
Enhanced Communication Scheme for Mobile Agents

Geetha Priya. B, Suba. S, Tanya Bansal, P.Boominathan
Department of Computer Science and Engineering

Velammal Engineering College
Chennai – 600066, India

geethapriya.rt@gmail.com, subavec@gmail.com, tanyapbansal@gmail.com, bominathan@yahoo.com

Abstract— Mobile agent technology is a promising field which
has a great scope in the areas of Networking, Distributed Systems
and Grid Systems. The frequent movement of the agents poses
challenges for the design of an efficient communication protocol
for mobile agents. In this paper we propose an improved
communication scheme for mobile agents which overcomes the
following issues. First, the problem of overloading of the agent is
solved by provision for generating a twin agent when required.
Also urgent messages are given priority by using a message
queue which sorts the messages according to priority frequently.
Our scheme also provides a mechanism for the mobile agent to
automatically update itself according to the environmental
changes in a predictable and visible manner. Also it reduces the
resource overhead over the network dynamically by temporarily
destroying the idle agents and reconstructing them when needed.

Keywords-mobile agent; communication scheme; agent
overloading; message queue

I. INTRODUCTION
Mobile agents have been widely argued to be an important

enabling technology for future distributed systems. Mobile
agent technology has great potential for use in networking. In
recent years, mobile agent computing has emerged as a new
paradigm in developing applications in various areas. Its
applications range from telecommunications, e-commerce,
and information searching to process coordination, monitoring
resource usage and network management.

A. Definition of an Agent (System Perspective)
An agent is a software object that is situated within an

execution environment [2]. It possesses the following
mandatory properties:

1) Reactive: It senses changes in the environment and acts
accordingly to those changes;

2) Autonomous: It has control over its own actions;
3) Goal driven: It is pro-active;
4) Temporally continuous: It is continuously executing;

It may also possess any of the following orthogonal

properties:

1) Communicative: It able to communicate with other
agents;

2) Mobile : It can travel from one host to another;

3) Learning: It adapts in accordance with previous
experience;

4) Believable: It appears believable to the end-user.

Mobile Agent [2]: A mobile agent is not bound to the
system where it begins execution. It has the unique ability to
transport itself from one system in a network to another. The
ability to travel, allows a mobile agent to move to a system
that contains an object with which the agent wants to interact,
and then to take advantage of being in the same host or
network as the object.

Communication protocols are among the most important
mechanisms in mobile agent systems. In various situations,
mobile agents at different hosts must cooperate with one
another by sharing information and making decisions
collectively. To ensure effective inter-agent communication,
these protocols must track target agent locations and deliver
messages reliably. The communication algorithms for
location-independent message delivery to migrating agents
should support two operations: “migrate” and “deliver”.

1) Migrate - facilitating the movement of an agent to a
new site.

2) Deliver - locating a specified agent and delivering a
message.

In general, inter-agent communication is carried out by

message-swapping in mobile agent systems [10]. But in
mobile agent communication environment, this scheme is not
effective due to the frequent migration of the receiver agent.
The abnormal communication phenomenon caused by the
physical position of communication body shift was called
mobile communication disable [11]. The message chases the
target agent and is not able to reach in the case that the
migration frequency of the mobile agent is very high. We
called this as message chasing [4]. Furthermore, when a
certain agent has many messages to deal with, it is unable to
process them in a specified time. This phenomenon is referred
to as agent overloading in this paper. If agent overloading
occurs, the collaboration agents may not get the coordinated
messages, leading to failure of collaboration, which can even
cause the entire system to collapse.

978-1-4244-4711-4/09/$25.00 ©2009 IEEE
IAMA 2009

Downloaded from www.VTUplanet.com

A practical communication mechanism should make the
location of an agent transparent.

Due to the asynchronous nature of message passing and
agent migration, it is a challenge to guarantee message
delivery to highly mobile agents. The mailbox based mobile
agent communication mechanism [3, 4, 8] has implemented
location transparency and message delivery. The algorithm is
preferable in the cases that mobile agents migrate frequently
but communicate rarely. In this scheme, each mobile agent has
a mailbox which buffers the messages sent to it. The mailbox
is detached from its owner agent in the sense that the agent
and its mailbox can reside at different hosts. If an agent will
not communicate with others at its target host, it will migrate
to the host directly and leave its mailbox at the previously
located host. In this way the location-updating overhead is
saved and the constraints of agents’ mobility are decreased.
But there is no reliability of message delivery when the
mailbox migrates. It can neither reduce the occupation of
network resources, nor update the agent automatically. An
improved mailbox-based mobile agent communication
algorithm is proposed in this paper. It can overcome message
loss and ensure the message delivery reliability, provide an
effective solution to overloading problem of the mobile agent
and ensure that urgent message gets processed first. This
algorithm can also decrease the message waiting time
effectively and reduce the occupation of resources over the
network dynamically. Furthermore, the mobile agent can be
updated automatically in this algorithm.

II. EXISTING SYSTEM
In order to implement the location-independence of agent,

the peer agent must be located by some mechanism that maps
an agent’s unique name onto its current location. In a general
way, addressing modes which are usually used include:
searching mode, logging mode and registration mode [9]. In
searching mode, an agent usually is dispatched to visit all
possible hosts or broadcasts a message to all the hosts to
search the target agent. The overhead is unaffordable when
the network is large. In logging mode, since the agent leaves
its migration track on the hosts when it passes by, its current
location should be attained via following its trail. If the trail
information is lost or if one of the hosts is down, the target
agent would no longer be found. With the registration scheme,
an agent needs to update its location in a predefined directory
server (e.g., its home host) that allows agent to be registered,
deregistered or located. The directory server can be either a
central node or the agent’s home host. The disadvantage of
having a central node as directory server is that it may become
the bottleneck of the system performance and/or a single point
of failure.

The agent’s home host follows the idea of Mobile IP [7].
The Mobile IP is the protocol designed for IP packets routing
to mobile devices. A mobile host registers its care-of- address
with its home host and it is the home host that forwards the IP
packets to it. Although this home registration and the

forwarding method is easy to implement and has less location
registration overhead, it is inappropriate in mobile agent
systems. Since all the correspondents of an agent must find its
address from its home host, the agent home host may be a
performance bottleneck when a larger number of agents, each
with many correspondents, are originated from that same host.
Besides, the agent home host may sometimes break off from
the network after the agent is dispatched.

Message passing depends on the message routing and
addressing mechanism. According to the addressing
procedure, usually there are two message passing schemes:
forwarding and locate-and-transfer. In forwarding scheme,
message routing and locating a target agent are both done in a
single phase. They are combined into one operation where an
agent after moving to a new host informs the previous resident
host where it moves so that messages can be forwarded along
the extended path. The disadvantage is that the messages may
take multi-hops before they reach the target agents. The
performance is worsened when messages are large in size. On
the other hand, locate-and-transfer locates the target agent first
and then transfers the message directly to it. However, the
message sender may get outdated address in cases that the
receiver agent migrates frequently.

The communication mechanism in Mogent system [6] has
implemented location transparency and reliable message
delivery. But it also has the shortcomings of large location-
updating overhead, constraints of agents’ mobility and
vulnerability to the address spoofing attack. All the agents
need to register their locations with their homes. Before
sending a message to another agent, the sender agent must
query the recipient’s current address from the target agent’s
home host. If the target agent is currently moving across the
network, the reply to the location query is pending until the
target agent registers its new location. Before an agent can
move, it needs to ask for permission from the home host. If
there are messages on their way targeting at the agent, the
agent need to wait until these messages arrive. It is the
responsibility of the agent home to synchronize the migration
of the agents and the message passing. In this way, reliable
message delivery can be guaranteed and no message
forwarding is needed. However, the algorithm depends so
much on the agent home that the agent cannot move and
communicate if its home is down or disconnected.

In [4], mailbox-based algorithm adopts a hybrid approach
combining the registration and forwarding schemes. It realizes
location-transparency and ensures the message delivery.
Under this communication scheme, most of the messages are
sent to their receivers directly and others are forwarded at
most once before they reach the target agents. Besides, the
movement of agents can be separated from that of their
mailboxes, thus, by deciding adaptively when to move the
mailbox to its owner agent, the traffic overhead can be
reduced greatly. But it is not very perfect and there are still a
lot of improvements we can do to this algorithm.

Downloaded from www.VTUplanet.com

In this paper the following improvements are made:

• We overcome the problem of message loss due to
migration of mailbox while a message is on its way is
overcome;

• We add the message-priority to the messages, so that
the urgent messages get first response;

• We solve the problem of agent overloading by
generating its twin;

• We update the agent automatically in a visible and
predictive manner;

• We reduce the occupation on the network resources
by mobile agent reconstruction and destruction, thus
cleaning the agents who are idle.

III. THE ENHANCED MAIL-BOX ROUTING ALGORITHM

A. System model and assumptions
In our system model, we assume that mobile agent

communication is largely based on asynchronous messages.
This is because, when mobile agents roam the Internet, it is
undesirable that two agents use synchronous communication
[12], due to the large and unpredicted delays on the Internet.
In [4], a mailbox is a message buffer used to store incoming
messages. Every mobile agent in the system is allocated a
mailbox. Incoming messages sent to the agent are inserted into
the mailbox first. Two modes of message delivery can be
supported: Push and Pull. In the push mode, messages stored
in the mailbox will be delivered to the mobile agent, while
with the pull mode, the agent fetches messages from its
mailbox any time when it decides to do so. In this paper, we
use the pull mode. A mobile agent is automatically initialized
to check its mailbox whenever necessary. If the mailbox
contains any messages, these messages are delivered.
Otherwise, either a synchronous or an asynchronous receiving
operation can be implemented - the mobile agent can continue
its execution or is suspended until a new message arrives. We
assume that the sending operation is always asynchronous (a
synchronous sending can always be simulated by the means of
changing the sending agent to a receiver and then making it
wait for an acknowledgement after it has put the message into
the message system).

In order to simplify discussion, we make some
assumptions below:

• Communication by means of asynchronous message
delivery.

• Fault free communication link and network host.

• No message loss or damage during its transfer.

In the scheme [4], each mobile agent has a mailbox that
buffers the messages which are sent to it. As a logical part of
the agent, the mailbox can be detached from its owner’s agent.
In other words, the agent can be located on a host different

from its mailbox. When agent migrates to a new host, it can
leave alone its mailbox. Figure 1 shows the communication
between two agents. The rectangle represents a host. Agent A
is located in Host1, Agent B is located in Host2, and Bm is the
mailbox of Agent B. When A sends a message to B, it sends
the message to B’s mailbox Bm, and then B uses a pull
operation to fetch the message from its mailbox Bm.

Figure 1. Mailbox-based messages forwarding scheme

B. The mailbox relocation algorithm
In [4], before moving, the agent determines whether it will

migrate its mailbox to a new host or not. It sends a message to
its mailbox host if it decides to do so. The message contains
the address of the destination host where the mailbox is to
migrate. On receiving the moving message, the mailbox
migrates to the host specified by its owner agent. Obviously,
the costs of fetching messages reduce, but the costs of the
other agents sending messages to it would increase. So, at this
point, it loses the advantages of detaching the mailbox from its
owner agent. Besides, before the mailbox migrates, it sends
’waiting’ message to all the hosts. During this span, all the
agents can not send any messages to it. They have to wait until
the aimed mailbox completes migrating. After it has collected
the ’REPLY’ messages from all the hosts or on expiration of
the waiting time, it migrates to the destination host. During
this time, the messages which have been sent to the old
address and not to the new one and are now on the way, will
not arrive at the destination mailbox. As a solution to the
above problem, we propose another scheme: Improved Agent
Migration Scheme.

In our scheme, whether the messages are sent at any time,
they all reach the destination. In our Improved Agent
Migration Scheme, before migrating, the agent performs a
complex computation to measure the costs of migration and
communication to determine to which host the mailbox should
be moved. This scheme does not restrict the migration of the
mailbox to the current agent location alone. If it decides to
move its mailbox, the agent sends a message to its mailbox. If
the mailbox’s message queue is empty, the mailbox migrates
to a specified host where the cost of the migration and the
communication is minimum. Otherwise it migrates after the
owner agent fetches the message queue. In our improved
mailbox-based algorithm, we import the Forwarding Pointer
with an element t labeled by time to avoid pointer loop.
Before the mailbox reaches the new destination host, its old
host maintains a Forward Pointer which points to the new host
where the mailbox will locate. When the mailbox arrives at
the new destination, it broadcasts an address-updating

Downloaded from www.VTUplanet.com

message to all the hosts. The agent which gets a new address
can send messages to the new address. Besides, if an agent has
not got the new address it could send a message using the old
address and the message will be sent to the former host.
Because of existence of the forwarding pointer, the former
host forwards the message to its destination. So even though
the agent has not received the new address, it can send a
message to its destination. We have seen that broadcast for
location updating is inefficient. But our algorithm remains
efficient. This is because as we all know, in our algorithm,
agent moves frequently, while its mailbox migrates with low
frequency. So the broadcast for location updating in our
scheme in comparison to the other is not inefficient. On the
contrary, it has its own advantage. If the receiver’s location
does not exist in the sender’s address table or the location has
been outdated, it sends a request of new address to the
receiver’s home. After returning the response, it updates the
corresponding item of address table with the returned address.
Then it sends the message to the new address. In this way,
whenever the messages are sent, they all reach the
destinations. This scheme effectively avoids message loss, and
reduces the communication time and costs.

The mailbox relocation algorithm is depicted more
formally in pseudo code:

MailBoxRelocation(){
string = newLocation
agent.CostsEvaluation(
every host including current
host where the mailbox locates);
//to obtain a specified host where the
//costs are minimum
if (newLocation != the host where the
mailbox current locates){
Mailbox.Currenthost.forwardPointer=
newLocation;
Mailbox.RelocateTo(newLocation);
SendUpdateAddress(newLocation, every
host including its home)
}}

1) Message routing algorithm

Suppose agent A wants to send a message to agent B, A
first checks whether the address of B’s mailbox has been
cached locally. If so, it sends message to the cached address.
Otherwise it sends a request message of B’s address to B’s
home. When it receives the request, B’s home returns the
current address of B’s mailbox to A. So A updates its local
address table, and sends the message to the newly obtained
B’s mailbox address. The message routing algorithm is
presented more formally in pseudo code:

MessageRouting(MSG m) {
if (the receiver’s address is in the
local address table and not outdated)
sendMsg (address in the
cache, m);

else {
String agenthomeAddress =
m.getReceiver().getHome();
sendReqToHome(agenthomeAddress, m);
String
currentmAddress=home.doRequest();
updateAddrTable(currentmAddress);
sendMsg(currentmAddress,m);
}
}

When a host receives a message destined to an agent M, it
checks whether M’s mailbox currently resides locally. If so, it
inserts the message to M’s mailbox directly. Otherwise,
through the forwarding pointer, the message is forwarded to
the next host where the mailbox is located. As mailbox
migrating frequency is less than its owner agent, it is
impossible to cause message chasing. So this scheme can also
effectively avoid message chasing.

C. Message-sorting based on message-priority
The papers [3, 4, 8] all adopted the Mailbox-Based

scheme. When arriving at mailbox, all the messages are
inserted into the message queue in FIFO mode. Messages
destined to an agent are all sent to the agent’s mailbox, and
the agent later receives the messages by either a push
operation or pull operation. Whether it uses a push or pull
operation, the agent receives the messages in a message
queue. Message urgency is not taken into account at all. Agent
processes the arrived messages in FIFO mode. If there is an
urgent message in the tail of the message queue, it has to be
processed as soon as possible. But it has to wait until the
processing of all the messages ahead of it.

In this scheme, by message priority level, messages are
classified into five levels i.e. 1, 2, 3, 4 and 5. The higher the
level number the higher is the urgency of the message.

According to message-priority, the agent processes more
urgent messages first. So this requires a message sorting
mechanism. In mobile agent systems, there are two message-
sorting mode(if the messages have the same priority level,
message-sorting is done in FIFO mode):

1) Message sorting in mailbox: There is a message list
which is dynamically maintained in the mailbox. Once a
message arrives, all the messages in the list are sorted
according to their priority levels. The agent fetches the sorted
message from its mailbox in pull mode, and then processes
them in order.

2) Message sorting in the agent: In mailbox, only a
message queue is maintained. The arriving messages are
stored in this message queue in FIFO mode. Owner agent
fetches this message queue in pull mode. After fetching the
message queue into its location, the agent sorts them by their
priority levels, and then processes them in order.

In this paper, the second message-sorting mode is adopted.

Downloaded from www.VTUplanet.com

D. The implementation of overloading-balance by twin agent
If there are a lot of messages that need to be processed or

the receiver takes a long time to deal with one message, it is
unable to fetch messages from the queue. All this leads to
receiver overloading. Thus more and more messages inserted
into the message queue are not fetched, and so these message
senders have to wait for their response. In the case of
collaboration agents they are unable to get the coordinated
messages which may lead to a collaboration failure, and even
cause the entire system to collapse. Accordingly, A Mobile
Agent Overloading-balance scheme is proposed in this paper.

In this scheme, we set a timer for every mailbox to record
how long the message waits in the message queue after it
arrives. If any message’s waiting time is beyond the specified
time Ti, (given time), then the mailbox sends request to its
associated agent’s home. After receiving the request, the home
constructs the target agent’s twin. The little brother shares the
same mailbox with its older brother. Furthermore, the twin has
one more operation Destructor() than its older brother. The
main function of the operation Destructor() is to destruct itself
at the right time.

The algorithm works as follows: firstly, the twin checks
whether a message with the waiting time beyond Ti exists in
the mailbox, that is, whether the owner agent has fetched the
messages when the twin was being constructed. If the message
with waiting time beyond Ti doesn’t exist in the mailbox and
the message queue is not empty, the twin fetches the message
queue to its location host, sorts and then processes the
messages. After processing, the twin calls its operation
Destructor() to destruct itself and release the occupied
resources. Otherwise, the twin calls its operation Destructor().
In addition, if the message with waiting time beyond Ti exists
in the mailbox, the twin fetches the message queue to its
location host, sorts and then processes. After processing, the
twin checks again, if the message with waiting time beyond Ti
still exists in the mailbox. If so, it fetches, sorts and processes.

The algorithm is depicted formally in pseudo code:

OnAgentOverload() {
int count=1;
while(count >0) {
m=Twin.GetMessages(Mailbox.MsgQueue);
//Twin fetches all messages of the
//message queue from the mailbox
// of its brother
SortedList=OrderByPriority(m);
//order fetched messages by priority
if(SortedList.IsEmpty()){
Twin.Destructor();
count = 0; //return and exit
}
if(SortedList.Maxwaittime>=Ti)
Twin. ProcessMSG(SortedList);
//Twin processes the messages one
//by one in Priority order.

If(!SortedList.IsEmpty()) {
Twin.ProcessMSG(SortedList);
Twin.Destructor();
count =0; //return and exit
}
}

E. The Implementation of Automatic Agent Refinement
The agents can be viewed as autonomous, problem-solving

computational entities capable of effective operation in
dynamic and open environments [5]. As we all know agent
has certain intelligence. With the development of technology
and environmental change, the capacity of the agent should
become more perfect. The agent improves itself according to
outside requirement and environmental changes. In order to
realize the agent intelligence, we need to spent tremendous
money and time. Also, the process of the agent improving
itself is invisible and unpredictable to its designers and its
users. This could cause unpredictable and unimaginable
consequences. Here, we propose a method of gradual
refinement to realize agent improvement. By this method,
agent actions and behaviors are all visible and predictable.

When designing the mobile agent system, we add one
more operation Destructor() and one max life-cycle T. In the
course of its moving and problem-solving, agent accumulates
new requirements according to environmental changes and it’s
perception to outside. It then sends the new requirements to its
home after formatting them. Also, designers and users may
add new requirements to its home. The home has a list to
record the arrived new requirements. When the amount of
requirements reaches a certain magnitude, the home
RECONSTRUCTS a new agent with more perfect capabilities
to replace the old one. Then the home informs the old agent
and the old agent calls the operation Destructor() to destruct
itself.

F. The Implementation of agent self destruction and
recreation
In addition, if an agent has not received any message for a

long time, and it only wanders through the network and the
time it has been idle exceeds the specified value T, it sends a
message to all the hosts including the home host and the host
where its mailbox is located. When the other agents receive
the message, they update the item associated with the agent in
their address tables with the agent’s home address. When
receiving the ACK or the time out, it calls its operation
Destructor() to destruct itself and its mailbox is also
destructed by its host. If later an agent needs to collaborate
with the destructed agent, it doesn’t find the right address of
the destructed agent, but it knows the associated home. So it
sends a request to the associated home. The home
RECONSTRUCTS a corresponding agent and its mailbox,
and sends a new address to the requester and the other agents
to update their corresponding address tables. The advantages
of the scheme are: 1.able to update the old agent; 2.able to

Downloaded from www.VTUplanet.com

clean the agents who are idle thereby reducing the occupation
of the network resources.

IV. CONCLUSIONS AND FUTURE WORK
An improved Mailbox-Based Communications Scheme for

Mobile Agent is proposed in this paper. It overcomes message
loss and ensures the message delivery reliability, provides an
effective solution for overloading problem of the mobile
agent, ensures urgent messages getting processed first. This
scheme can decrease the message waiting time effectively and
also can release and reduce the resources over the network
dynamically. Furthermore, the mobile agent can be updated
automatically in this algorithm. By this scheme, agent actions
and behaviors are all visible and predictable. Although we
improved the mailbox-based mobile agent communication
algorithm, there is still a lot of work needed to be done in the
future. Our next step is to deal with the situation: where if a
message arrives at the new location along the forwarding
pointer, but the mailbox has not arrived yet? And in what
circumstance the agent will prefer to move its mailbox?

ACKNOWLEDGMENT
I am endlessly grateful to our Head of the Department,

respectable and beloved Prof. N. Sankarram, for his
substantial guidance and support. I express my heartfelt
thanks to my guide Mr. P. Boominathan, Lecturer for his
inspiring dedication, untiring efforts and tremendous
enthusiasm given throughout the research. His motivation,
encouragement, criticism, provoking suggestions and timely
help enabled us to bring out this project work successfully.
My endless gratitude goes to the organizers of the conference
for giving me an opportunity to present the paper. My
profound and sincere thanks go to my family and classmates

for their continued support in this endeavor. Last but not the
least; I would like to thank the Almighty for favoring me in all
situations.

REFERENCES
[1] Shengbo Chen, HuaiKou Miao and Qingguo Xu, Mailbox-Based

Communications Scheme for Mobile Agent Overloading-balance and
Message-priority, The Sixth International Conference on Grid and
Cooperative Computing(GCC 2007)

[2] Danny B. Lange Mobile Objects and Mobile Agents: The Future of
Distributed Computing? E. Jul (Ed.): ECOOP’98, LNCS 1445, pp.1 -12,
1998. ?Springer-Verlag Berlin Heidelberg 1998

[3] J. Cao, X. Feng, J. Lu, and S. Das. Mailbox-based scheme for mobile
agent communications. Computer (Computer)

[4] J. L. J. Feng, X.Y.and Cao and H. Chan. An efficient mailbox-based
algorithm for message delivery in mobile agent systems. In Proceedings
of the Fifth IEEE International Conference on Mobile Agents (MA
2001), volume 2240, pages 135–151, Atlanta, Georgia, DeceBer 2001.
IEEE CS Press, Springer-Verlag.

[5] M. Luck, R. Ashri, and M. d’Inverno. Agent-Based Software
Development. Artech House,INC, Boston,London, 2004.

[6] T. X.P., F. X.Y., L. X., and Z. G.Q. Communications mechanism in
mogent system. Journal of Software, 11(8):1060– 1065, 2000.

[7] K. Verelst. A Study of Communication Models for Mobile Multi-agent
Systems. PhD thesis, Vrije University of Brussel, Brussels, Belgium,
May 1999. in chinese with English abstract.

[8] harles. E. Perkins. Ip mobility support. RFC 2002, October 1996.
[9] Z. Jia, Z. Li, and L. Xie. ACP-A Local Post Area Based Mobile Agent

Communication Algorithm. Journal of Computer Research and
Development, 41(1):47–52, Jan. 2004.

[10] M. Lunge, D.B.and Oshima. Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

[11] A. S. Tanenbaum and M. van Steen. Distributed Systems Principles and
Paradigms. Prentice Hall Inc, 2002.

[12] T. X.P. Chinese Research on Internet based mobile Agent technology
and application. PhD thesis, Nanjing University, 2001. in chinese with
English abstract.

Downloaded from www.VTUplanet.com

