is a state diagram that may be invoked as part of another state
diagram

Dept. of ISE, S]BIT Page 52

i 10CS71
Object Oriented Modeling and Design

o et
. Uendlﬂﬂﬂan_}nne i
S ins i { R S e
o R Igam kil _SEEHEDL/ Collecting money g |
4 = e —ﬂmms fnfamaount)/ add to halance 4 |
AT TR cance!! refund coins N

-

[iterm Pmph_,rl | sefect{itern) | [change=<0] |
| i e

| L/r:."r;l /test ilem and l:Dmpute ::hange /'I |

| ';h;ge:?]' a | [change=0] |

| o — __J’_ — _l__ "
L S — i pense: Dlspafeﬂem e _dif FEEEM“_QE_,) |

Figure 6.2 Vend ing machine state dia

gram. You can simplify stage dis-
Zrams by using subdia ErEms

Il_Disp;ns_eIEm_r T EEemsweslmenes —_— _I
T oy dMeagy —— 000 |
} ’(ﬂh = tn Cu__rracr bl i —=/ Uﬂf Move arm t.:. 0 correct n::orumr? I
—] e Y]

~ Pushed o — arm rea
| L'xh_ - dﬂ ! /push Fre"n aff ehe.'l\}r—— dy_J |
e — I
. M e

Figure

6.3 Dispense item submachi

state disgram can elaborate a staje.

—_—
Dept. of ISE, SJBIT

Object Oriented Modeling and Design 10CS71
2 MNested States
PhoneLine o
kit
onHeok | discommectline 7 id| s
:—""1\ e .-‘II
offHook
i /.’nutive _ - ; E -\.
P, DialTone “\" F r Timeout \I
[\da SsoundDialTane ;' "*f{'r" / sound| ouclﬂeed?;
sl g il I
- timeout -~
higit(ng) = Warning A
\ do / play message
o firmeouf ’__7}\—/
igiting 1' ¥ T e —_—
_ff Dialing x%-(# _/~ Recorded K‘*.
W SinvalidNumber | Message
- = b -\u'n / playMessaga /
{ BusyTone W Liobdicion i valichurmber R
\ do/slowBusyTone / _ W _
) . /" Connecting
\ o /findConnection,/
o = ol
' Fa.stBuSyTnne)l—_thed messagelons
akdoxfastBus?Tone 4 trunkBusy 1) -
E g /" Ringing
| '\E‘o frir-de.:IJ 7
| cafladPhonednawers ! connectline
A -
-\k{:nnnected_.)
calledPhoneHangsUn | disconnactline
s e
| Disconnected =
b e !
__) e _/'
Figure 6.4 Nested states Tor a phone line. A nested slasle receives the
vulpomyg lransiions of s enclosing state,
Dept. of ISE, S]BIT Page 54

Object Oriented Modeling and Design 10CS71

lEarTransmissinn ! hA
| . s -
C—»(Heutral i Heuerse]
AP SR
Tu push M
push N 1._ Iﬂ'!Jﬁh F
,*’f Forward bt
slop __ ——, upshift upshift —— ﬁ
t ® ;@st\'— Sennnd] " { Third) |
. — " downshift dowrsmﬂ s /'I

Figure 6.5 Nested states, You can nest states 1o an arhitrary depth.

Signal generalization
You can organize signals into generalization hierarchy with inheritance of signal

attributes

115
“'Signﬂj“ i
Userlnput
7
|
:] |
asignals =gighale
MouseButton KeyboardCharactar
| location | character
| 1
<:S:gna|ﬁ |— |gnﬂl> ﬂ:h.|§|'|,a|x- ::_5|g"|c“||ll_:| |
MouseButtonDown MouseButtonUp | | Control | Graphm:
-] e
asignals «sifnale { «gignals
Spa::e_l Alphanumeric | Puncluation

Figure 6.6 Partial hierarchy for keyboard signals. You can Organize
signals nsing generalization.

Ultimately, we can view every actual signal as a leaf on a generalization tree

of signals

Dept. of ISE, SJBIT Page 55

Object Oriented Modeling and Design 10CS71

In a state diagram, a received signal triggers transitions that are defined for
any ancestor signal type.

For eg: typing an ‘a’ would trigger a transition on a signal alphanumeric as
well as key board character.

Concurrency 1:

The state model implicitly supports concurrency among objects.

In general, objects are autonomous entities that can act and change state
independent of one another. However objects need not be completely independent
and may be subject to shared constraints that cause some correspondence among
their state changes.

1 Aggregation concurrency

Car

Y

| I] l
Ignition ITun-mI:ﬂnn Braka | | Accelerator

Ignition

!l_ll.:m key 1;:- III‘M
ransmisslon
ot in Neutral] /e 4in ng release l‘lﬂ'}"
tum kay aff
¢~ Transmission sh A ™

" release accelarator

Accelerator
depress accelaralo; depress brake
off), [On) off | * on)
mlﬂaaﬂ braka

2 concurrency within an object

Dept. of ISE, S]BIT Page 56

Object Oriented Modeling and Design 10CS71

’ Bridge

"

[Playfln_g rubber B

i N-S vulnerability ‘\
|
- —, M-S game . ™ Fgame o ™
| #—={ Not vulnerable) & '-*prulnerzble = N S wins rubher |
R A e = T

- ——

‘ E-W vulnerability

T~ E-lWaan -~ T -k game
O—H\Nut uulnerahle T—Q a-kvulnerahle I—g—-rl E-W wins rubber]

—r ‘--._ S

. —-’/ |

Figure 6.8 Bridge game with concurrent states. You can partition some ohjects into
subsets of attributes or links, each of which has its own subdiagram.

synchronization of concurrent activities

CashDispEﬂsef) Emitting]

-

-,

i—-:{ Ready to resetj‘l

P
\ o ’dlspen5e ctmh } =_.:’.,
|

e e D
Setllng up) —*K*

“&&r eject c:ard | ;j/

"'\-\.

Figure 6.9 Synchromization of control. Control can split into concurrent
activities that subsequently merge.

Dept. of ISE, SJBIT Page 57

Object Oriented Modeling and Design 10CS71

Interaction Models
@ The class model describes the objects in a system and their relationship.
@ The state model describes the life cycles of the objects.
@ The interaction model describes how the objects interact.

The interaction model starts with use cases that are then elaborated with sequence
and activity diagrams

e Use case: focuses on functionality of a system- i.e, what a system does for
users

e Sequence diagrams: shows the object that interact and the time sequence of
their interactions

e Activity diagrams: elaborates important processing steps
Use Case models
Actors

@ A direct external user of a system

& Not part of the system

@ For example

| Traveler, agent, and airline for a travel agency system.

@ (an be a person, devices and other system

@ An actor has a single well-defined purpose

Use Cases

@ A use case is a coherent piece of functionality that a system can provide by
interacting with actors.

@ For example:

| A customer actor can buy a beverage from a vending machine.
| A repair technician can perform scheduled maintenance on a vending
machine.

@ Each use case involves one or more actors as well as the system itself.
A Vending Machine

Dept. of ISE, S]BIT Page 58

Object Oriented Modeling and Design 10CS71

B DBuy a beverage, The vending machine delivers a beverage after a customer se-
lects and pays for it

B Perform scheduled maintenance, A repair tzchnician performs the periodic
service on the vending machine necassary to keep 1om zood working condiion.

B Make repairs. A repair lechmeian perlorins the unexpectad service on the vend-
in2 machine nccessary To repair 4 problem in its operation.

B Load items. A stock elerk adds irems into the vending machine to replenish ity
stock of beverages,

Figuee 7.1 Use case summanies bor a vending machine. & Lzo cassis a coberant piecs of hincioralite that a syster can prowvide by inlerzcling
wit Azt

ol (iended Madelg 2nd Desiiym win LWL Soo00d Bl By Mizhocd Haaa
ang Jires Fuesaugh, 1SEN G- 13 1-07 504, 520 “oorsm Boucencn, ing, Upgeer S04 Fress, LA | nghis rcsereed,

@ A use case involves a sequence of messages among the system and its actors.

@ Error conditions are also part of a use case.

@ A use case brings together all of the behavior relevant to a slice of system
functionality.

Use Case Description (see text book fug 7.2)
Use Case Name

Summary

Actors

Preconditions

Description

Exception

Postcondition

00000 G

©

Actor

@ Use Case

A Vending Machine

Dept. of ISE, S]BIT Page 59

Object Oriented Modeling and Design 10CS71

i Yending Machine
(" buy N B |
| \ beverage R
T Customer
0 Dol
schedule —_’E
E'. el nbamsmas .}"'—-.___ 1
- maintenance _—
| e -
e T Repair tachnlcian
I 'x_‘repalrs)
i {load items }————— 1
T - F b
L Stock clerk

Guidelines for Use Case
@ First determine the system boundary
Ensure that actors are focused
Each use case must provide value to uses
Relate use cases and actors
Remember that use cases are informal
Use cases can be structured
Use Case Relationships
Include Relationship
Incorporate one use case within the behavior sequence of another use case.
Extend Relationship
Add incremental behavior to a use case.
Generalization
Show specific variations on a general use case.

© 0 000

EogEQHECpD

Use case Relationships

Include Relationship ¢lude relationship generalfzation

relationship

Examples:
<<include>> for common behavior

0y

Dept. of ISE, S]BIT Page 60

Object Oriented Modeling and Design 10CS71

o '_I - 'x\
| ! { Futerad wn {
1._\ - ____.-' y L
— e L. A 1 [TH L
- - - - —__—-.___.
/ o
J_/\ - ~ [Thees b 1o w21 ation ,_;'I
s \\.__ .___"-'-__.l "*-______ __.--""
Lok Bonromrer \\"_\ =L o
Y T - -
L Wl
T Bt e3py T ncludazs
\-\uI huzial .#/f

)
secure session) include»
)
o :;n;IPude:u
Figure 8.1 Use case inclusion. The includa relationship lats a base use casa

incorporate behavior from ancther use case.

Object-Oriented Modeling and Design with UML, Second Edition by Michasl
Blaha and James Rumbaugh. 1ISEN 0-13-1-015820-4, & 2005 Pearson
Education, Inc., Uppar Saddle Rivar, M. All rights reserved.

i — 2

||'|c|l.|de~,»
include:

Custome ‘ i

(C))

Dept. of ISE, S]BIT Page 61

Object Oriented Modeling and Design 10CS71

(D

fdemtiy Custoser
P T
= <include=x , * ez mdludess T s<incloders
-~ -
& ! ~
-"- (,rb_h‘\
Miithdram Cash Deposit Cash Trarsfer Funds
Extend Relationship examples:
<<extend>> for special cases:
(0))
P
Ih_ S
BookBorrower T
T “'—"*'_‘-'f":‘f?_ - I!:\ Refuse loan \'I
|: Biormanw copy 0l book =" o —— "
\-H""\-\._ e
()

Edtension point &
oddid onsl requess: After reservrg 2
ke

cextends

| Custame V' Cuswomer -equests

| coffes machine

Raquest coffea
machihe

Dept. of ISE, S]BIT Page 62

(&)

Object Oriented Modeling and Design

10CS71

«extend» . 7

-~ | waxtends
— — - -
margin tra @ @nr‘t sale

——

™~ . «extends 7f‘-_

options

oo

-~ I waxtends
""‘-\.)
{ limit o@
\E__

Figure 8.2 Use case extansion. The axtand refationship is like an inciude relationship looked at

from the opposite direction, The extension adds itself to the bass

Object-Orignted Modeling and Design with UML, Second Edilion by Michasl Blaha and James
Rumbaugh. 1ISBM 0-13-1-015920-4. @& 2005 Pearsan Education, Inc., Upper Saddle River, M

All rights reserved.

Medical Clinic: «include» and «extend»

system nome —_

“Clinic
system boundary o

Cancel Appointrrent

\

flake Appcintment

- x

— ==includes==
Patient =t o
x\-__\ Check Patient Record

qqinclude=~=~f|l"~

Scheduler

|- include use case

x

Croctor

Fay Bill

- extend use case

x

Extension points Clerk
Maore Treatment
extension point -
child use case
generalization
Bill Insurance
Dept. of ISE, S]BIT Page 63

Object Oriented Modeling and Design 10CS71

Generalization

—
make trade

t'/;ndn hand< { i e option

FIHF Qfﬂf‘k\ trade gptign—;h
e =0 ___'_F,/‘

Figure 8.3 Use case generalizatlon. A paren! use case has common behavior
and child use cases add vanalions, analnaous 10 generglization among classes

(2)eg:

C D

Flace COmler

Fhane Crder Intemet Ord e

s /

Customer Irternet Customer

Dept. of ISE, S]BIT Page 64

Object Oriented Modeling and Design 10CS71

Use Case Relationships

b] D]
Securities
j\ Customer L exchange
z & ._.I' "\.“
Fd
r.A’
Stock Brokerage System o A
i :aﬂcur& sammn‘} Pl
’ — o .-"f
L I \\.{’
Fa ! o .
«include= . =inglude= # ~ =include:
o I P -
o ,
. ‘\‘|I.r ’ o
o _‘ﬁi. = *(/ simnCiudes k"— =
(manage account) (n ke trade) — —“::-(':vallﬂaie pass-mrd
i T —
AR W Wi
S ~
iy - it
, » . - =
,f/ \\ R " limit srdar)
1"’-’- \\\' —
- < - -, '-_‘.:-3"_'___-5_‘
(trade hands) {trada stocks | (trade options)
il i L o et i
il] j;h i
wgxlands | =etend - , =axiends
| - il
_f..---___—'--_ - lf..-r"_ .
{ margin trad mgjj s short uala>
i e
s ol agpanm marg combing vl ko of relasonships

Figumn A4 Lise casm miationships. & single e css dag

Sequence Models
@ The sequence model elaborates the themes of use cases.

@ Tow kinds of sequences models
B Scenarios
B Sequence diagrams

Scenarios
@ A scenario is a sequence of events that occurs during one particular execution

of a system.

@ For example:
B John Doe logs in transmits a message from John Doe to the broker system.

Dept. of ISE, S]BIT Page 65

Object Oriented Modeling and Design 10CS71

Scenario for a stock broker

Jchn Dos logs in.

System establishes secure communi
System displays porticlio informaticon.

John Doe enters & buy order for 100 shares of GE at the markel price.
System verifies sufficient funds for purchase.

System displays confirmation sereen with estimated cost.

John Doa confirms purchase.

System places order on securities exchange.

System displays transaction tracking number.

Jehn Doe logs out.

System establishes insecure communication.

System displays good-bye screen,

Securities exchange reports results of trade.

e

LS.

Figure 7.4 Scenarno for a session with an online stock broker, A sconanio i= a seguenco of ovents thet ooours durng
oNE AN CUlEn a«BCulion ¢ A BySTam

Sequence Diagram

@ A sequence diagram shows the participants in an interaction and the
sequence of messages among them.

@ A sequence diagram shows the interaction of a system with its actors to
perform all or part of a use case.

@ Each use case requires one or more sequence diagrams to describe its
behavior.

Dept. of ISE, SJBIT Page 66

Object Oriented Modeling and Design 10CS71

Sequence Diagram

crrake ._[ﬂﬂ‘i"‘-" {Ibject
: e e T
mﬁsag" .-_ l seli-delegation
Teturn |
=2 v
deletz |
=
1
Aspnchronous Message
new | .
—-| & lransacton
g Transactdon
/ T Coordinator
|
' & first

Activation | ey Trgmuction
: | Checler
| LIS d
| .

e fe !
| |] J!f?"‘.n" ‘
DHOCCSSIG
| ! sl 5...5,;:-,,4&5599’ L
|
' - all -
done? >< g

ok

i 3“ ab_lu@f:f
beValid ‘ |... done? deletes

=

SaltDeiecation

Dept. of ISE, S]BIT Page 67

Object Oriented Modeling and Design

10CS71

Concurrent Processes

» Activations - show when a method is active — either executing or waiting for

a subroutine to return

» Asynchronous Message — (half arrow) a message which does not block the
caller, allowing the caller to carry on with its own processing; asynchronous

messages can:

> Create a new thread
> Create a new object
> Communicate with a thread that is already running

» Deletion — an object deletes itself

» Synchronous Message — (full arrow) a message that blocks the caller

When a

g TE™" -
Transaction ™™g 3 Transuction
is created...

b emenfes a
Coordinator to |
manage the checking,

The Coordinator I :
creates a series | new | Trar ﬂL‘l{t |
?f Checkers, ome | Iansaciion
for each kind of Checker
check. These T
Ches ks do ; o | 2 second
their checks as ' Transaclion
SCPATATE Processes. | _ Checker
| | L |
. " ll [ail e
El El‘u'["l'l - | — .
failg, the Coardi Lr,‘
nator kills all [Kill
other Chiockers | checkers 11
that are slill ,
runming...
| belnvalid wr
«and tells the
Transaction ' dalon it ’.-'

that it is invalid.

X

aoar

Dept. of ISE, S]BIT

Page 68

Object Oriented Modeling and Design 10CS71

Sequence Diagram For a Session

| StockBrokerSystem | | ‘SecuritiesExchange |

B k}gln .

_gecure communication | | {venfy customer]

disglay porfale

enter purchase data
=

m _ request confirmation [werify funds]
timg

canfem purchass

A4

Ty

display order numbar place order

logout

=

insacure communication [execule order)

display good bye

repon resulls of rede
messages iy]

Figure 7.5 Sequence diagram fcr 3 esseion with an online etock brolar, A sequarce dizgiam
sheivas tha parlicapants 0 @0 okgracBon and The sejuencs Ol Mmessedges among Them

A stock purchase

:Customer :StockBrokerSystem :SecuritiesExchange

enter purchase data

request confirmation (verify funds)
confirm purchase
__ display order number place order o

{execute order)

Jrepart results of trade

Figure 7.6 Sequence diagram for a stock purchase. Sequence diagrams can show large-scals
interactions as wall as smallar, constituant tasks.

A stock quote

Dept. of ISE, SJBIT Page 69

Object Oriented Modeling and Design

:Customer

10CS71

:StockBrokerSystem

:SecuritiesExchange

enter stock symbol

display quote

o

M

request stock data

report stock data
e

Figure 7.7 Sequence diagram for a stock quota.

A exception case

:Customer

:StockBrokerSystem

:SecuritiesExchange

enter purchase data

reject purchase

Ty

cancel purchase

W

{verify funds:
insufficient}

Figure 7.8 Sequence diagram for a stock purchase that fails.

Guidelines

@ Prepare at least one scenario per use case

@ Abstract the scenarios into sequence diagrams
@ Divide complex interactions
@ Prepare a sequence diagram for each error condition

Procedural Sequence Models
@ Sequence Diagrams with Passive Objects

A passive object is not activated until it has been called.

Dept. of ISE, S]BIT

Page 70

Object Oriented Modeling and Design 10CS71

:Transaction :CustomerTable :RateTable

|

compute r
commission { } .
|

-

service level (customer)
Procedure call
level
-

calculate wmmissioq (level, transaction)

commission |
_—— — — — — — — |- = —— ==

commission

il — — — I I

Figure 8.5 Sequence diagram with passive ebjects. Sequence dirsgrams can show the
implemeantation of operations.

Sequence Diagrams with Transient Objects

An active
object

objectA objectB

e i Passive
ration : .
cpomieni loidd - obiect
createC (arg) . !
» objectC Transient object

operationk (m, n)

resultT {execute order)

resulty

Figure 8.6 Sequence diagram with a trangient chject. Many applications have a mix of actve and
pessive objects, They create and destroy objects.

Activity Models
@ An activity diagram shows the sequence of steps that make up a complex
process, such as an algorithm or workflow.

Dept. of ISE, S]BIT Page 71

Object Oriented Modeling and Design 10CS71

& Activity diagrams are most useful during the early stages of designing
algorithms and workflows.

@ Activity diagram is like a traditional flowchart in that it shows the flow of
control from step to step
Activity diagram Notation

Start at the top black circle

If condition 1 is TRUE, go right; if condition 2 is TRUE, go down

At first bar (a synchronization bar), break apart to follow 2 parallel paths

At second bar, come together to proceed only when both parallel activities
are
Activity —an oval

Trigger — path exiting an activity

Guard — each trigger has a guard, a logical expression that evaluates to “true”

W G o §' 0 06 0
(¢

or “false”

@ Synchronization Bar — can break a trigger into multiple triggers operating in
parallel or can join multiple triggers into one when all are complete

@ Decision Diamond — used to describe nested decisions (the first decision is

indicated by an activity with multiple triggers coming out of it)

. Activity Diagram

i
™ |condition 1] -~

lff;ctivi } = Acti ity
% tjf,"""" ------:;}-H\:'}Etl"ﬂ'ltfﬁ,:'

T

[condition 2]

[for all thingies] vy

¥

.l"’-r ‘-\" fﬁ s %
\ Acti vit'j; J : ;:u.-u vit 3-‘/!
\\-\- s -
s
1 wlr
[wwnchrumization i
condition |
[AcHvity)
" s

x'\.

-

et

Eg:

Dept. of ISE, S]BIT Page 72

Object Oriented Modeling and Design 10CS71

Persomn {3

F ST el
S Find N

.7"'-"- erage |
r \ Few EE,./I

Sunotvomeaion Sar
S [Cowansd calles|

{ _¥ 1 W
- TR -~ T T a = -
I.'/ Put Coffee 7 Add Wiler ‘.I ,’f et K"'.I I.ff Get Clan
i, Diller | o Bescrvnir Cups L ot {nla J
I‘x__ L I"x.___ e ll"u,____,f‘ S A
¢ Put Filer
1\ in Machine | Activity
T
|4‘|' ||I'I
= -
& Turn On
'-.\- Maechine __,]
g ° ‘v Pol. TurnOn
[ff Frew HN‘.I
e Colles y.
light goas ot W r Ei [
Wi L

——_— - .
- " o
¢ Four TR Tiink LR
| { nffes = Boeveruge 3 ['.;:I
e M -

Eg: activity diagram for Use Case: Receiving an Order

Dept. of ISE, S]BIT Page 73

Object Oriented Modeling and Design

10CS71

Wl

—

Wl

-

. ",
_f Rreoeive &

- Order
%)

4

~

el Frgnoer
Iy

/

¥ |for each lne
b onorder]

F " Check
f Cancel l"Authunzb\ 4 L[l_'ie'th\
| Order "= | l-’.nmen{j ':, IEE‘:; J
bR - Tailed] > M TR
[succocded] lin stock]
L1103
I :‘L‘;ﬁl%ﬂ \)
M -'
Sprchroizaner Condiion
\ i
~.
b
1
M,
by [feed b
! reordes] Kf'FtE-n-rvu.'ll:"T i
[stock azsigned e +. [, g [l [tem /,'
all e i 801 b R ..

payrent authovizer]

W
rfniﬂ'[:.al'qh J
y Drder
L _,-'J

Dept. of ISE, S]BIT

Page 74

Object Oriented Modeling and Design 10CS71

Activity diagram for Use Case: Receiving a Supply

J

/Eecdw\
[Supply
S e

=

|'||

7 Choose ™,
|'L Culsianding '
, Order Ttemns J_;"

[for cach chaosen
order item]

-'. I

7 Assign ™,
f Coods to |
. Cirder /-"

-~

.

[slock assigned 1o B 7 T P
all line itets amd —1'— i 1] LLLM&“"E}'MI

'] o 3
P orier thans
pavrient authorizad] ;

'|,'_ 'lllf'
/Dispatch T Add N,
': Dﬁir':i’;’fh :I |lr Remainder |
"\‘ r)_- '-.\\-'_tn Stock /.-

Dept. of ISE, S]BIT Page 75

Object Oriented Modeling and Design

10CS71

Activity diagram for Use Case: Receiving an Order and Receiving a Supply

-

L -\-\\
I'__ Ller /,-‘

e -

Wl

4

.'"- =
l-f Eeceilfe
Uppiy
'n\. -/
ylr
% [firr each Jing s v -
e e on oocec] 7 Chonse ™

Cutstanding

'f.il.ﬂhuri -\Il I.-’K-[ﬂ‘l‘-l‘:‘“\' \ Order Items /
. Taymenl | - -
[faided], T Tem

1lr
i

e —

— = [lhor each
choson

) [im sl 1
i ':.'-ilﬂl‘t'l\' [suorssd el - ! i ordar flom]
. Order ‘|' i R
e - S Auai S A
) [Coolito |
b)
x‘T L _ I E_‘J: L
I'n'I (1
e
|need to pal -
L'EL‘II.-!IL:I:L Reorder
s | = “lhem) L

[sbrik assizned
trmall line ilems
and AV mznt

anlhorizecd)

|I .I
ST T,
{ Drispatch ‘-l
Lo Qrder
- P

£

[all rakstanding N
order iteme fillad]

.-'_111 -
S Add ™y
[Remaingder |
L o Sloek /-‘

Dept. of ISE, S]BIT

Page 76

Object Oriented Modeling and Design 10CS71

Activity diagram for stock trade processing

o ™\
o o
-
| exgcute oder

Refined -
next page

e
- e

#
synchronization

[failure]

ol e
[5uconss]
—_—
’_"_..-:-"" ¥ i S
32 : e Ny e
f sand { dabit acsount | updaic onling sand
|, canfirmation } \Jﬂlﬂf l:_ purtfolio ,,l failure r'u:k:aj
3 f\ ,
Y gt #
™, | sotletade)
N
termination .
LJ
W
—_— " _1\
il\:l-: : close order =
il = =

Fiqure T8 Activily diagram lor slock rade processing. o aclisily dispa oshowes e seguanoe ol s g
TRl MEKD J@ 3 COMD 08 DICOES

A Finer Activity for execute order

I a
[mark=t arder) B
J\ T — [timuut:
[seling] i I A [buying] [lirmit arder] [order stll mctive] A
l e l Tia R
1 Y i
e [price nu‘rauallable]T
f— find buyer H\‘ /‘_ find seller _\\ S
at markzst prlce -., at market prr:‘E
[price aveilable]

[selling] flx [tayirgg]
BT
Yy

l: fnd buyer at Imlt (find seller at Iimjl\|
price or betler . price or belter
\‘-\—ﬂ'

¥
PR F ey
) ®)

Figure 7.10 Activity diagram for swsceds oraar. An acivily may be dacompoesd inic finer aotwitioe.

Guidelines
@ Don’t misuse activity diagrams
B Do no be used as an excuse to develop software via flowcharts.

Dept. of ISE, S]BIT Page 77

Object Oriented Modeling and Design

Level diagrams

T

@ Be careful with branches and conditions
@ Be careful with concurrent activities

@ Consider executable activity diagrams
Special constructs for activity diagrams

e Sending and receiving signals

e Swim lanes

e Object flows

Sending and Receiving Signals

-—-:-f;xecute boot sequ ence>

S
¥
(accept user login)
{
sab :'1ir'|[_] reguesl validation >— — — - — —:
v v
wait for response netwaork

]
5 I
|recai';e confirmation <-:e\- e cas

o S S D=
{

v

" ready)

Figure 8.7 Activity diagram with signals. Acivity diagrams can show
Timg conired via Sn}l'lﬂﬂ'lg and TECEANg avanis

Swimlanes
& To know which human organization is
responsible for an activity.

Flight attendant Ground crew

-_\-\-\-_"\-_.___ ot

RE

Figure 8.8 Activity diagram with swimlanes. Swimlanes can show organizational responsibility

for activities

Catering

Y| G |)
clean trash add fuel /J\an.adnnks_/.'

Swimlanes - Activity Diagrams that show activities by class

Dept. of ISE, S]BIT

>
>

Object Oriented Modeling and Design

Arrange activity diagrams into vertical zones separated by lines

10CS71

Each zone represents the responsibilities of a particular class (in this
example, a particular department)

; Order Stock
Finanve Processing Manager
o T
I"' Receive
. Owder }
\ o y
- r |'ﬂ
ST
W iy léﬂcei-re "'I
I |
—l-[_ i upp 3'#/_
[for each lins T
dtem om oeder] ..llr
Wy iy ;‘/U--Chculg_-\'
- EoEa— Chedk ™ | Qutstanding '
,"J"tuthur[ztt'- ;F“ Ted] ’ |i::;k y I‘\DIﬂ“Ih’m’f,-’
| Mayment | T e o
L Y B /'I # |fiore cadh
R T chirwen
l;"' Cancel \\ crder ibemn]
| Order | ! Lim snek]
\'-.. —_ . ™ : .
T Assign fo) o Assien
[e i rder ' | Gmd%nla |
L v Order
_— P
&
[meed 10 - - e
_ _“F_"?'“f'?.'j_-"/ ann.fu\',
L1 2] , ltem
- S
[stock: assign
e all Time: ilen [all atetunding 4
ard paym arderitems [l
authorized |
| is K
~~ _"--\ ___..-'_._ "
{ Dispalch [Add
| “omder | i Remainder .
.. S h, toStock

Object Flows

@ Show both the control and the progression of an
object from state to state as activilies act on it.

Dept. of ISE, S]BIT

Page 79

Object Oriented Modeling and Design 10CS71

Airplane :Airplane Airplane
‘ [at gate] ' [taxiing] take off [in flight]
W

:Airplane -Airplane :

Figure 8.9 Activity diagram with object flows. An activly ciagram cian show the objects thal & inpats of
CUIpuls of BCHviles

Dept. of ISE, SJBIT Page 80

Object Oriented Modeling and Design 10CS71

UNIT -4 7 Hours

PROCESS OVERVIEW, SYSTEM CONCEPTION, DOMAIN
ANALYSIS

Svllabus :

> Process Overview: Development stages; Development life cycle. System
Conception:

> Devising a system concept; Elaborating a concept;

> Preparing a problem statement. Domain Analysis: Overview of analysis;
> Domain class model; Domain state model; Domain interaction model;

> Iterating the analysis.
Process overview
® A software development process provides a basis for the organized production of
software, using a collection of predefined techniques and notations.
Development Stages
e System Conception
® (Conceive an application and formulate tentative requirements
® Analysis
® Deeply understand the requirements by constructing models
e System design
® Devise the architecture
® (lass design
® Determine the algorithms for realizing the operations
® Implementation
® Translate the design into programming code and database structures
e Testing
e Ensure that the application is suitable for actual use and actually satisfies
requirements
® Training
e Help users master the new application
® Deployment
® Place the application in the field and gracefully cut over from legacy
application
® Maintenance
Preserve the long term viability of the application
Analysis
To specify what must be done.
® Domain analysis focuses on real-world things whose semantics the
application captures.
Application analysis addresses the computer aspects of the application that are
visible to users
System Design

Dept. of ISE, S]BIT Page 81

Object Oriented Modeling and Design 10CS71

® Devise a high-level strategy — the architecture — for solving the application
problem.

® The choice of architecture is based on the requirements as well as past experience.

Class Design

® To emphasis from application concepts toward computer concepts.

® To choose algorithms to implement major system functions.

Development Life Cycle

o Waterfall Development

e Jterative Development

Waterfall Development

® The stages in a rigid linear sequence with no backtracking.

e Suitable for well-understood applications with predictable outputs from analysis and
design.

=

Faqiiramants

et | - P 1Y |
Lomd . 1
lraplono oetation 1

Lemslin s, anicl
Tr lsgyroalioan

Iterative Development
e First develop the nucleus of a system, then grow the scope of the system...
® There are multiple iterations as the system evolves to the final deliverable.
e Each iteration includes a full complement of stages:

® analysis, design, implementation, and testing

Dept. of ISE, S]BIT Page 82

Object Oriented Modeling and Design 10CS71

Requirements Analysis & Design

Implementation

Planning

Deployment
Initial

lanning f

Evaluation _
Testing

Summary of development process for the organized production of software
*Ppify

Syatom

spevelopars
conceplicn

slapagers ~ -

vBaxlness
agelly

Analysis:
DOm0 yemr

aitalysis imlarviaws
sExprrienra _ __

+ ARpAicas

iRelited
CF gysrems
by ais

Design: -Anckléechine

e -
Ci:’:'.':‘ai';jn sAlygeithaus

Opthm¥zalini

#{lass
desion

System Conception
e System conception deals with the genesis of an application

Devising a System Concept
® New functionality
Streamlining
Simplification automate manual process
Integration
Analogies
Globalization

Elaborating a Concept

Dept. of ISE, S]BIT Page 83

Object Oriented Modeling and Design 10CS71

Good system concept must answer the following questions
® Who is the application for?
e Stakeholders of the system
® What problems will it solve?
e Features
® Where will it be used?
e Compliment the existing base, locally, distributed, customer base
® When is it needed?
® Feasible time, required time
® Why is it needed?
® Business case
® How will it work?
® Brainstorm the feasibility of the problem
The ATM Case Study
Develop software so that customers can access a bank’s computers and carry out their own
financial transactions without the mediation of a bank employee.

The ATM Case Study
® Who is the application for?

® We are vendor building the software
® What problems will it solve?

e Serve both bank and user
o Where will it be used?

® Locations throughout the world
® When is it needed?

® Revenue, investment
® Why is it needed?

e Economic incentive. We have to demonstrate the techniques in the book
e How will it work

® N-tier architecture, 3-tier architecture

Preparing a problem statement
Design the software to support a computerized banking network including both human
cashiers and automatic teller machines (ATMs)to be shared by a consortium of banks. Each bank

Dept. of ISE, S]BIT Page 84

Object Oriented Modeling and Design 10CS71

provides its own computer to maintain own accounts and process transactions against them. Cashier

stations are owned by individual banks and communicate directly with their own bank’s computers.
Human cashiers enter account and transaction data

The ATM Case Study
{ . 2
sthuor
E'Iﬂtl-:m
LIy z
- AT _~_ ~ Ancount
] G [.lﬂEr.__‘_
T Account
: w'a —_— —— Aount
Bank |
| Comeput e __
At T Aceount

Figure 11.3 ATM nebwerk. The ATM caze study threads throughout the remainder of this bock

Dept. of ISE, S]BIT Page 85

Object Oriented Modeling and Design 10CS71

PART B
Unit: S APPLICATION ANALYSIS, SYSTEM DESIGN

7 Hours

Syllabus:

» Application Analysis: Application interaction model; Application class model;
Application state model;
Adding operations. Overview of system design; Estimating performance;
Making a reuse plan; Breaking a system in to sub-systems;
Identifying concurrency; Allocation of sub-systems; Management of data
storage; Handling global resources; Choosing a software control strategy;
Handling boundary conditions; Setting the trade-off priorities; Common
Architectural styles; Architecture of the ATM system as the example.

YV VVVYVYVYY

Application Analysis
Application Interaction Model - steps to construct model
e Determine the system boundary
¢ Find actors
¢ Find use cases
¢ Find initial and final events
e Prepare normal scenarios
e Add variation and exception scenarios
e Find external events
e Prepare activity diagrams for complex use cases.
e Organize actors and use cases
e Check against the domain class model

1. Determine the system boundary .

¢ Determine what the system includes.
* What should be omitted?
e Treat the system as a black box.
e ATM example:
— For this chapter,
* Focus on ATM behavior and ignore cashier details.

2. Find actors

4

F

Dept. of ISE, S]BIT Page 86

Object Oriented Modeling and Design 10CS71

* The external objects that interact directly with the system.
* They are not under control of the application.
* Not individuals but archetypical behavior.
* ATM Example:
— Customer, Bank, Consortium

3. Find use cases

* For each actor, list the different ways in which the actor uses the system.
* Try to keep all of the uses cases at a similar level of detail.

— apply for loan

— withdraw the cash from savings account

— make withdrawal

Use Case for the ATM
ATM
initiate >
~ B
L Y Fd
A Gy T} =
s SaE %,
/s
- By process i r?;
Custolnel transaction // /,r”' Sonscriiom
P
P
ata
ey

Fioura 131 lisa casa dinoram for tha AT | IsF rases nartitinn the

« Iniial session
= Fhe ATRA corabbiohios tha Tfent By Of thie gder 205d Tickzs
pveallzgls 2 brrafocecin e gl ecedors.
w ey Jenckod
- Fheopsior providos concra! Aa10 200 a0 aczawnl, ik S
sho cnrran Brdones, oot of fast trasnsoction, ond datc af
Roiing for Mg slaternt,

Dept. of ISE, S]BIT Page 87

Object Oriented Modeling and Design 10CS71

* Procesy tratsaction
- The AT gyatin parfornig an allwa thar affasry an
SOCTR PR el B AR AT M ot e R ST ert, et TR R
e A Wt ppsopos fat Al serphta] rargmrrinns s
LMinnabely Wb 0 Fae Yaiii & databiane,

= Trarsrenr chara

SN ol S i LU o PR TR T TN § o R A ERLTL R LTI o o Te L U L
At Pl soeroneeals Dank comiurer,

4. Find initial and final events

Finding the initial and final events for each use case
To understand the behavior clearly of system
Execution sequences that cover each use case
Initial events may be
a. A request for the service that the use case provides
b. An occurrence that triggers a chain of activity
ATM example
» Initial session
— Initial event
* The customer’s insertion of a cash card.
— final event
* The system keeps the cash card, or
* The system returns the cash card.
ATM example
* Query account
— Initial event
* A customer’s request for account data.
— final event
* The system’s delivery of account data to the customer.
ATM example
* Process transaction
— Initial event
* The customer’s initiation of a transaction.
— final event
* Committing or
* Aborting the transaction
ATM example
* Transmit data
— Initial event
» Triggered by a customer’s request for account data, or
* Recovery from a network, power, or another kind of failure.
— final event
* Successful transmission of data.
5. Prepare normal scenarios
For each use case, prepare one or more typical dialogs.

Dept. of ISE, S]BIT Page 88

Object Oriented Modeling and Design 10CS71

A scenario is a sequence of events among a set of interacting objects.
Sometimes the problem statement describes the full interaction sequence

6. Normal ATM scenarios
Initiate session

The ATM asks lhe user o insarl a card,

The ussr inserts a ¢cash zard,

The AT accepts the card and reads its serial number,

The ATM requosts the Fsawnrd.

The user enlers “1234,

I he Al venties the oassword by cortacting the conscrium and bank,
The ATM displays a menu of accounts and cammards.

The usar chooses the command Lo laminale the session.

Ihe AWM pnts a recept, epcts tha card, ard asks the user to take tham.
The user takea the receipt end the card.

The ATM asks the usor o inscrt a card

* Query account

Tho AT displays a menu of acocounts and commands.

Tho usor choosos to quory an oocouni.

The ATM contacts the consordium ard bank which return the data.
The ATIA displays account data for the user.

Ihe AT dsplays a menu of accounts and commards.

¢ Process transaction

The ATM displays a menu of acoounts and commands

The user szlacts ar account withdrawal

The ATM ssks lor the amount of casn.

The user arters $100.

The ATM verifies that the withcrawal satisfies its policy limits,

The ATM contacts the corsoriam ard bank and verifies that the account
has suffciant funds.

The ATM dispenses the cash and asks the user tc take it

The user takes the cash,

The ATM displays a menu of asoounts and commands.

¢ Transmit data

The ATM requests account data fraim the consoitivm.

The consadium coceots the request and forwards it to the cppropriate bank.
The bank receives the request and retrieves the desired data.

The bank sends the data to th2 consortiom

The conaorium roules the data to the AT M

7. Add variation and exception scenarios
Special cases
Omitted input E.g., maximum values, minimum value
Error cases
E.g. Invalid values, failures to respond
Other cases
E.g. Help requests, status queries

ATM example
* Variations and exceptions:

— The ATM can’t read the card.
The card has expired.

— The ATM times out waiting for a response.

Dept. of ISE, S]BIT Page 89

Object Oriented Modeling and Design

The amount is invalid.

The machine is out of cash or paper.
The communication lines are down
The transaction is rejected because of suspicious pattern of card usage.

8. Find external events
¢ The external events include

All inputs,
decisions,
interrupts, and

Interactions to or from users or external devices.

* An event can trigger effects for a target object.

¢ Use scenarios for normal events

Sequence diagram
* Prepare a sequence diagram for each scenario.

» The sequence diagram captures the dialog and interplay between actors.

10CS71

The sequence diagram clearly shows the sender and receiver of each event
ATM Example

Sequence diagram of the process transaction

‘User

tATM

display manu

select wilhdrawal

salsct account

recuest amount

enter amount

dispense cash

:Consortium

verity funds

confirm funds

'u'eri"y' funcls

‘Bank

take cash

confirm funds

Figure 13.3 Sequernce diagrem for the orocess ramaacition acenarnic. A soquance cingram cleark, 3howa the
saidar g d racsive” ot each gvani

* Events for the ATM case study

Dept. of ISE, SJBIT

Page 90

Object Oriented Modeling and Design 10CS71

sl cad, anter password, szlect accounl, selecl deposil
select willwdrawal, rans G2r lumds, guery aecount
enler armount, Gike cash, take card
cancel, fernnnale, conlinus

—
User . _ S ATM
digplay main screcn
unrcadable card message, canceled messags
request passeond, reguest amount
eject card. failure megsage
dispenae cash, regqocst taks oash
request contineation

transachiion succeeded
transaction failed

nssanetan e SO, process tramsaction acenunl O
i gier S piok: bl i verify zocount .1, T had acconn
ﬁﬂ :':':'_-_’“m‘_EEE‘mEE verify [unds bl password

ad hank code messnge hnd hamlk ooz
display ran=actiom menu comfirm ﬁ_m;];-_

wverify card with bank, verify funds
progese bank rancaction

o

Bank e Consortium

bank transachion succeeded, confirm (unds
hank tramsaction failed, bank accomnt Ok
had hank eceount. had haonk password

Figure 134 Ewents for the ATW case study. Talky 1ra @uems 0ohs scanaios 8nd noia hE chsses IhET send ancd Morhe sEe meani.

9. Activity Diagram

* Activity diagram shows behaviors like alternatives and decisions.
* Prepare activity diagrams for complex use cases.

* Appropriate to document business logic during analysis

* Do not use activity diagram as an excuse to begin implementation.

ATM Example

Activity diagram for card verification

Dept. of ISE, S]BIT Page 91

Object Oriented Modeling and Design

(o)

¢ Y . e
, fatum card insert card !:'—:Hi:: =

7 5 unraadable|

readable]

‘communications down] "~ [bad bank ccde or bad account]

Lcard OK]
[communications Dowr] ey [account fraud alern]

[good account]
[cemmunicafions down]

4

]
\ req uest nessword P

[communications down] fl;_ |multiple sassword failures)

-

T

[zarract pasaword)

10CS71

Figure 13.5 Activity diagram for canrd verificazion. Vou can uss activity dagrams to dooumert bus rass logic
but canot uss than as an e« sse ko 250N pramstuia implamancation,

10. Organize actors and use cases
* Organize use cases with relationships
— Include, extend, and generalization

* Organize actors with generalization.

ATM Example

Dept. of ISE, SJBIT

RV
@)

Page 92

Object Oriented Modeling and Design 10CS71

5, o O
Consortium L Customer | Bank
P o .
A % A,
== =
ATM e —
f’hlﬂata suaglnn;
. gt —_"
N
«Include i wincludean|
- f ”
i bk
—-— — o — —— [}
b TG e

 query aceount ¢ process transacion)

",

, irigl ok
- ¢ ;
1'\-?‘ L i '\-\.‘\:2',}
S il diatg Y
o i

— —

b

l-lglrn 106 :Irglmn'mg s cases . | nes the base vsn case= ars identthesd, w0 con DICATITE
B vn i I ricles fowosnipes

11. Checking Against the Domain Class Model

The application and domain models should be mostly consistent.
The actors, use cases, and scenarios are all based on classes and concepts from the

domain model.
» Examine the scenarios and make sure that the domain model has all the necessary data.

e Make sure that the domain model covers all event parameters.

. 1
EntryStation Transaction Q—| *
yStatio 1 EnteredOn Kind
g update
ﬁl dateTime d
amount amount|
kind
ATM Cashier | , ¥
station [—
cashOnHand R Remot.e
0..1 transaction Transaction
Comnjunicates Communicates
With With * %
EnteredBy
1 AuthdrizedBy
Employs Cashier .
0..1 | name
issues Card
Authorization
assword
CashCard ﬁm'.,r
assWord *
1 P 1
i oo | — Customer
Z:,c:;elon Code emplyoee
1 o1 Bank | Code Account X "gfé\e
i Bank . a ress
ESlIEoht) Code name _CQLT:'I-_ balance
account| 0.1 creditLimit
Code [T type 1

Application Class Model

Dept. of ISE, S]BIT Page 93

Object Oriented Modeling and Design 10CS71

Application classes define the application itself, rather than the real-world objects that the

application acts on
Most application classes are computer-oriented and define the way that users perceive the

applications

Application Class Model — steps

L.

i

Specify user interfaces
Define boundary classes
Determine controllers
Check against the interaction model
Specify user interfaces
User interface
a. Is an object or group of objects
b. Provide user a way to access system’s
i. domain objects,
ii. commands, and
iii. Application options.
Try to determine the commands that the user can perform.
A command is a large-scale request for a service,
c. Eg
i. Make a flight reservation
ii. Find matches for a phrase in a database
Decoupling application logic from the user interface.
ATM example - The details are not important at this point.
* The important thing is the information exchanged.

Messares [0 user
1 2 3 CILEAR
4 5 4] CAMNCEL
7 = L] FNTER
0
[]
rccciprs cash slot

Flgura 13.7 Format of ATM Intarface. Somalimas a3 sampla
intartacs can help yol visualizs the operation of an appdicatinm

Dept. of ISE, S]BIT Page 94

Object Oriented Modeling and Design 10CS71

Userinterface | Consortiuminterface |
] 1

CashCardBoundary Account8oundary
bankCode benkCode
cardCoile accountCode ProblemTypa
saria M ber he:lanee
passward cragitlimit NAImE
lirrut ATy -
bankiama benkNama

customardame *

cuztomardddress ConlrallerProblem

startCataTime
Remole | Bcive | ransachion TransactionController stopDateTime
Transaction |+ i1 -
stertDeteTim s *
Aulivelad

CashCard o~ 71 ATMsession SessionController
— 1 0l ok |

stetDateTima status

Account |actvesceount

Flgure 13.6 ATK appllentian slega medel ADpd o ion olassms RagmeaTl ihe corain elasses and as
FOCRRTY 0 A ke,

2. Defining Boundary Classes

* A boundary class
— Is an area for communications between a system and external source.
— Converts information for transmission to and from the internal system.
* ATM example
* CashCardBoundary
* AccountBoundary
— Between the ATM and the consortium

ATM Example

Dept. of ISE, S]BIT Page 95

Object Oriented Modeling and Design

ProhlemType
name

£

ComrollerFraoblem

startlat= Time
gtop Date Time

=

Uaerimerface Conaartiuminterface
CashCardBoundary 2 * | AccauntBou ndary
hankCode hankCode
sardCoue avcourtCode
sefalNumber balance
Assw o craahlimit
it accourd Tyoe
bankkama bankMarme
cuEomeriema
customerdddrass
Remale | adiveTraisaction TransactionController
Transactlon | v ;1 -
grartDateTime
adivaand
CaghCard T 01| ATMsession
ol] :
startDateTime
Account 5 :fwadcoowl

SaasionGController

slafus

Figurn 130 ATM applicatinn class modal. Sppdcation classes anomend e domai- classzs and sin

ek sary R el

M

3. Determining Controllers

* Controller is an active object that manages control within an application.

* Controller
Receives signals from the outside world or
Receives signals from objects within the system,

Reacts to them,

Invokes operation on the objects in the system, and

Sends signals to the outside world.

ATM Example

* There are two controllers
The outer loop verifies customers and accounts.

Dept. of ISE,

The inner loop services transactions.

SJBIT

10CS71

Page 96

Object Oriented Modeling and Design 10CS71

Userinterface Consortuminterface
CashCardBoundary ™ | AccountBoundary
barkCode bankCode
cardUocz accountCode PrablemType
sariaMumoer balance
pagsword credit_imn name
limit accountTyDe
barkhame b ke M e
customariamsa K
customarAddrass ControllerProblem
— e Dy s Tirme
Remole acliveTransacton TransactionController stepDateTime
Transaction = 3l -
L atetNeeTime "
Al and
CashCard ‘,‘;L B ni | ATMsession SessionConiroller
Emm— o1 [g e *) T
ABCOUNt [Ztiveronoi sle ADateTima status

Fpure 12.6 ATM epchestan elaaa medal. Anics 00 SR aapmeTl Me caman Classs: anc ane
neseszany i dauel oman

Analysis Stereotypes

e <<boundary>> classes in general are used to model interaction between the system and
its actors.

» <<entity>> classes in general are used to model information that is long-lived and often
persistent.

¢ <<control>> classes are generally used to represent coordination, sequencing,
transactions, and control of other objects. And it is often used to encapsulate control
related to a specific use case.

The Realization of a Use Case in the Analysis Model

Use-Case Model Analysis Model
L ICE __,---"' -3
Use Case)« Collabaration I
Withdraw Money Withdraw Money

OO O O

Dispenser Cashier Withdrawal Account
Interface

A collaboration diagram for the Withdraw Money use-case realization in the analysis model

Dept. of ISE, S]BIT Page 97

Object Oriented Modeling and Design 10CS71

1:identify |_O

~ : Cashier

2:request withdrawal

Rt

% Interface 3:validate and withdraw
: Bank : Withdrawal . Account

Customer S

S:dispense money

4:authorize dispense

:Dispenser

Example:Analysis Classes

» The diagram shows the classes participating in the Register for Courses use case

A O—R

Student

RegisterfarCourses Course Catalog System

Use-Case Diagra

Analysis Mode) (classes only listed — no relationships shown here...)
_<<boundary>> <<control>> <<boundary>>
RegisterForCoursesForm RegistrationController CourseCatalogSystem
<<entity>> <<entity>> <<entity>>

Student Schedule CourseOffering

4. Checking Against the Interaction Model
* Go over the use cases and think about how they would work.
* When the domain and application class models are in place, you should be able to

simulate a use case with the classes.

ATM Example

Dept. of ISE, S]BIT Page 98

Ugerinterface

Congoriuminteriace

CashCardBoundary -~ * |

barkCode
cardlode
seriellM ure e
PaSSNOrd
linni
barkMama

Ramale | atvelransacion
Transaclion |+

f

CeshCard |3e=Card 4

ol n.l

ATWM=e=zsion

AccountBoundary
banklods
ascountCode ProblemType
balarze
craditLinit Name
accourntTyvoe
bankMNzme
custamark ame =
custcmarAaddress ContrallerProblam
startDataTime
Transaclion Coniroller B Dt Tinne
- emdkteTime o

Agcount [amivasme e

statCataTime

SessionControllar

slalus

Figuren 155 ATRA Applicatinn crse mednt Geplealin masses augment ke comar ceasss 200 57

T W A AT

Application State Model

* The application state model focuses on application classes
* Augments the domain state model
Application State Model- steps

Find events
Build state diagrams

AR e

Determine Application Classes with States

Check against other state diagrams
Check against the class model
Check against the interaction model

1. Determine Application Classes with States
¢ Good candidates for state models
— User interface classes
— Controller classes

* ATM example

— The controllers have states that will elaborate.

2. Find events

* Study scenarios and extract events.

¢ In domain model

— Find states and then find events

* In application model

— Find events first, and then find states

* ATM example

— Revisit the scenarios, some events are:

— Insert card, enter password, end session and take card.

3. Building State Diagrams

To build a state diagram for each application class with temporal behavior.

10CS71

Object Oriented Modeling and Design

Dept. of ISE, SJBIT

Page 99

Object Oriented Modeling and Design

10CS71

Initial state diagram

Choose one of these classes and consider a sequence diagram.
The initial state diagram will be a sequence of events and states.

diagram.
Find loops
Merge other sequence diagrams into the state diagram.
After normal events have been considered, add variation and exception cases

diagram handles all events that can affect a state.

Identify the classes with multiple states

Study the interaction scenarios to find events for these classes
Reconcile the various scenarios

Detect overlap and closure of loops

Every scenario or sequence diagram corresponds to a path through the state

If a sequence of events can be repeated indefinitely, then they form a loop.

The state diagram of a class is finished when the diagram covers all scenarios and the

SessionController |
I s / Takingcard “Ejecting card "
Jy e | g / recjues! hk-tar_r'_J/J" { do S aject card
| = - A
SO Up Somm down [ne card]
| covrur downd [has card]
' | P ——
- .,._(f Main scresn -"‘\,......_ 1 — I —— -
\do / display main screen /
- e inEart card
irsart cand o problem] Iprobiem]
Feounl:=0
{”_Gnuing pmmrd__ Problem card \I / keap card
NE'EG Srequest pas:ﬁwufi;.r oo Serror message)
[T bad il]
: | Dacs
e """j‘"”r,‘!r [COUMt=R] / COURtss I ——
- . loount==n]
Verifylng account ™
‘\\ ofa Avarnily account '_j
] account O
. / new TranzactionController '_j
{- Servicing trmsn:c.'lianu_:l
transacions Fnislied O comm dowr
Emittimg
7 B
[/Eiecting card™ " "’f Taking card card taken e
|, do feject card J .{:f:r:"request take card B _)
/'-fPrInllrlg m:alp:""‘. 4 Taking receipt T, recaint taken
_de ¢ print receipt / do /request take receipl) ~(=)
_
Figum 149 Siale dimgrem lof SassaormTonireier okl o stabo deoeasm Bod e h caggelcaleon ol eallh beenges ol Bebuunos

Dept. of ISE, SJBIT

Page 100

Object Oriented Modeling and Design

Soas=io nca-nlmlln-r)

10CS71

.Fi:aunt

¥
" Getting password
Qa # FEquUES] pasm\mrl:l)

' bod paseword
mp‘““mi [CoLnt<h] / eountss
'U"arlh'lﬂg at:cuuntﬁ'\

v, cand teken I-"r Taking card F ‘Ejecting card ™

C‘i”""“‘g \ do J request take eard, o / aject card)

x e S el Tt g el gl -

P
Carm o comim dowirt [no card]
couTn o [has card]
" h
< Main serean .
= \En Feliaplay main &c:mag;'
frser! cang
maer? card [na proklem] [oroblem]

" Problem card S kpap cand

K-I’S_fﬂ.fﬁffﬂl‘ managﬁf

Baa paszswand
[g!;u.,lnl:-‘_—n]

(

oo S werily ar:cmntJ

account QK

ismlc.-ing transaction s:!

Emitting

f new TransactionControllor i

fransactions finished O corrum down

e
Ejecting nnrd‘x‘\
r:k:l £ eject card d

“F Printing recelpt ™
ol S print receipt

Taking card
da Frequest lake ca

Eard taken -
rd j—-—{ -

Taking receipt FEGEQJ! (=T =]

O Srequest ke I'EL‘I!FI}J ::)

Figurn 138 Siate disg For Eameionsi offar: M w ximie cisgraum for nach sepiicstion oo with mrporsd Babe o
Tramctinnl’:nntmllar/]
ey camm dawn
‘-._f‘lq:
4 finishiea 2ncal E
- Canee
('U"—[j Main screen :
- - Ly ofte S displey commands x -
S clear reccapld log e - SO
’Ir"' -"'h.\"‘
witharawal doposit transfor | qucTY
- " _"t'_ ,,;—"‘"— - 2
" 5
w:Wihthdrawal [d:Deposit):I t:Transfor ‘j (: q:Cuery |
\. & R_—, e M
B A
& T
Figure 13.10 Slale dhagren or FanssoliosCorinler. Oz inlo elion o 1w soasios of Beg e B ookl

Dept. of ISE, SJBIT

Page 101

Object Oriented Modeling and Design 10CS71

Transfer — -
' v Getling amount]

., ey Squary amounl ;:I
S Qe iEmoLnl

- ¥ -

¢ Gatting source account ‘1|

v, OO GuUery SoUTCE Eseourt

ehter Socoui fsoure)
) ¥
¢ Getting larget account \.
/" Bad transfer ™, ,_ de/guery target account 7" Good transler ™
s dodoomplain S oo Adisglay confien
T A = antar aocaL rfargefl - -
o ¥ —

7" Perform kransler

nok O -.,_:_J’r: A parkonm |':-.|IIH|+E/-' OK' Y gdd to receint log

Figure 1317 Stabe coagram tar irensfer | b s dizgram elacorzhes sha fensker slabe n bgure 1470

4. check against other state diagrams
* Every event should have a sender and a receiver.
* Follow the effects of an input event from object to object through the system to make
sure that they match the scenarios.
* Objects are inherently concurrent.
* Make sure that corresponding events on different state diagrams are consistent.
e ATM example
e The SessionController initiates the TransactionController,
e The termination of the TransactionController causes the SessionController to
resume.
5. Check against the class model
e ATM example
— Multiple ATMs can potentially concurrently access an account.
— Account access needs to be controlled to ensure that only one update at a time is
applied.
6. Check against the interaction model
¢ Check the state model against the scenarios of the interaction model.
* Simulate each behavior sequence by hand and verify the state diagrams.
» Take the state model and trace out legitimate paths.
Adding Operations
* Operations from the class model
e Operations from use cases
* Shopping-list operations
* Simplifying operations
Operations from the class model
* The reading and writing of attribute values and association links.
* Need not show them explicitly.
Operations from use cases

Dept. of ISE, S]BIT Page 102

Object Oriented Modeling and Design 10CS71

Use cases lead to activities.
Many of these activities correspond to operations on the class model.
ATM example
— Consortium > verifyBankCode.
— Bank = verifyPassword.
— ATM - verifyCashCard
Shopping-List Operations
The real-world behavior of classes suggests operations.
Shopping-list operations provide an opportunity to broaden a class definition.
ATM example
Account.close()
— Bank.createSavingsAccount(customer):account
— Bank.createCheckingAccount(customer):account
— Bank.createCashCard Auth(customer);cashCard Authorization
Simplifying Operations
Try to broaden the definition of an operation to encompass similar operations.
Use inheritance to reduce the number of distinct operations.

ATM domain class model

EnteredOn Trarreseretion
*| dateTime
1 I |
Entrystation I ' | "
Cashler Remote AvthonzsdBy
iy Transaction | | Transaction
I 11 -
I | * —_— Update
ATIA CashierStation EnteredBy | Camntand. | amount
czshOnHand ! serialMumber kind
.1 hi
varilyCashCTard E ™ .
0 name
0.1 1 1
Empiloys Card
i | Authorization
staticn [%:3.: smpinyes Ir_m;r-wnrﬂ
Consortium Bank it
PR— Ell'_"U-ﬁl'_}!.'!iLérﬂ ;
RAMS A LMD FETIOVE A oL
verfyBankCode Code [1.1 | close

sk Coondne werfyPassword
createSavingaAcoount

L) Lol

1 createChaeck ngAcoount
1
T’ o createCashCardAuth 1

accourtCode | Customer
| ERccount - § ~Eme
balance address

redi bl
type
closa I

Figure 1312 ATM domain cdass model with some oparations.

Overview of System Design

Dept. of ISE, S]BIT Page 103

Object Oriented Modeling and Design 10CS71

Summary of development process for the ’é‘sgg
N

organized production of software
eUsers

SVStem eDevelopers

requests
eBusiness

experts

Problem

Analysis: statement

eDomain ,yeer
analysis interviews

«Experience

eApplicati
Onpp sRelated
systems
analysis Y Class model

State model
Interaction model

Desig n: sArchitecture

«System eUse cases
design eAlgorithms models
eOptimization
eClass
design 2

* Analysis — focus is on what needs to be done; independent of ow it is done
* Design — focus is on decisions about how the problem will be solved
— First at high level
— Then with more detail
. System Design —
first design stage
— Opverall structure and style
— Determines the organization of the system into subsystems
Context for detailed decisions about how the problem will be solved

System Design Activities

System DESIQH

1. Design Goals
E Boundary
Defnition
Trade-g& Conditions
Initialization
T|:-rr1|nat||:un
2. System Failure
Decomposition
Layers/Faritions 7. Software
Cohesion/Couplin Control
Monaolithic
Event-Oriven
3. Concurrency Threads
Identificstionof 4, Hardware! 5 p 6. Global Conc. Frocesses
' ! Data ;
Threads
oA " fianagement Resource Handing
Special Persistent Objects SEnu;l-tg.-

Buyar gi:uﬂd Trade- ':'ﬁEalta'ha=l:-=

Allacation
Connectivily Data structure

Dept. of ISE, S]BIT Page 104

Object Oriented Modeling and Design 10CS71

Estimate system performance
e To determine if the system is feasible
* To make simplifying assumptions

ATM Example

* Suppose
— The bank has 40 branches, also 40 terminals.

— On a busy day half the terminals are busy at once.
— Each customer takes one minute to perform a session.
— A peak requirement of about 40 transactions a minute.
— Storage
— Count the number of customers.
— Estimate the amount of data for each customer.

Make a reuse plan
* Two aspects of reuse:
— Using existing things
— Creating reusable new things
* Reusable things include:
— Models
— Libraries
— Frameworks
— Patterns
Reusable Libraries
* A library is a collection of classes that are useful in many contexts.
* Qualities of “Good” class libraries:
— Coherence — well focused themes
— Completeness — provide complete behavior
— Consistency - polymorphic operations should have consistent names and
signatures across classes
— Efficiency — provide alternative implementations of algorithms
— Extensibility — define subclasses for library classes
— Genericity — parameterized class definitions
* Problems limit the reuse ability:
— Argument validation
* Validate arguments by collection or by individual
— Error Handling
* Error codes or errors
— Control paradigms
* Event-driven or procedure-driven control
— Group operations
— Garbage collection

Dept. of ISE, S]BIT Page 105

Object Oriented Modeling and Design 10CS71

— Name collisions

Reusable Frameworks

A framework is a skeletal structure of a program that must be elaborated to build a
complete application.

Frameworks class libraries are typically application specific and not suitable for general
use.

Reusable Patterns

A pattern is a proven solution to a general problem.

There are patterns for analysis, architecture, design, and implementation.

A pattern is more likely to be correct and robust than an untested, custom solution.
Patterns are prototypical model fragments that distill some of the knowledge of experts.
Pattern vs. Framework

A pattern is typically a small number of classes and relationships.

A framework is much broader in scope and covers an entire subsystem or application.

ATM example

Transaction
Communication line
Breaking a System into Subsystem

Each subsystem is based on some common theme, such as
— Similar functionality
— The same physical location, or
— Execution on the same kind of hardware.
Software Architecture

»

1
!
1
1
!
1
!
1
1
e

Breaking a System into Subsystem

A subsystem is a group of classes, associations, operations, events, and constrains.
A subsystem is usually identified by the services it provides.
Each subsystem has a well-defined interface to the rest of the system.

Dept. of ISE, S]BIT Page 106

Object Oriented Modeling and Design 10CS71

* The relation between two subsystems can be
— Client-server relationship
— Peer-to-peer relationship
The decomposition of systems
* Subsystems is organized as a sequence of
— Horizontal layers,
— Vertical partitions, or
— Combination of layers and partitions.
Layered system
* Each built in terms of the ones below it.
* The objects in each layer can be independent.
« Eg
— A client-server relationship
* Problem statement specifies only the top and bottom layers:
— The top is the desired system.
— The bottom is the available resources.
* The intermediate layers is than introduced.
* Two forms of layered architectures:
— Closed architecture
* Each layer is built only in terms of the immediate lower layer.
— Open architecture
* A layer can use features on any lower layer to any depth.
» Do not observe the principle of information hiding.
Partitioned System
* Vertically divided into several subsystems
* Independent or weakly coupled
* Each providing one kind of service.
e E.g. A computer operating system includes
— File system
— Process control
— Virtual memory management
— Device control
Partitions vs. Layers
* Layers vary in their level of abstraction.
* Layers depend on each other.
» Partitions divide a system into pieces.
* Partitions are peers that are independent or mutually dependent. (peer-to-peer
relationship)

Dept. of ISE, S]BIT Page 107

Object Oriented Modeling and Design 10CS71

Applications Applications

Open OS5

VirtualLogix VLX

Partition 1 Fartition n

Combining Layers and Partitions

gpplication peckags

window craphics
user :
; : a mulation
dialog | screen graphics
S ChiPS packags
pixel graphics
opsrating system

computer hasdware

Flgure 14.1 Block dlagram of a tolcal apollcation.
s largges saeslen s mia s s parlilions.

ATM Example
ATM Consortium Eank
stations computer computers
] 1
Cashier
ATM
Consortium %?:I?Lﬂ
Cash COMmm =
Card lirk Dalabase
stafion CoOmm Account
code lirk
—— Customer
uscr ks Card
intoriaco Authorlzatlon
== ———
Transaction | | | Transactian Transaction
Figura 14.2 Architachire nf ATM system. iz ~lon Felphil to mase anirdorma dagrar showing tha riganization -

A evalemn nlo slyyeka

Identifying Concurrency
e To identify
— The objects that must be active concurrently.
— The objects that have mutually exclusive activity

Dept. of ISE, S]BIT Page 108

Object Oriented Modeling and Design 10CS71

Inherent Concurrency
* By exam the state model
» Two objects are inherently concurrent if they can receive events at the same time without
interacting.
» If the events are unsynchronized, you cannot fold the objects onto a single thread of
control.
Defining Concurrent Tasks
* By examining the state diagrams, you can fold many objects onto a single thread of
control.
* A thread of control is a path through a set of state diagrams on which only a single object
at a time is active.
* ATM example:
— Combine the ATM object with the bank transaction object as a single task.
Allocation of Subsystems
e Allocate each concurrent subsystem to a hardware unit by
— Estimating hardware resource requirements
— Making hardware-software trade-offs
— Allocating tasks to processors
— Determining physical connectivity

Estimating hardware resource requirements
* The number of processors required depends on the volume of computations and the speed
of the machine
» Example: military radar system generates too much data in too short a time to handle in
single CPU, many parallel machines must digest the data
» Both steady-state load and peak load are important
Making hardware-software trade-offs
* You must decide which subsystems will be implemented in hardware or software
* Main reasons for implementing subsystems in hardware
— Cost -
— Performance — most efficient hardware available
Allocating tasks to processors
» Allocating software subsystems to processors
* Several reasons for assigning tasks to processors.
— Logistics — certain tasks are required at specified physical locations, to control
hardware or permit independent operation
— Communication limits
— Computation limits — assigning highly interactive systems to the same processor,
independent systems to separate processors
Determining physical connectivity

Dept. of ISE, S]BIT Page 109

Object Oriented Modeling and Design 10CS71

* Determine the arrangement and form of the connections among the physical units
— Connection topology- choose an topology for connecting the physical units
— Repeated units-choose a topology of repeated units
— Communications- choose the form of communication channels and

communication protocols
Management of Data Storage

* Alternatives for data storage:
— Data structures,
— Files,
— Databases

Data Suitable for Files

» Files are cheap, simple, and permanent, but operations are low level.

B Data with high valome and Tow information density {such as archival files or his-
tonical records),

B Modest quancitics of data with simple structure,
B Daia that are aecessed sequentally.
B Daa tharcan be tully read into memory.

Data Suitable for Databases
« Database make applications easier to port, but interface is complex.

Data that require updates at fine levels of detall by multiple users.
Data that must be accessed by multiple application programs.
Data that require coordinated updates via transactions.

Large quantihes of data that muost be handled elMcently,

Diata that are long-lived and highly valuablc to an organization,

Data that must be secured against upauthornzed and malicious access.

Figure 144 Dala sulabbe lor dulabeses. Dualalaees o oo hesesgossicg il eenmopermian i e w csecd o sl oo ban i
CMGNGGT G pRIZanone,

Handling Global Resources
e The system designer must identify global resources and determine mechanisms for
controlling access to them.
* Kinds of global resources:
— Physical units

Dept. of ISE, S]BIT Page 110

Object Oriented Modeling and Design 10CS71

* Processors, tape drivers...
— Spaces

» Disk spaces, workstation screen...
— Logical name

* Object ID, filename, class name...
— Access to shared data

¢ Database

* Some common mechanisms are:
— Establishing “guardian” object that serializes all access
— Partitioning global resources into disjoint subsets which are managed at a lower
level, and
— Locking
ATM example
* Bank codes and account numbers are global resources.
* Bank codes must unique within the context of a consortium.
* Account codes must be unique within the context of a bank.
Choosing a Software Control Strategy
* To choose a single control style for the whole system.
* Two kinds of control flows:
— External control
— Internal control
Software External Control
* Concerns the flow of externally visible events among the objects in the system.
* Three kinds:
— Procedure-driven sequential
— Event-driven sequential
— Concurrent
Procedure-driven Control
e Control resides within the program code
* Procedure request external input and then wait for it
* When input arrives, control resumes with in the procedure that made the call.
* Advantage:
* Easy to implement with conventional languages
* Disadvantage:
* The concurrency inherent in objects are to mapped into a sequential flow of
control.
» Suitable only if the state model shows a regular alternation of input and output events.
* C++ and Java are procedural languages.

Dept. of ISE, S]BIT Page 111

Object Oriented Modeling and Design 10CS71

* They fail to support the concurrency inherent in objects.
Event-driven Control
* Control resides within a dispatcher or monitor that the language, subsystem, or operating
system provides.
» The dispatcher calls the procedures when the corresponding events occur.
Software Internal Control
» Refer to the flow of control within a process.
* To decompose a process into several tasks for logical clarity of for performance.
* Three kinds:
— Procedure calls,
— Quasi-concurrent intertask call,
* Multiple address spaces or call stacks exist but only a single thread of
control can be active at once.
— Current intertask calls
Handling Boundary Conditions
* Most of system design is concerned with steady-state behavior, but boundary conditions
are also important
* Boundary conditions are
— Initialization
— Termination, and
— Failure
* Initialization
— The system must initialize constant data, parameters, global variables, ...
* Termination
— Release any external resources that it had reserved.
* Failure
— Unplanned termination of a system. The good system designer plans for orderly
failure
Setting Trade-off Priorities
» The priorities reconcile desirable but incompatible goals.
— E.g memory vs. cost
* Design trade-offs affect the entire character of a system.
* The success of failure of the final product may depend on how well its goal s are chosen.
* [Essential aspect of system architecture is making trade-offs between
time and space
Hardware and software

Simplicity and generality, and
— Efficiency and maintainability
* The system design must state the priorities

Common Architectural Styles
* Several prototypical architectural styles are common in existing system.
* Some kinds of systems:
— Batch transformation } Functional transformations

Dept. of ISE, S]BIT Page 112

Object Oriented Modeling and Design 10CS71

— Continuous transformation
— Interactive interface

— Dynamic simulation } Time-dependent systems
— Real-time system
— Transaction manager -> Database system

Batch transformation
— Perform sequential computation.
» The application receives the inputs, and the goal is to compute an answer.
* Does not interact with the outside world
 E.g

Compiler
Payroll processing
— VLSI automatic layout

* The most important aspect is to define a clean series of steps
* Sequence of steps for a compiler

[parse ‘ " getermine | I.’/absrram to | [generate Y

lext oo nactwln

/4;»\ ?} , OOmodel t}‘ db code. /&ﬂ

ASCI Graph s Coarectivity
Fila Model hacel

Cass Databzse
Macel Code

Figure 14.5 Sequence of steps for a compiler. 4 beich ransformation is a sequent al
inpul-to-cuipat ransformaton thar doses not infersctwith ke autside wiodld
The steps in designing a batch transformation are as follows
— Break the overall transformation into stages, with each stage performing one part
of the transformation.
— Prepare class models for the input, output and between each pair of successive
stages. Each stage knows only about the models on either side of it.
— Expand each stage in turn until the operations are straightforward to implement.
— Restructure the final pipeline for optimization.
Continuous transformation
— The outputs actively depend on changing inputs.
— Continuously updates the outputs (in practice discretely)
- Eg
* Signal processing
* Windowing systems
* Incremental compilers
* Process monitoring system
— Sequence of steps for a graphics application

Dept. of ISE, S]BIT Page 113

Object Oriented Modeling and Design 10CS71

T, EET— -~ -
(parsa '-I f rri;-ren'niwj [abstractto If genarate

- | connactiviy . CO model db cods |/
A— itk ‘g\-—/{ —_
,-’(\\ ; /\' 7 ,&.
ASCI Graphics Conneclivity Class Database
File Mode| Model Wodel Gods

Figure 14.5 Sequence of stepa for a compiler. 2 balch ranafzrmaton is a sequertial
Irpat-to-output transtormaion thal does nds interact with the outside warld,
— Steps in designing a pipeline for a continuous transformation are as follows
o Break the overall transformation into stages, with each stage
performing one part of the transformation.
o Define input, output and intermediate models between each pair of
successive stages as for the batch transformation
o Differentiate each operation to obtain incremental charges to each
stage.
o Add additional intermediate objects for optimization.
Interactive interface
— Dominated by interactions between the system and external agents.
Steps in designing an interactive interface are as follows
v' Isolate interface classes from the application classes
Use predefined classes to interact with external agents
Use the state model as the structure of program
Isolate physical events from logical events.
Fully specify the application functions that are invoked by the interface

AN N NI

Dynamic simulation
— Models or tracks real-world objects.
— Steps in designing a dynamic simulation
* Identify active real-world objects from the class model.
* Identify discrete events
* Identify continuous dependencies
* Generally simulation is driven by a timing loop at a fine time scale
Real-time system
— An interactive system with tight time constraints on actions.
Transaction manager
— Main function is to store and retrieve data.
— Steps in designing an information system are as follows
* Map the class model to database structures.
* Determine the units of concurrency
* Determine the unit of transaction
* Design concurrency control for transactions

Architecture of the ATM system

Dept. of ISE, S]BIT Page 114

Object Oriented Modeling and Design 10CS71
ATM Consortium Bank
stations computer computers
| 1
[[cashlcr
Consortium Statlon
Cash COmm
Card link — Datahase

User
user

interfaca

Transaction | -

slalion
code

—

bank
code

l‘l’mnﬂantiun J

comm
lirik

[

Customer

Card
Authorlzation

Transaction

Figure 13.2 Apchrtacturs of AT M eystem. I chon helpful tomake snontormal ciagram showng e sroanzsbon of
a sy akEm e subaystiams

Dept. of ISE, SJBIT

Page 115

Object Oriented Modeling and Design 10CS71

Unit-6: Class Design, Implementation modeling

7 Hours

Syllabus:

» Class Design: Overview of class design;

» Bridging the gap, Realizing use cases, Designing algorithms; Recursing downwards,
Refactoring;

» Design optimization; Reification of behavior, Adjustment of inheritance, Organizing a

class design;

ATM example.

Implementation Modeling: Overview of implementation; Fine-tuning classes, Fine-

Y VvV

tuning generalizations, realizing associations, Testing.
Legacy Systems: Reverse engineering;
Building the class models,; Building the interaction model;

Y V V

Building the state model; Reverse engineering tips, Wrapping, Maintenance.

Class design

The analysis phase determines what the implementation must do

The system design phase determines the plan of attack

The purpose of the class design is to complete the definitions of the classes and
associations and choose algorithms for operations

Overview of Class Design — steps

1.

N R AR o

Bridging the gap
Realizing Use Cases
Designing Algorithms
Recursing Downward
Refactoring

Design Optimization
Reification of Behavior
Adjustment of Inheritance
Organizing a Class Design
Bridging the gap

Bridge the gap from high-level requirements to low-level services

Dept. of ISE, S]BIT Page 116

Object Oriented Modeling and Design 10CS71

Desired features

The gap {)

Avai & FERONFT
ailable resources |

Figure 15.1 The design gap. Thame is often & disconied Dotween the desired featues
end thie available esCUrcas.

e Salesman can use a spreadsheet to construct formula for his commission — readily build
the system

® Web-based ordering system — cannot readily build the system because too big gap
between the resources and features

¢ The intermediate elements may be operations, classes or other UML constructs.
® You must invent intermediate elements to bridge the gap.

Uesired feafuires J
1 I

e
y
1!
|
Tteriedtale slements |

L]
]
- Il'-
Available resourees ' 2

Figure 15.2 Erdging the gap. vo.d ri.al mvent miarmadizle alemznie 1o bogs e gip batwaar
i oo Baturce G o vl koD FoS0L G,

Realizing Use Cases

Realize use cases with operations.

The cases define system-level behavior.

During design you must invent new operations and new objects that provide this
behavior.

e Stepl: List the responsibilities of a use case or operation.

...!9

Dept. of ISE, S]BIT Page 117

Object Oriented Modeling and Design 10CS71

® A responsibility is something that an object knows or something it must do.
¢ For Example:

¢ An online theater ticket system

e Making a reservation has the responsibility of

¢ Finding unoccupied seats to the desired show,

Marking the seats as occupied,
Obtaining payment from the customer,
Arranging delivery of the tickets, and
Crediting payment to the proper account.

e Step2: Each operation will have various responsibilities.

e Group the responsibilities into clusters and try to make each cluster coherent.
e Step3: Define an operation for each responsibility cluster.
e Step4: Assign the new lower-level operations to classes.

ATM Example
® Process transaction includes:
e Withdrawal includes responsibilities:
e Get amount from customer, verify that amount is covered by the account
balance, verify that amount is within the bank’s policies, verify that
ATM has sufficient cash,
e A database transaction ensures all-or-nothing behavior.

® Deposit
® Transfer
Use Case for the ATM

Dept. of ISE, S]BIT Page 118

Object Oriented Modeling and Design 10CS71

ATH
inltlata '
.\‘ HESEIGH T ——
r{’ .'
,r" quaw ’ f‘
L -m account ,;
] e e ." n,
/Z i %
Customear |~ process_)——'— JJ"_ *
'Il'&l'lﬁaﬁll:ll'l ':DnhUllIIJITI
.f
e 1’(-
(transmit
+, data
Fimmire 181 [Ism rzeae dimarsm ‘o he BT, | B ol 2 e

® Process transaction includes:
® Deposit includes responsibilities:
¢ Get amount from customer, accept funds envelope from customer, ...
e Transfer includes responsibilities:
e Get source account, get target account, get amount, verify that source
account covers amount, ...
e There is some overlap between the operations.
® A reasonable design would coalesce this behavior and build it once.
3. Designing Algorithms
e Formulate an algorithm for each operation
® The analysis specification tells what the operation does for its clients
® The algorithm show Aow it is done

Designing Algorithms- steps
i. Choose algorithms that minimize the cost of implementing operations.
ii. Select data structures appropriate to the algorithms
iii. Define new internal classes and operations as necessary.
iv. Assign operations to appropriate classes.
i. Choosing algorithms (Choose algorithms that minimize the cost of implementing
operations)
» When efficiency is not an issue, you should use simple algorithms.
» Typically, 20% of the operations consume 80% of execution time.
» Considerations for choosing alternative algorithms
o Computational complexity
o Ease of implementation and understandability
o Flexibility

Dept. of ISE, S]BIT Page 119

Object Oriented Modeling and Design 10CS71

= Simple but inefficient
= Complex efficient
» ATM Example
o Interactions between the consortium computer and bank computers
could be complex.
o Considerations:
* Distributed computing
= The scale of consortium computer (scalability)
* The inevitable conversions and compromises in coordinating
the various data formats.
o All these issues make the choice of algorithms for coordinating the
consortium and the banks important

The ATM Case Study
Q- ~ &
Cashiar

X Slatian

2= | e

ATM A_ ! Azcount
Fas \\\ I | Ban< |1
S T A Computar

| L.
b PO S i e N B
\ \‘\,\ ,»f"/ " ~{ Azzount
ATM |~~~ central
- Computer ~.

I | ™~ - _J Acuount

i __,»'f T Bank
e Computer,
ATM } —— 7 Account

Figure 11.3 ATM neitwork. “he ATM case study threads throughow tha remainder cf thiz boalk

iil. Choosing Data Structures (select data structures appropriate to the algorithm)
a. Algorithms require data structures on which to work.
b. They organize information in a form convenient for algorithms.
c. Many of these data structures are instances of container classes.
d. Such as arrays, lists, queues, stacks, set...etc.
iii. Defining New Internal Classes and Operations
a. To invent new, low-level operations during the decomposition of high-level
operations.
b. The expansion of algorithms may lead you to create new classes of objects to
hold intermediate results.
c. ATM Example:
1. Process transaction uses case involves a customer receipt.
ii. A Receipt class is added.
iv. Assigning Operations to Classes (assign operations to appropriate classes)
a. How do you decide what class owns an operation?
i. Receiver of action

Dept. of ISE, S]BIT Page 120

Object Oriented Modeling and Design 10CS71

1. To associate the operation with the farget of operation, rather
than the initiator.
b. Query vs. update
i. The object that is changed is the target of the operation
c. Focal class
i. Class centrally located in a star is the operation’s target
d. Analogy to real world

ATM Example
® Process transaction includes:
e Withdrawal includes responsibilities:
e Get amount from customer, verify that amount is covered by the account
balance, verify that amount is within the bank’s policies, verify that
ATM has sufficient cash,
e A database transaction ensures all-or-nothing behavior.
® Deposit
® Transfer
® Customer.getAccount(), account.verifyAmount(amount), bank.verifyAmount(amount),
ATM.verifyAmount(amount)

Dept. of ISE, S]BIT Page 121

Object Oriented Modeling and Design 10CS71

Entaradln Transaciion
*| dateTimne
1 !
EntryStation L‘
- Cashicr Romote | AuthorzedDy
'—l—‘ Transaction | | Transaction | %
| | - "
ATM CashicrSlation EnteredBy -
gash OnHand 1 =
; .1 - Recelpt
verifyCoshCard Cashier
verify Smount e
di:;t:ir:;t:l‘urui:-: name sl Tremserclion
receivelFunds o1 4
18]
Cmploys 1
1 I 1 LAstu CardAuthorization
= 1 slation smployse seriallumbor W
we| [am] [ER pesauore
Bank % limid
Conseortium an
add-%c?‘:"ni 5
Name IISSIJES P M SO
1o card
verifyBankCode verfyPasaword Ellin close
bankCode | eroate Savirgsdccount p %
' & createCheckingAzoount
1 T 0.1 | craateCashCand 1
varfy Amour: P
[apccumiCode | Account
Ll onames
|| balance ¥ ' address
croditlirmil temmAmount
ni|type
T QEE:E aun
c e i
wardySamounl - il
debit
tradil .

Figure 164 ATM domain dags mode’ wilh sorm dose cesign wlabomlions.
4. Recursing Downward

e To organize operations as layers.
® Operations in higher layers invoke operations in lower layers.
¢ Two ways of downward recursion:
e By functionality
¢ By mechanism
® Any large system mixes functionality layers and mechanism layers.
Functionality Layers
e Take the required high-level functionality and break it into lesser operations.
¢ Make sure you combine similar operations and attach the operations to classes.
® An operation should be coherent meaningful, and not an arbitrary portion of code.
e ATM eg., use case decomposed into responsibilities (see sec 15.3). Resulting
operations are assigned to classes (see sec 15.4.4). If it is not satisfied rework them

Dept. of ISE, S]BIT Page 122

Object Oriented Modeling and Design 10CS71

Uga cqes Q
w b

FRespoisinliles - - -
)) ¥
es » DOg 3O

Gperaficns

Angighte Slasess
Mechanism Layers
e Build the system out of layers of needed support mechanisms.
® These mechanisms don’t show up explicitly in the high-level responsibilities of a system,
but they are needed to make it all work.
e E.g. Computing architecture includes
e Data structures, algorithms, and control patterns.
® A piece of software is built in terms of other, more mechanisms than itself.

CP-1340-1 W2

. « Alr Conditiarer
- | Cantral

Fle atmr [antie 1

E_:-;E‘_ Emtrzne Zonral

Fire d s Syiberm

Mo WT
Server

5. Refactoring
e Refactoring
= Changes to the internal structure of software to improve its design without
altering its external functionality.
® You must revisit your design and rework the classes and operations so that they clean
satisfy all their uses and are conceptually sound.

Dept. of ISE, S]BIT Page 123

Object Oriented Modeling and Design 10CS71

ATM Example
® Operations of process transaction
® Account.credit(amount)
» Account.debit(amount)
e (Combine into
» Account.post(amount)
6. Design Optimization
e To design a system is to first get the logic correct and then optimize it.
® Often a small part of the code is responsible for most of the time or space costs.
e [t is better to focus optimization on the critical areas, than to spread effort evenly.
Design Optimization
® Optimized system is more obscure and less likely to be reusable.
® You must strike an appropriate balance between efficiency and clarity.
® Tasks to optimization:
i. Provide efficient access paths.
ii. Rearrange the computation for greater efficiency.
iii. Save intermediate results to avoid recomputation.
i. Adding Redundant Associations for Efficient Access
v" Rearrange the associations to optimize critical aspects of the system.
v" Consider employee skills database

Empiove
: - Parson .

HaszShin

Company = Skill

Figure 13.5 Anayais madel for persoen adlla. Lernves Cm 8 urcearatls
Aurirg Snaheis DaZELEe 1 3066 0 ads informanion,

v Company.findSkill() returns a set of persons in the company with a given skill.

v" Suppose the company has 1000 employees,.

v' In case where the number of hits from a query is low because few objects satisfy
the test, an index can improve access to frequently retrieved objects.

J Boeakslaruage
&
language | W
Campany |—=TES_ porson |_PESSKI_T sk

Figure 156 Drasigrn model for peraon ekilla. Carived dale is acezptaba duning
resign ke opsarackes tha me s grifinart performance bott enechs

v Examine each operations and see what associations it must traverse to obtain its
information.
v" Next, for each operation, note the following,
® Frequency of access
® Fan-out
e Selectivity
ATM Example

* Banks must report cash deposits and withdrawals greater than $10,000 to the government.

Dept. of ISE, S]BIT Page 124

Object Oriented Modeling and Design 10CS71

e Trace from
— Bank to Account,
— Account to Update,
— Then filter out the updates that are cash and greater than $10,000
* A derived association from Bank to Update would speed this operation.
iil. Rearranging Execution Order for Efficiency
v' After adjusting the structure of class model to optimize frequent traversals, the
next thing is
v To optimize the algorithm
i. To eliminate dead paths as early as possible
ii. To narrow the search as soon as possible
iii. Sometimes, invert the execution order of a loop

iii. Saving Derived Values to Avoid Recomputation
v’ There are three ways to handle updates
1. Explicit update
ii. Periodic recomputation
iii. Active values
Reification behavior
* Behavior written in code is rigid; you can execute but cannot manipulate it at run time
» Ifyou need to store, pass, or modify the behavior at run time, you should reify it
Adjustment of Inheritance
e To increase inheritance perform the following steps
— Rearrange classes and operations to increase inheritance
— Abstract common behavior out of groups of clusters
— Use delegation to share behavior when inheritance is semantically invalid
Rearrange classes and operations to increase inheritance
* Use the following kinds of adjustments to increase the chance of inheritance
— Operations with optional arguments
— Operations that are special cases
— Inconsistent names
— Irrelevant operations
Use delegation to share behavior when inheritance is semantically invalid
* When class B inherits the specification of class A, you can assume that every instance of
class B is an instance of class A because it behaves the same
o Inheritance of implementation — discourage this
* One object can selectively invoke the desired operations of another class, using
delegation rather than inheritance
* Delegation consists of catching operation on one object and sending it to a related object
* Delegate only meaningful operations, so there is no danger of inheriting meaningless
operations by accident

Dept. of ISE, S]BIT Page 125

Object Oriented Modeling and Design

Stack

Liat

b LIS Ry

JAT=2) -

pLsh
P

acc
reTove
[irsl
last

Raconumended Cesign
(Nelegarion

almost the same as the desired class implementation.

D scoLraged

design

& ,
& . \\.

dd

!
[N

\\‘L.I

Vo

Dy
rfst b

N,

\

LY
| PO

Implementation Inheritance
* Avery similar class is already implemented that does

» Example: | have a List

class, Ineed a Stack
class. How about
subclassing the Stack
class from the List class
and providing three
methods, Push() and
Pop(), Top()?

List
Add()
Remove(

P,
0

=

“Already
jmplemented”

Stack

Push() —

L Add(entity, 0)

Pop() _|

— Remove(0)

Top() ™

» Problem with implementation inheritance:

» Some of the inherited operations might exhibit unwanted behavior.
What happens if the Stack user calls Remove() instead of Pop()?

?

» Close coupling —what happens if the Add() method is changed?

Dept. of |

SE, SJBIT

10CS71

Page 126

Object Oriented Modeling and Design 10CS71

‘ Problem with implementation inheritance

» How to avoid the following problem?

Some of the inherited operations might exhibit unwanted behavior.
What happens if the Stack user calls Remove() instead of Pop()?

MyStack .
1. Delegation y List
Client +Push()
+Pop() Remove()
+Top () Add()
2.Interface inheritance
Stack
Client +Push() Remember this
+Pop() structure!!
+Top()
|]
|

MyStack List
HerStack YourStack

Delegation as alternative to Implementation Inheritance

e Delegation is a way of making composition (for example aggregation) as powerful for
reuse as inheritance

In Delegation two objects are involved in handling a request
A receiving object delegates operations to its delegate.

The developer can make sure that the receiving object does not allow the client to misuse the
delegate object

Client calls | poceiver|—Deledatestad pelegate

Dept. of ISE, S]BIT Page 127

Object Oriented Modeling and Design 10CS71

Delegation instead of Implementation

Inherjtance
+ Inheritance: Extending aréase cfass py a new operation or
overwriting an operation.
+ Delegation: Catching an operation and sending it to another

object.
+ Which of the following models is better for implementing a
stack?
| Llist |
+Add Stack i
(Q +Rem(c))ve() Eé List
Remove
4 +Push()
Stack +Pop() ¢dd0
+To
+Push() PO
+Pop()
+Top()

Organization of Class Design
* We can improve the organization of a class design with the following steps:
— Information hiding
— Coherence of Entities
— Fine-tuning packages
Information hiding
* Carefully separating external specification from internal specification
* There are several ways to hide information:
— Limit the scope of class-model traversals
— Do not directly access foreign attributes
— Define interfaces at a high level of abstraction
— Hide external objects
— Avoiding cascading method calls
Coherence of Entities
=> An entity, such as a class, an operation or a package is coherent if it is organized on a
consistent plan and all its parts fit together toward a common goal.
=> An entity should habve a single major theme
=> It should not be a collection of unrelated parts.

Fine — Tuning Packages
* Overview of Implementation
* Fine-tuning Classes
* Fine-tuning Generalization
* Realizing Associations
* Testing

Fine-tuning classes

Dept. of ISE, S]BIT Page 128

Object Oriented Modeling and Design 10CS71

¢ Fine tune classes before writing code in order to simplify development or to improve
performance
Partition a class
Merge classes
Partition / merge attributes
Promote an attribute / demote a class
Fine-tuning classes — partition a class
e Sometimes it is helpful to fine-tune a model by partitioning or merging classes
® partitioning of a class can be complicated by generalization and association

Fine-tuning classes — merge classes

et =0
1

[

Fine-tuning classes — partition / merge attributes

PhoneMumozr I-'h-::na;iujmber"
stunlhryCude
pkanz \uvber Tl
ocaltumber

Fine-tuning classes — promoting an attribute / demote a class

Persun Persur — Address
RAIE — & | pame shree]l Address
proneamoer pharet urber iy
w_drsys - stotzProvinze

ogtalCade
- P

Persun Address
name streetdcdrossf— — Cily -
pronehlamzer citvllame

Fine-tuning generalizations

Dept. of ISE, SJBIT

SlolePruvsiun

stareProvisanblame

Pastnlicie

p:—s"a|:$dc

Object Oriented Modeling and Design 10CS71

TreditionConcept

lraditicrloncept

\
Language Fhrose Lunguuye — Phrose
W string
L | 0.1 7
[rd=y
. child

IIL.'L:'L'rrl angnge Mircrl anaglinge

Realizing associations
® Associations are “glue” of the class model, providing access paths between objects

® Analyzing associations by traversing associations

A e el s

Analyzing Association Traversal
e Until now we assumed that associations are bidirectional
e But some applications are traversed in only one direction
®* We may add another operation that make traversal in reverse direction
Navigability
e Possible to navigate from an associating class to the target class — indicated by arrow
which is placed on the target end of the association line next to the target class (the one

being navigated to).
® Associations are bi-directional by default — suppress arrows.
® Arrows only drawn for associations with one-way navigability.
Bi-dire oiieita) B

Liri-directianal || Teet

N

v" Navigability is inherently a design and implementation property.
v" Can be specified in Analysis, but with expectation of refining in Class Design.
v' In analysis, associations are usually bi-directional; design, we really check this.

Example: Navigability

Dept. of ISE, S]BIT Page 130

Object Oriented Modeling and Design 10CS71

=zhouidan== . <=gantrol--
ReuisleiFor ZovrsesFurm -]:: Hzaqistrallonsontroller

ARagisterForZoursesFonr invokas a singls RegistrationContrallar tha: will
prozessthe registrazior forthz curent Studert. “he RegistraticnZant-aller wil
never need to communicale cirect y to thz Registelo-Cou-sesl omm.

==glily~=

i =<anlity==
Schedule

CrusgQmering

Here, two way., You can ask a Schedu cwhat
Lourse orr2nngs It cantalns end you can ask 2-way naviganch
a Coursa Offaring what Echedulas it appesrscn

One-way Associations
e Implement one-way associations using pointer- an attribute that contains the object
reference
e Actual implementation of pointer using
e Programming language pointer or
e Database foreign key
e [fthe multiplicity is “one” then it is a simple pointer
e [f the multiplicity is “many” then it is a set of pointers

, whsFar
frieaed| g b

Mplanenttc
£ mogial

Two-way Association
e Many associations are traversed in both directions, not usually with equal frequencies
® Three approaches for implementation
¢ [mplement one-way
¢ Implement two-way
¢ Implement with an association object

Dept. of ISE, S]BIT Page 131

Object Oriented Modeling and Design 10CS71

Testing
® Unit testing
e System testing

Dept. of ISE, S]BIT Page 132

X/
°e

X/
°e

>

o
%

Object Oriented Modeling and Design 10CS71

UNIT -7 DESIGN PATTERNS -1:
Syllabus : - 6hrs

What is a pattern

what makes a pattern?

Pattern categories;
Relationships between patterns;
Pattern description.
Communication Patterns:
Forwarder-Receiver;
Client-Dispatcher-Servers;
Publisher-Subscriber.

Patterns
Patterns help you build on the collective experience of skilled software
engineers.

They capture existing, well-proven experience in software development
and help to promote good design practice.

Every pattern deals with a specific, recurring problem in the design or
implementation of a software system.

Patterns can be used to construct software architectures with specific
properties

What is a Pattern?

Abstracting from specific problem-solution pairs and distilling out
common factors leads to patterns.

These problem-solution pairs tend to fall into families of similar
problems and solutions with each family exhibiting a pattern in both the problems and
the solutions.

Definition :
The architect Christopher Alexander defines the term pattern as

Each pattern is a three-part rule, which expresses a relation between
a certain context,
a problem, and
a solution.

Dept. of ISE, S]BIT Page 133

Object Oriented Modeling and Design 10CS71

As an element in the world, each pattern is a relationship between a certain
context, a certain system of forces which occurs repeatedly in that context, and a certain
spatial configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how
this spatial configuration can be used, over and over again, to resolve the given system of
forces, wherever the context makes it relevant.

The pattern is, in short, at the same time a thing, which happens in the
world, and the rule which tells us how to create that thing. And when we must create it. It
is both a process and a thing: both a description of a thing which is alive, and a
description of the process which will generate that thing.

Properties of patterns for Software Architecture

% A pattern addresses a recurring design problem that arises in specific design
situations, and presents a solution to it.

% Patterns document existing, well-proven design experience.

% Patterns identify & and specify abstractions that are above the level of single
classes and instances, or of components.

« Patterns provide a common vocabulary and understanding for design
principles

++ Patterns are a means of documenting software architectures.

% Patterns support the construction of software with defined properties.

% Patterns help you build complex and heterogeneous software architectures

«» Patterns help you to manage software complexity

Putting all together we can define the pattern as:

Conclusion or final definition of a Pattern:

A pattern for software architecture describes a particular recurring design problem that
arises in specific design contexts, and presents a well-proven generic scheme for its

solution. The solution scheme is specified by describing its constituent components, their
responsibilities and relationships, and the ways in which they collaborate.

What Makes a Pattern?

Three-part schema that underlies every pattern:

Dept. of ISE, S]BIT Page 134

Object Oriented Modeling and Design 10CS71

Context: a situation giving rise to a problem.
Problem: the recurring problem arising in that context.

Solution: a proven resolution of the problem.
Context:
e The Contest extends the plain problem-solution dichotomy by describing the
situations in which the problems occur
e Context of the problem may be fairly general. For eg: “developing software with a
human-computer interface”. On the other had, the contest can tie specific patters together.
e Specifying the correct context for the problem is difficult. It is practically
impossible to determine all situations in which a pattern may be applied.

Problem:

o This part of the pattern description schema describes the problem that arises
repeatedly in the given context.

o It begins with a general problem specification (capturing its very essence what
is the concrete design issue we must solve?)

o This general problem statement is completed by a set of forces

o Note: The term ‘force denotes any aspect of the problem that should be
considered while solving it, such as

o Requirements the solution must fulfill

¢ Constraints you must consider

¢ Desirable properties the solution should have.

o Forces are the key to solving the problem. Better they are balanced, better the
solution to the problem
Solution:

o The solution part of the pattern shows how to solve the recurring problem(or

how to balance the forces associated with it)

o In software architectures, such a solution includes two aspects:

Every pattern specifies a certain structure, a spatial configuration of elements.
This structure addresses the static aspects of the solution. It consists of both components
and their relationships.

Every pattern specifies runtime behavior. This runtime behavior addresses the
dynamic aspects of the solution like, how do the participants of the patter collaborate?
How work is organized between then? Etc.

J The solution does not necessarily resolve all forces associated with the
Problem.

e A pattern provides a solution schema rather than a full specified artifact or blue
print.

e No two implementations of a given pattern are likely to be the same.

Dept. of ISE, S]BIT Page 135

Object Oriented Modeling and Design 10CS71

e The following diagram summarizes the whole schema.

Pattern

—— Context

l— Design situation glving rise to a design problem
L Problem

l— Set of forves repeatedly artsing in the contexi

L— Salution
l___ Configuration ic balance the forees

I: Structure with components and relationships
Run-time behaviour

Pattern Categories
we group patterns into three categories:

» Architectural patterns
» Design patterns
» Idioms

Each category consists of patterns having a similar range of scale or abstraction.

Architectural patterns

e Architectural patterns are used to describe viable software architectures that are
built according to some overall structuring principle.

e Definition: An architectural pattern expresses a fundamental structural
organization schema for software systems. It provides a set of predefined subsystems,
specifies their responsibilities, and includes rules and guidelines for organizing the
relationships between them.

e Eg: Model-view-controller pattern.

Structure->

Dept. of ISE, S]BIT Page 136

Object Oriented Modeling and Design 10CS71

Modeal

fLnctionzliy
* MollTes vigws of changss

Controller
= [lafings applitat on hahavine
= Mans User actions: o
medal Lpda
Salenic view for recponze
= nsfor each funetisnal tv

= Renders the madels

Mathod Invocaticne
L 1] Events

. Event Is possed
o the Conlrolier

~— Niodei e ey

View [Wiew] <— Yomagstdote
=

; ﬁ “» <. Model updotes Views
whan daln changes

Dept. of ISE, S]BIT Page 137

Object Oriented Modeling and Design 10CS71
Eg:
Confroller 2]
Qs
= Ewents
o Lovad
r Save \
Executegvent Boniaar
Update B
| View \
| Oass ; ;
[Student # | | GradeCard
| = Fields s | | e
oo _ -:"StudentHist-:uer: _
”J Jame i Updﬂt&'-.-‘iew & FlEldS e FlEldS
4o GradeShest - g 1D g0
| =l Methads " Lighe I E’ﬁa[l’l".lams
: ¢ Grade
L i isplay : _L Eriats
_ _ J | = Methods
View | % CalculateGrade

Wade|

Design patterns

Design patterns are used to describe subsystems of a software architecture as well
as the relationships between them (which usually consists of several smaller architectural
units)

Definition: A design pattern provides a scheme for refining the subsystems or
components of a software system, or the relationships between them.It describes a
commonly-recurring structure of communicating components that solves a general design
problem within a particular Context.

They are medium-scale patterns. They are smaller in scale than architectural
patterns, but tend to be independent of a particular programming language or
programming paradigm.

Eg: Publisher-Subscriber pattern.

Idioms

Idioms deals with the implementation of particular design issues.

Definition: An idiom is a low-level pattern specific to a programming language.
An idiom describes how to implement particular aspects of components or the
relationships between them using the features of the given language.

Idioms represent the lowest- level patterns. They address aspects of both design
and implementation.

Eg: counted body pattern.

Dept. of ISE, S]BIT Page 138

Object Oriented Modeling and Design

Pattern description

Name :
Also known as:
Example :

Context :
Problem :

Solution :
Structure :
Dynamics :

Implementation:

Examples resolved:

Variants:
Known uses:

Consequences:

See Also:

10CS71

The name and a short summary of the pattern

Other names for the pattern, if any are known

A real world example demonstrating the existence of the
problem and the need for the pattern

The situations in which the patterns may apply

The problem the pattern addresses, including a discussion
of its associated forces.

The fundamental solution principle underlying the pattern
A detailed specification of the structural aspects of the
pattern, including CRC — cards for each participating
component and an OMT class diagram.

Typical scenarios describing the run time behavior of the
pattern

Guidelines for implementing the pattern. These are only a
suggestion and not a immutable rule.

Discussion for any important aspects for resolving the
example that are not yet covered in the solution , structure,
dynamics and implementation sections.

A brief description of variants or specialization of a pattern
Examples of the use of the pattern, taken from existing
systems

The benefits the pattern provides, and any potential
liabilities.

References to patterns that solve similar problems, and the
patterns that help us refine the pattern we are describing.

Communication pattern:

Most of the today’s software systems run on distributed systems. These

distributed systems need a means for communication.
» Problems:

e Many communication mechanisms to choose from.

e The use of communication facilities is often hard-wired into existing
applications, leading to various problems.
o Difficult to change the communication mechanism later.
o Portability

Dept. of ISE, SJBIT

Page 139

Object Oriented Modeling and Design 10CS71

o Migration of sub systems from one network node to another is only
possible if the communication facility allows it.
» Solution:
e Loosen the coupling between components of a distributed system and the
mechanism it uses for communication, eg: by using
o Encapsulation
o Location transparency
» We discuss two patterns that addresses these topics:
o The Forwarder — Receiver design pattern (provides encapsulation)
o The Client — Dispatcher — Server design pattern (provides location
transparency)
» Keeping cooperating component consistent is another problem in communication.
We discuss one pattern that addresses this issue:
o The Publisher — Subscriber pattern

Forwarder-Receiver

Problem

Many components in a distributed
system communicate in a peer to peer
fashion.

« The communication between the peers
should not depend on a particular
IPC mechanism;

* Performance is (always) an issue; and

« Different platforms provide different
IPC mechanisms.

Forwarder-Receiver (1)

Dept. of ISE, S]BIT Page 140

Object Oriented Modeling and Design 10CS71

Peer 2 Solution

service Encapsulate the inter-process
| | communication mechanism:

Receiver Forwarder
- * Peers implement application services.
receive There marshal
unmarshal deliver - Forwarders are responsible for sending
receiverMessage sendMessage
requests or messages to remote
peers
using a specific IPC mechanism.
Forwarder Receiver
el Here I *Receivers are responsible for receiving
deliver unmarshal | PC
sendMessage receiverMessage

requests or messages sent by remote

| | peers using a specific IPC mechanism
and dispatching the appropriate

method

of their intended receiver.

ver (2)
Intent

* "The Forwarder-Receiver design pattern provides transparent interprocess
communication for software systems with a peer-to-peer interaction model.

» It introduces forwarders and receivers to decouple peers from the underlying
communication mechanisms."

Peer 1

service

* Motivation

» Distributed peers collaborate to solve a particular problem.

* A peer may act as a client - requesting services- as a server, providing services,
or both.

* The details of the underlying IPC mechanism for sending or receiving messages
are hidden from the peers by encapsulating all system-specific functionality into separate
components. Examples of such functionality are the mapping of names to physical
locations, the establishment of communication channels, or the marshaling and
unmarshaling of messages.

Dept. of ISE, S]BIT Page 141

Object Oriented Modeling and Design 10CS71

Structure

SECeiveEl

Breceived
- wunrnarshald
| ®rzcoromMsal)

S PC meao

receivelldag 1

Feern pete- e v

- e
Bepmwicel) |-
] S
~SEncVsg
-
'H-..____“-“- :I
i R

e F oreardcr

Frarshald
B eliverd
Trendsod

* F-R consists of three kinds of components, Forwarders, receivers and peers.

» Peer components are responsible for application tasks.

» Peers may be located in different process, or even on a different machine.

» It uses a forwarder to send messages to other peers and a receiver to receive
messages form other peers.

* They continuously monitor network events and resources, and listen for incoming
messages form remote agents.

» Each agent may connect to any other agent to exchange information and requests.

« To send a message to remote peer, it invokes the method sendmsg of its
forwarder.

+ It uses marshal.sendmsg to convert messages that IPC understands.

* To receive it invokes receivemsg method of its receiver to unmarshal it uses
unmarshal.receivemsg.

» Forwarder components send messages across peers.

* When a forwarder sends a message to a remote peer, it determines the physical
location of the recipient by using its name-to-address mapping.

» Kinds of messages are

« Command message- instruct the recipient to perform some activities.

» Information message- contain data.

* Response message- allow agents to acknowledge the arrival of a message.

Dept. of ISE, S]BIT Page 142

Object Oriented Modeling and Design 10CS71

+ It includes functionality for sending and marshaling

» Receiver components are responsible for receiving messages.

» It includes functionality for receiving and unmarshaling messages.

Dynamics

» Pl requests a service from a remote peer P2.

» It sends the request to its forwarder forw1 and specifies the name of the recipient.

* Forwl determines the physical location of the remote peer and marshals the
message.

» Forwl delivers the message to the remote receiver recv2.

» At some earlier time p2 has requested its receiver recv2 to wait for an incoming
request.

* Now recv2 receives the message arriving from forwl.

* Recv2 unmarshals the message and forwards it to its peer p2.

* Meanwhile pl calls its receiver recvl to wait for a response.

* P2 performs the requested service and sends the result and the name of the
recipient p1 to the forwarder forw?2.

* The forwarder marshals the result and delivers it recvl.

* Recvl receives the response from p2, unmarshals it and delivers it to p1.

Implmentation

* Specify a name to address mapping.-/server/cvramanserver/.....

* Specify the message protocols to be used between peers and forwarders.-class
message consists of sender and data.

* Choose a communication mechanism-TCP/IP sockets

* Implement the forwarder.- repository for mapping names to physical addresses-
desitination Id, port no.

sendmsg(dest, marshal(the mesg))
* Implement the receiver — blocking and non blocking
recvmsg() unmarshal(the msg)
» Implement the peers of the application — partitioning into client and servers.
* Implement a start up configuration- initialize F-R with valid name to address

mapping

Benefits and liability
+ Efficient inter-process communication
* Encapsulation of IPC facilities

» No support for flexible re-configuration of components.

* Known Uses

» This pattern has been used on the following systems: TASC, a software
development toolkit for factory automation systems, supports the implementation of
Forwarder-Receiver structures within distributed applications.

Dept. of ISE, S]BIT Page 143

Object Oriented Modeling and Design 10CS71

« Part of the REBOOT project uses Forwarder-Receiver structures to facilitate an
efficient IPC in the material flow control software for flexible manufacturing.
* ATM-P implements the IPC between statically-distributed components using the

Forwarder-Receiver pattern..)
* In the Smalltalk environment BrouHaHa, the Forwarder-Receiver pattern is used

to implement interprocess communication.

Forwarder Recelver
marshal recelve
| deliver IRC unmarshal
Fi serdMsy receiveMsg I.
sendMag receiveMsg
Peer 1 L | Peer 2
1 optional 11 |
0 il 55 seTvice
service E::t’m "'|
receiveN sg sendMsg
l| Recelver Forwarder |
TecEve marshal
urimarshal dellver
| recetveMsg sendMsg

Client-Dispatcher-Server

* Goals
— Introduce an intermediate layer between clients and servers : the dispatcher
— Provide location transparency
— Hides details of establishment of communication

e Applicability
— A software system integrating a set of distributed servers, with the servers

running locally or distributed over a network.

Dept. of ISE, S]BIT Page 144

Object Oriented Modeling and Design 10CS71

Client-Dispatcher-Server

« Example

—
r—— @_
== Server

Dispatcher

Client f W

* Components
— Client
¢ Performs some domain-specific tasks
* Accesses operations offered by servers
— Ask the dispatcher for a communication channel
— Send its request to the server by this channel
— Server
* Provides services to clients
* Registers itself with the dispatcher
— Dispatcher
* Establishes communications channels
* Locates servers
* (Un-)Registers servers
* Maintains a map of server locations and name

Intcraction protocol

Dept. of ISE, S]BIT Page 145

Object Oriented Modeling and Design

10CS71

Dept. of ISE, SJBIT

Publisher-Subscriber

i Clent i Dispaicher \ Server |
-]
’ e SeTV
regst Ace
Eie——y——a]_]
doTask
getChannel
| locateServer
:]t!-l.abushthaluri «Cormection
- -]
= sendRequest Channel
:‘ recEIvEREqUEsT |
-
ru:iﬁ:rﬂif
—
-
------—-i
Pﬁi?: possible
EFEEE
mwrlary prudenry
« Component structure and inter-relationships
requests
Client service Server
doTask ::::t_;:i{m acceptConnection
sendRequest runservice
Dispatcher receiveRequest
requests
connection lncattonMap registers
registerService accepts
urﬁ!{: terServer link
loeateServer eslablishes
establishChannel | connectlon
EetChannel

Page 146

Object Oriented Modeling and Design

Publishar

Dept. of ISE, SJBIT

-

Fixed Subscription
Publisher f——» P

Supscriper 1

Subecriber 2

- -
e

10CS71

Page 147

Object Oriented Modeling and Design 10CS71

aaaa

Initial Subscripti
Publisher > nitial Subscription

Publisher

Publisher-Subscriber
* Goal
— Help to keep the state of cooperation components synchronized
— One publisher notifies any number of subscribers about changes to its state
* Applicability
— Applications in which data changes in one place but many other components
depend on this data
— Number and identities of dependant components may changeover time
» Example : graphical user interfaces
Components
* Publisher
— Maintains registry of currently-subscribed components
— Sends notification to subscribers when its state has changed
* Subscriber
— Can use the (un)subscribe interface of the publisher
— Retrieve changed data from publisher

Dept. of ISE, S]BIT Page 148

Object Oriented Modeling and Design 10CS71

* Push model
— Publisher sends all changed data when it notifies the subscriber
— Rigid dynamic behavior
— Poor choice for complex data changes
— Useful when subscribers need published information most of the time
* Pull model
— Publisher only sends minimal information when sending a change notification
— Subscribers are responsible for retrieving the data they need
— Offers more flexibility but higher number of messages between publisher and
subscriber
— Useful when only individual subscribers can decide if and when they need a
specific piece of information
* Strengths
— Loosely-coupled
— Publishers are loosely coupled to subscribers
— Scalable in small installations
* Weaknesses
— Not so scalable in large installations
— Publisher assumes that subscriber is listening
* Variants
— Gatekeeper
» Publisher notifies remote subscribers
— Event Channel
* Strongly decouples publishers and subscribers
* Possible to have more than one publisher
* Subscribers only wish to be notified about changes, don’t care in which
component changes occurred
* Publishers are not interested in which components are subscribing
* Event channel created and placed between publishers and subscribers
* Appears as a subscriber to publishers
* Appears as a publisher to subscribers
» Event channel, subscriber and publisher can be in different processes
» Can use buffers, can be chained (Unix pipes)

Dept. of ISE, S]BIT Page 149

Object Oriented Modeling and Design

10CS71

optional

optional

[Publisher Sounda
sher by Event

prOcess
hr_mrlri'f:ry Subscriber

Proxy
sher \ Subscriber

¢ Variants

|: Channel

lisher \ Subscriber

— Use of Producer-Consumer style of cooperation

* Producer supplies information, consumer accepts it
* Strongly decoupled thanks to a buffer
* Only synchronization is for buffer under/overflow

* Event-Channel pattern can
or consumer
* Known uses
— Java Swing, GUIs

» Interaction protocol

simulate a P-C with more than one producer

el noe i‘l"|:' |

i [}
-—

i i
i i
i
I
eveniDocurad]) I
]

1

i

ewentCccured()
i
-

Dept. of ISE, SJBIT

Page 150

Object Oriented Modeling and Design 10CS71

Unit 8: DESIGN PATTERNS-2
syLLaBus: e 6 hr

» Management Patterns

o Command processor
o View handler
Idioms

» Introduction

» What can idioms provide?
» Idioms and style

» Where to find idioms
Counted pointer example

Design Patterns Management
Systems must often handle collections of objects of similar kinds, of service, or even complex
components.
E.g.1 Incoming events from users or other systems, which must be interpreted and scheduled
approximately.
e.g.2 When interactive systems must present application-specific data in a variety of different
way, such views must be handled approximately, both individually and collectively.

e In well-structured s/w systems, separate manager components are used to handle such
homogeneous collections of objects.

For this two design patterns are described
= The Command processor pattern
» The View Handler pattern

Command Processor

e The command processor design pattern separates the request for a service from its
execution. A command processor component manages requests as separate objects, schedules
their execution, and provides additional services such as the storing of request objects for later
undo.

Context:

Applications that need flexible and extensible user interfaces or Applications that provides
services related to the execution of user functions, such as scheduling or undo.

Problem:

e Application needs a large set of features.

e Need a solution that is well-structured for mapping its interface to its internal
functionality

e Need to implement pop-up menus, keyboard shortcuts, or external control of application
via a scripting language

e We need to balance the following forces:

» Different users like to work with an application in different ways.

= Enhancement of the application should not break existing code.

Dept. of ISE, S]BIT Page 151

Object Oriented Modeling and Design 10CS71

= Additional services such as undo should be implemented consistently for all requests.
Solution:
e Use the command processor pattern
e Encapsulate requests into objects
e Whenever user calls a specific function of the application, the request is turned into a
command object.
e The central component of our pattern description, the command processor component
takes care of all command objects.
e [t schedules the execution of commands, may store them for later undo and may provide
other additional services such as logging the sequences of commands for testing purposes.
Example : Multiple undo operations in Photosho
Structure:
e Command processor pattern consists of following components:
The abstract command component
A command component
The controller component
The command processor component

O O O O O

The supplier component

Components

Abstract command Component:

Defines a uniform interface of all commands objects
At least has a procedure to execute a command

. May have other procedures for additional services as undo, logging,...

Class Collaborators
Abstract Command

Responsibility
» Defines a uniform interface
Interface to execute commands
» Extends the interface for
services of the command
processor such as undo and

logging

A Command component:
. For each user function we derive a command component from the abstract command.
. Implements interface of abstract command by using zero or more supplier
components.
. Encapsulates a function request
. Uses suppliers to perform requests
. E.g. undo in text editor : save text + cursor position

Dept. of ISE, S]BIT Page 152

Object Oriented Modeling and Design 10CS71

Class Collaborators
Command . Supplier
Responsibility
» Encapsulates a function
request

» Implements interface of
abstract command

» Uses suppliers to perform
requests

e The Controller Component:
Represents the interface to the application

Accepts service requests (e.g. bold text, paste text) and creates the corresponding
command objects

The command objects are then delivered to the command processor for execution

Class Collaborators
Controller . Command Processor
. Command
Responsibility

+ Accepts service requests

» Translates requests into
Commands

» Transfer commands to
command processor

e Command processor Component:

Manages command objects, schedule them and start their execution
Key component that implements additional services (e.g. stores commands for later

undo)
. Remains independent of specific commands (uses abstract command interface)
Class Collaborators
Command Processor . Abstract Command
Responsibility

« Activates command execution
» Maintains command objects

* Provides additional services
related to command execution

Dept. of ISE, SJBIT

Page 153

Object Oriented Modeling and Design 10CS71

The Supplier Component:
Provides functionality required to execute concrete commands

. Related commands often share suppliers
. E.g. undo : supplier has to provide a means to save and restore its internal state
Class Collaborators
Supplier
Responsibility
* Provides application specific
functionality
Controller Command Supplier
Pracessor
— |—‘ *]——'
request) Eapiu]ize
Command |
{Capitalize lo | J
ot
|Command| "] do

pet_selection
el r.

capitalize

4

F'3

unelo
ref uesl undu_it
|

unio

resiore_lexl —1

il
|)

Bl L

llcll:lPE ::

A

)

The following steps occur:

The controller accepts the request from the user within its event loop and creates a
capitalize' command object.

The controller transfers the new command object to the command processor for execution
and further handling.

Dept. of ISE, S]BIT Page 154

Object Oriented Modeling and Design 10CS71

The command processor activates the execution of the command and stores it for later
undo.

The capitalize command retrieves the currently-selected text from its supplier, stores the text and
its position in the document, and asks the supplier to actually capitalize the selection.

After accepting an undo request, the controller transfers this request to the command
processor.

The command processor invokes the undo procedure of the most recent command.

The capitalize command resets the supplier to the previous state, by replacing the saved
text in its original position

If no further activity is required or possible of the command, the command processor
deletes the command object.
Component structure and inter-relationships

Command !pe[{m'mg Abstract
Processor | —8 Command
| BLOTES I—
command_stack o
undo
do_itiemd)
undo_it
T
transfer Command 7 B
comuand Supplier
state_for undo [uses T
Controller app_functions
rreates do ' get_state
event_logp unclo ! restore_state
|
: J L
[

Strengths
= Flexibility in the way requests are activated

= Different requests can generate the same kind of command object (e.g. use GUI or
keyboard shortcuts)

= Flexibility in the number and functionality of requests

= Controller and command processor implemented independently of functionality of
individual commands

Dept. of ISE, S]BIT Page 155

Object Oriented Modeling and Design 10CS71

= Easy to change implementation of commands or to introduce new ones

= Programming execution-related services

* Command processor can easily add services like logging, scheduling,...
= Testability at application level

* Regression tests written in scripting language

= Concurrency

* Commands can be executed in separate threads

. Responsiveness improved but need for synchronization

Weaknesses

= Efficiency loss

= Potential for an excessive number of command classes

* Application with rich functionality may lead to many command classes

. Can be handled by grouping, unifying simple commands

= Complexity in acquiring command parameters

Variants

= Spread controller functionality

* Role of controller distributed over several components (e.g. each menu button creates a
command object)

= Combination with Interpreter pattern

* Scripting language provides programmable interface

» Parser component of script interpreter takes role of controller

View Handler

* Goals

* Help to manage all views that a software system provides

* Allow clients to open, manipulate and dispose of views

* Coordinate dependencies between views and organizes their update

* Applicability

* Software system that provides multiple views of application specific data, or that supports
working with multiple documents

» Example : Windows handler in Microsoft Word

Dept. of ISE, S]BIT Page 156

Object Oriented Modeling and Design

10CS71

i. Word Fike Ecit View lnsen Fomat Font Toos Tahﬁm'.\'urk Help %

Daoume s

s R gzhor |zl

S T BT T | A1 e cBoacde B = IR T O I

View Handler and other patterns
* MVC

Froer Wind o Dol
Minimize Windosw M SR | -3
I T S
Bring Al 10 Freat [wmalzhbs dadures - th
Mew Window 12« :
Aange All [_ o 5
1/2 st L
Galle EL
Dk Tl dal: 3
< 1 Dacurnentl [——————
2 Docurment? 2
L

Ares b ragh gEribn| [eowe ol o gtermiggl] e
te loguage’s svas e s an st

* View Handler pattern is a refinement of the relationship between the model and its associated

views.
« PAC

» Implements the coordination of multiple views according to the principles of the View

Handler pattern.

R/

«» Components
= View Handler

* Isresponsible for opening new views, view initialization

« Offers functions for closing views, both individual ones and all currently-open views

* View Handlers patterns adapt the idea of separating presentation from functional core.

* The main responsibility is to Offers view management services (e.g. bring to foreground,

tile all view, clone views)

e Coordinates views according to dependencies

Dept. of ISE, SJBIT

Page 157

Object Oriented Modeling and Design

[Class
View Handler

Responsibility

* Opens,
manipulates, and
disposes of views of
a software system.

Collaborators
* Specific View

«» Components

= Abstract view

¢ Defines common interface for all views

* Used by the view handler : create, initialize, coordinate, close, etc.

Abstract View

Responsibility

* Defines an
interface to create,
initialize,
coordinate, and
cloze a specific
viewwr,

Class Collaborators |

< Components
* Specific view

* Implements Abstract view interface

* Knows how to display itself

e Retrieves data from supplier(s) and change data

* Prepares data for display
* Presents them to the user

* Display function called when opening or updating a view

Dept. of ISE, SJBIT

10CS71

Page 158

Object Oriented Modeling and Design

| Class
Specific View

Responsibility
* Implements the
abstract interface,

Collaborators
* Supplier

< Components
* Supplier

= Provides the data that is displayed by the view components

= Offers interface to retrieve or change data

* Notifies dependent component about changes in data

* Implements the
interface of the
abstract view—one
class for each view
onto the system.

Class Collaborators
Supplier * Specific View
R lity ¢ YView Handler

The OMT diagram that shows the structure of view handler pattern
Component structure and inter-relationships

Dept. of ISE, SJBIT

10CS71

Page 159

Object Oriented Modeling and Design 10CS71

ViewHandler | creates, closes, and [AbstractView
coordinates el
my'Views sl
update
update initialize
1] Qe
2= 2
o PR
spllt Size
EE)HE
tile A
[) |
SpecificViewA SpecificViewB
display display
initlalize inltalize
nolifies :;r:.il:l . 9 F:'Eﬁlt
C close
Supplier mowe mowe
sire Size
attach —
detach + FELEIEVES retneves
getData datn data
setData notifles
—rTrn—

Two scenarios to illustrate the behavior of the View Handler

* View creation

* View tiling
Both scenarios assume that each view is displayed in its own window.

Scenario I : View creation

Shows how the view handler creates a new view. The scenario comprises four phases:

= A client-which may be the user or another component of the system-calls the view
handler to open a particular view.

= The view handler instantiates and initializes the desired view. The view registers with the
change-propagation mechanism of its supplier, as specified by the Publisher-Subscriber pattern.

» The view handler adds the new view to its internal list of open views.

= The view handler calls the view to display itself. The view opens a new window,
retrieves data from its supplier, prepares this data for display, and presents it to the user.
Interaction protocol

Dept. of ISE, S]BIT Page 160

Object Oriented Modeling and Design 10CS71

View Handler ‘ Supplier
open(view) T View
. e —— ——
initialize
— ——— —h") register
l« My —>{]
add
h[I View |
; open |
- display
getDarta

=]

.-‘

Scenario II : View Tiling
[lustrates how the view handler organizes the tiling of views. For simplicity, we assume
that only two views are open. The scenario is divided into three phases:

» The user invokes the command to tile all open windows. The request is sent to the view
handler.

= For every open view, the view handler calculates a new size and position, and calls its
resize and move procedures.

= FEach view changes its position and size, sets the corresponding clipping area, and
refreshes the image it displays to the user. We assume that views cache the image they display. If
this is not the case, views must retrieve data from their associated suppliers

Interaction protocol

Dept. of ISE, S]BIT Page 161

Object Oriented Modeling and Design 10CS71

View Handler View-1 View-2
tile
g caleTiling
resize
-
e
=
alze
=
move
-
|
Implementation

The implementation of a View Handler structure can be divided into four steps. We assume that
the suppliers already exist, and include a suitable change-propagation mechanism.

1. Identify the views.

2. Specify a common interface for all views.

3. Implement the views.

4. Define the view handler

Identify the views. Specify the types of views to be provided and how the user controls each
individual view.

Specify a common interface for all views. This should include functions to open, close,
display, update, and manipulate a view. The interface may also offer a function to initialize a
view.

The public interface includes methods to open, close, move, size, drag, and
update a view, as well as an initialization method.

Implementation

Dept. of ISE, S]BIT Page 162

Object Oriented Modeling and Design 10CS71

class AbstractView |
protected:
// Draw the view
virtual void displayDatal) = [;

virtual wvoid displayWindow|Rectangle boundary) = 0;
virtual vold eraseWindow() = 0;
publicg:

// Constructor and Destructor

AbstractView() [};

~AbastractView() [};

J/ Inltialize the view

vold initialize() = 0;

// view handling with default implementation

virtual vold open(Rectangle boundary) { /* ... */ I
virtual void closel} { /* ... */ };

virtual void move(Point point) { /v ... %/ 1,
virtual void size(Rectangle boundary) [/* ... */ |;
virtual void drag(Rectangle boundary) [/* ... */ };
virtual void update() [/* ... */ };

b

Implement the views. Derive a separate class from the AbtrsactView class for each specific type
of view identified in step 1. Implement the view-specific parts of the interface, such as the
displayData () method in our example. Override those methods whose default implementation
does not meet the requirements of the specific view.

In our example we implement three view classes: Editview, Layoutview, and
Thumbnailview, as specified in the solution section.

Define the view handler: Implement functions for creating views as Factory Methods.

The view handler in our example document editor provides functions to open and close
views, as well as to tile them, bring them to the foreground, and clone them. Internally the view
handler maintains references to all open views, including information about their position and
size, and whether they are iconize.

class ViewHandler (

// Data structures

struct ViewInfo {

AbstractView view:
Rectangle boundary:
bool iconized;

b

Dept. of ISE, S]BIT Page 163

Object Oriented Modeling and Design 10CS71

Container<Viewlnfos> myViews;
/¢ The singleton instince
gtatic ViewHand_er+ theViewHandler;
/¢ Constructor and Des:uckor
ViewHandler();
~ViewHandler();
oublic:
i Einyleton eonstructor
static VoewHandlert makaViewHandler(),

) Cpen and close views
voic opan|AbstractViewt view);
wold olose DbstractView view):

!/ Tcp, clore, and tils views

voLd toplabetrac:Viewt view);

vo.d clone); // Clcnes he top-most viaw
vod tilel);

vold Viewandler; :openView (Abetrac Viewt ew):
Viewlnfer viewlnfo = new ViewDnfel)

[T e the view to the -ist of open views
vislrfo-sview = view;
viswIrfo-rbourdary = defautIwrdary;
vigWlrfo-slzonized = falze;
mytlews. add (viewlnfa);

! Initialize the view and open it
vigw-dinitialize();
view-2open(defaultBoundary)

Strengths
U Uniform handling of views
= All views share a common interface
= Extensibility and changeability of views
= New views or changes in the implementation of one view don’t affect other component
= Application-specific view coordination

Dept. of ISE, S]BIT Page 164

Object Oriented Modeling and Design 10CS71

= Views are managed by a central instance, so it is easy to implement specific view
coordination strategies (e.g. order in updating views)

Weaknesses

=Efficiency loss (indirection)

»= Negligible

= Restricted applicability : useful only with
= Many different views

* Views with logical dependencies

* Need of specific view coordination strategies
Variant
= View Handler with Command objects

= Uses command objects to keep the view handler independent of specific view interface

* Instead of calling view functionality directly, the view handler creates an appropriate
command and executes it

Known uses

= Macintosh Window Manager

* Window allocation, display, movement and sizing
= Low-level view handler : handles individual window
o Microsoft Word

= Window cloning, splitting, tiling...

Idioms

Introduction

» idioms are low-level patterns specific to a programming language

» An idiom describes how to implement particular aspects of components or the
relationships between them with the features of the given language.

» Here idioms show how they can define a programming style, and show where you can
find idioms.

» A programming style is characterized by the way language constructs are used to
implement a solution, such as the kind of loop statements used, the naming of program elements,
and even the formatting of the source code

What Can Idioms Provide?

Dept. of ISE, S]BIT Page 165

Object Oriented Modeling and Design 10CS71

» A single idiom might help you to solve a recurring problem with the programming
language you normally use.

» They provide a vehicle for communication among software developers.(because each
idiom has a unique name)

» idioms are less 'portable‘ between programming languages
Idioms and Style

If programmers who use different styles form a team, they should agree on a single coding style
for their programs. For example, consider the following sections of C/C++ code, which both
implement a string copy function for 'C-style' string

void strcopyRR(char *d, const char *s)

{ while (*d++=*s++) 5 }

void strcopyPascal (char d [I, const char s [I)
{inti;
for (i=0:s[il!="\01:i=i+1)
{dlil =s[il; }
d[i] = ©\0’ ; /* always asign 0 character */
}/* END of strcopyPascal */
Idioms and Style

A program that uses a mixture of both styles might be much harder to understand and
maintain than a program that uses one style consistently.

Corporate style guides are one approach to achieving a consistent style throughout
programs developed by teams.

Style guides that contain collected idioms work better. They not only give the rules, but
also provide insight into the problems solved by a rule. They name the idioms and thus allow
them to be communicated.

Idioms from conflicting styles do not mix well if applied carelessly to a program.
Different sets of idioms may be appropriate for different domains. example, you can write C++
programs in an object-oriented style with inheritance and dynamic binding.

In real time system dynamic binding is not used which is required.

A single style guide can therefore be unsuitable for large companies that employ many
teams to develop applications in different domains.

A coherent set of idioms leads to a consistent style in your programs.

Dept. of ISE, S]BIT Page 166

Object Oriented Modeling and Design 10CS71

Here is an example of a style guide idiom from Kent Beck's Smalltalk Best Practice Patterns :

Name : Indented Control Flow
Problem : How do you indent messages?
Solution : Put zero or one argument messages on the same lines as their receiver.
foo isNil
2+3
a<bifTrue:[...]

Put the keyword/argument pairs of messages with two or more keywords each on its own line,
indented one tab.
a<b

ifTrue: [...]

ifFalse: [...1

» Different sets of idioms may be appropriate for different domains.

» For example, you can write C++ programs in an object-oriented style with inheritance
and dynamic binding.

» In some domains. such as real-time systems, a more 'efficient' style that does not use
dynamic binding is required.

» A single style guide can therefore be unsuitable for large companies that employ many
teams to develop applications in different domains.

» A style guide cannot and should not cover a variety of styles.
Where Can You Find Idioms?

» Idioms that form several different coding styles in C++ can be found for example in
Coplien's Advanced C++ Barton and Neck man's Scientific and Engineering C++ and Meyers

Effective C++ .

» You can find a good collection of Smalltalk programming wisdom in the idioms
presented in Kent Beck's columns in the Smalltalk Report.

» His collection of Smalltalk Best Practice Patterns is about to be published as a book .

» Beck defines a programming style with his coding patterns that is consistent with the
Smalltalk class library, so you can treat this pattern collection as a Smalltalk style guide.

Dept. of ISE, S]BIT Page 167

