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Abstract: Modeling the behavior of the dialogue management in 
the design of a spoken dialogue system using statistical 
methodologies is currently a growing research area. This paper 
presents a work on developing an adaptive learning approach to 
optimize dialogue strategy. The problem of dialogue management 
can be formalized as a sequential decision making under 
uncertainty whose underlying probabilistic structure has a 
Markov Chain. A variety of data driven algorithms for finding 
the optimal dialogue strategy is available within Markov Decision 
Process which is based on reinforcement learning. However the 
local reward function is typically set as static and there exist a 
dilemma in engaging the type of exploration versus exploitation. 
Hence we present an online policy learning algorithm using 
learning automata for optimizing dialogue strategy which 
improves the naturalness of human-computer interaction that 
combines fast and accurate convergence with low computational 
complexity. 

Keywords- Adaptive learning; Dialogue management; Learning 
automata; Multi-Agent Reinforcement learning; Spoken dialogue 
system; 

I. INTRODUCTION 
Spoken Dialogue System (SDS) provides a natural 

language interface for the user to communicate with a 
computer to obtain information or engage in a goal oriented 
transaction. Such systems have covered a wide range of 
domains. Spoken dialogue technology has been an active 
research area for the past two decades. A number of academic 
and commercial systems have been developed, which 
demonstrates the potential of this technology [1], [2], [3]. In 
order to achieve the natural language interface there are a 
number of functions that must be carried out within a dialogue 
system, such as natural language processing, domain 
processing and Dialogue Management (DM). The design of an 
effective dialogue management component is the central aspect 
of dialogue system engineering [4]. Moreover, the dialogue 
management is the module that defines the interaction with the 
user and it is the window through which the user perceives the 
system's capabilities. This means dialogue strategies designed 
by human are prone to errors, labour-intensive and non 
portable. These facts motivate the topic of automatic dialogue 
strategy learning an attractive alternative. 

Broadly speaking, three different approaches have been 
used in DM. First, the finite state-based approach represents the 
dialogue structure in the form of a network, where every node 
represents a question and the transitions between nodes 
represent all the possible dialogue [5] whose primary nature is 
system initiative. Secondly, the frame-based approach 
represents the dialogue structure in the form of frames that 
have to be filled by the user, where each frame contains slots 
that guide the user through the dialogue. In this approach the 
user is free to take the initiative in the dialogue [6]. Finally, 
agent-based approach incorporates a wide variety of 
approaches that use techniques from Artificial Intelligence to 
produce more intelligent systems [7] which incorporates mixed 
initiative interaction in which the user can change the current 
context and the dialogue history. These approaches typically 
involve authoring and complicating hand-crafted rules that 
require considerable deployment of time and cost. However 
they do not address the issue of how to develop the best 
possible dialogue strategy.  

For these reasons, during the last decade many research 
groups have been attempting to find a way to automate the 
design of DM for learning dialogue strategy using machine 
learning technique such as Reinforcement Learning (RL) [8]. 
Reinforcement learning addresses the problem faced by an 
agent that learns behavior using trial and error interaction 
within a dynamic environment so as to maximize a scalar 
reward signal. The aforementioned factor influences dialogue 
management to be modeled as a Markov Decision Process 
(MDP) in which the state of the dialogue depends only on the 
previous state & its action and reinforcement learning is 
applied to find the optimal dialogue policy. 

A number of reinforcement learning methods have been 
proposed in recent years to automate the design of dialogue 
strategy [9], [10], [11], [12], [13]. However, much research 
effort is being proposed for improving these techniques and in 
applying these techniques in various application domains. For 
practical deployment the local reward is typically set as static 
and it is perhaps the most hand-crafted aspect for dialogue 
management. On the other hand, increasing the size of the state 
space for RL has the danger of making the learning problem 
intractable (referred as “the curse of dimensionality”). Recent 
investigations employ function approximation [14], dialogue 
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simulation [15] and prior knowledge [16] in order to find 
solutions on reduced state spaces. 

In addition, mostly all the popular RL algorithms (e.g., Q-
Learning) used in learning dialogue strategies are model free in 
nature and require explicit tabular storage of agent Q-functions 
and possibly of their policies [17]. Hence when the state and 
action space contain a large number of elements, tabular 
storage of the Q-function becomes impractical and there exists 
a dilemma with exploration versus exploitation in choosing an 
optimal action. Consequently, online model-based policy 
learning algorithms hold great promise in this regard to 
overcome the above mentioned factors in learning the dialogue 
strategy within RL framework [18]. Alternatively, Learning 
Automata (LA) are valuable tools for current Multi Agent 
Reinforcement Learning (MARL) research [19] and their 
learning scheme (purely model-based) updates strictly on the 
basis of the response of the environment and not on the basis of 
any knowledge regarding other automata, i.e. neither their 
strategies, nor their feedback. As such LA agents are simple. 
Moreover, LA can be treated analytically. Convergence proofs 
do exist for a variety of settings ranging from a single 
automaton model acting in a random environment to a 
distributed automata model interacting in a complex 
environment. Therefore, in this paper we propose a design for 
dialogue strategy using a team of learning automaton in the 
context of decentralized control of MDP. 

This paper is organized as follows: In the next section, a 
brief description of the Learning Automata employed to design 
the dialogue management for learning dialogue strategies is 
given. Section 3 describes our experimental design, where we 
provide details of the learning methodology. In section 4, we 
describe our experimental results. Finally, in section 5 we 
provide our conclusions and comment on future directions of 
this work. 

II. LEARNING AUTOMATA 
A learning automata is a precursor of a policy iteration type 

of reinforcement learning algorithm and has some roots in 
psychology and operations research [20]. Learning automata 
are adaptive decision-making devices operating on unknown 
random environments. Fig. 1 shows a typical learning system 
layout. A learning automata has a finite set of actions and each 
action has a certain probability (unknown to the automaton) of 
getting rewarded by the environment of the automaton. The 
objective is to learn for choosing the optimal action (i.e. the 
action with the highest probability of being rewarded) through 
repeated interaction with the system. If the learning algorithm 
is chosen properly, then the iterative process of interacting on 
the environment can be made to result in the selection of the 
optimal action. Learning Automata can be classified into two 
main families: Fixed Structure Learning Automata (FSLA) and 
Variable Structure Learning Automata (VSLA). 

The VSLA guarantees robust behavior in the absence of 
complete knowledge of the solution space and has rigorous 
mathematical properties that can be used to create efficient 
algorithms. It can be viewed as a stochastic finite state machine 
with a set of actions and associated probabilities that help to 
learn the nature of an unknown environment. For every random 

action that is chosen, the environment that needs to be learned 
provides a response that is stochastically related to the chosen 
action. The iterative process of choosing random action and 
recording the response is continued until the solution space is 
fully explored. 

 

 

 

 

 

 

 

 

 

 

Figure 1.   Learning automata system 

In a Variable-Structure Learning Automata (VSLA), the 
probabilities of the various actions are updated on the basis of 
information the environment provides. A VSLA is a quadruple 
< α, β, p, T(α, β, p) >, where α, β, and p constitute an action set 
with r actions, an environment response set, and the probability 
set p containing r probabilities, each being the probability of 
performing every action in the current internal automata state, 
respectively. The function of T is the reinforcement scheme 
which modifies the action probability vector p with respect to 
the performed action and received response. If the response of 
the environment takes binary values, learning automata model 
is P-model and if it takes finite output set with more than two 
elements that take values in the interval [0,1], such a model is 
referred to as Q-model, and when the output of the 
environment is a continuous variable in the interval [0,1], it is 
referred to as S-model. Assuming β є [0,1], a general linear 
schema for updating action probabilities can be represented as 
follows: 

 

)()()))()) -1()(     1)( titbtitatiti Ρ−Ρ( − (1 (+Ρ=+Ρ ββ   (1) 
if action α was taken at time step t 

 

⎡ ⎤ )(1))(1()()()()1( 1 tjrtbtjtatjtj Ρ−−−+Ρ−Ρ=+Ρ −ββ     (2) 

ij ≠∀  
 

The constants a and b in the interval [0,1] are the reward 
and penalty parameters respectively and r the number of 
actions of the action set of the automata.  When a=b the 
algorithm is referred to as linear reward–penalty (LR–P), when 
b=0 it is referred to as linear reward–inaction (LR–I) and when b 
is small compared to a it is called linear reward–є-penalty (LR– 

єP). 
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III. METHODOLOGY 
The current state-of-the art SDS are often mixed-initiative 

slot-filling system. This means that both the user and system 
may take the initiative to provide information or ask follow up 
questions in a dialogue session to jointly complete certain task. 
These kinds of SDSs are useful in domains where certain bits 
of information need to be elicited from the user, resulting in a 
set of slots to be filled, which are usually used to make a 
database query or update. However, automatically designing an 
efficient dialogue strategy to assist the user to quickly fill in 
these slots is never a trivial problem. The automatic learning of 
the dialogue strategy could be further described as an 
intelligent control problem that involves an agent learning to 
improve the performance of SDSs by interaction with 
underlying environment. 

This section presents the general model of the DM strategy 
which has to be optimized and the DM will be the learning 
agent. At each turn the DM has to choose an action according 
to its interaction strategy with the environment so as to 
complete the task that it has been designed for. These actions 
can be greetings, request to constraint and confirm the value of 
attributes, perform retrieval operations in the database and to 
close the dialogue session. The response from the environment 
leads to the updation of the reward function and internal state 
of the learning agent which contains enough information about 
the history of the dialogue. 

Figure 2 shows the Learning Automata model, Optimizes 
the learning strategy through interaction with the environment. 
The learning agent starts with a random policy in which a 
probability is associated with each state-action pair (i,a). This is 
the probability of selecting action a in state 'i' in the simulator. 
Initially this probability is same for every action. The 
automaton through its interaction, updates probabilities until 
the optimal action(s) has the highest probability. Over time, 
with trial and error, the system learns the optimal action in each 
state. The response is actually the immediate reward earned by 
an action. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Mechanism of learning dialogue strategy using Learning  
Automata 

A. Convergence Property 
Let Ai denote the set of actions available at state ‘i’. Hence 

the union of Ai over ‘i’ gives the action space. With every state-
action pair, we associate a probability P(i,a) of taking action 
‘a’ in state ‘i’. Obviously ΣaєAi  P(i,a) = 1. In the beginning of 
the learning process, the policy is random and each action is 
equally likely. Hence P(i,a) = 1 / ri where ri = |A | is the 
number of possible actions in state ‘i’. If the performance of an 
action is good the probability of that action is increased and if 
the performance is poor, the probability is reduced. This is 
called updating of the state-action probabilities. However the 
updating scheme must always ensure that the sum of the 
probabilities of all the actions in a given state is 1. 

B. Feedback Mechanism 
The action chosen by the automaton is the input to the 

environment which responds with stochastic response or 
reinforcement. Higher values of the reinforcement signal are 
assumed more desirable. Whenever a state 'i'  in the system has 
been revisited the average reward is calculated by the total 
reward earned since the last visit to that state divided by the 
number of state transitions since the last visit to that state. This 
reward is called response of the system to the action selected in 
the last visit to the state ‘i’. Thus if ‘i’ is under consideration, 
the response S(i) can be calculated as: 

                              S(i) = R(i) / N( i)                                (3) 

where R(i) denotes the total reward earned since the last visit to 
state ‘i’ and N(i) is the number of state transitions that have 
been taken place since the last visit to ‘i’. The response is then 
normalized to ensure that it lies between 0 and 1. The 
normalized response is called feedback represented by β. The 
normalization is performed via the following mechanism:  

                         β(i) = S(i) – Smin  / Smax - Smin                                     (4) 
 

where Smin is the minimum response possible in the system and 
Smax is the maximum response possible in the system. The 
feedback is to update P(i,a) that is, the probability of selecting 
action ‘a’ in state ‘i’. The conversion of the response to 
feedback itself is a research topic, more on this can be found in 
[20]. All schemes are designed to punish the bad actions and 
reward the good actions. 

C. Reward-Inaction Learning Scheme 
The scheme for updating the probabilities using feedback is 

a topic of research and several schemes have been suggested in 
literature. The scheme that gave the best result is known as the 
Reward-Inaction Scheme [20]. The goal of the automaton is to 
identify the optimal action. This is to be achieved through a 
learning algorithm that updates the action probability at each 
instant, using the most recent interaction with the environment. 

When the system visits a new state ‘i’, then the 
probabilities of the actions allowed in state ‘i’ are first updated. 
For this β(i) is calculated and then according to the Reward-
inaction scheme, the probabilities are updated via the rule 
given below:  

    P(i,ai) ← P (i,ai) + η β(i) I [ D(i) = ai ] - η β(i) P(i,ai)       (5) 
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where D(i) denote the action taken in state ‘i’ є S in its last visit 
, η denotes the learning rate, ai the action whose probability of 
getting selected in state 'i' is to be updated and I [.]  equals 1 if 
the condition inside the brackets is satisfied and I [.]  = 0 
otherwise. 

Figure 3 presents a very high level description of the 
proposed approach. In this scheme a good action automatically 
has a high value for β and therefore the scheme increases the 
probability of that action. Similarly an action that results in a 
poor reward has a low value for β and therefore the 
probabilities are not changed significantly. Thus, the objective 
of the learning scheme is to maximize the expected value of the 
reinforcement received from the environment. Hence, an 
equivalent way to characterizing the goal of an automaton can 
be defined as: 

 

            Maximize Mk(i) = E [ βk(i) | Pk ]                          (6) 

 

where βk(i) be the feedback received by the automaton in the ith 

state at the kth iteration of the algorithm and Mk(i) to be its 
expected value. The feedback is associated with given values 
for the vector  Pk = (Pk(i,1)Ppk(i,2),...Ppk(i,ri), where Pk(i,a) 
denote the probability of selecting action a in state i in the kth 
iteration of the algorithm. In this case the learning rate is fixed 
and need not be changed with iterations and MAX_STEPS 
specifies the termination of the algorithm until the most 
probable action in each state is achieved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.   The High level algorithm of the proposed approach 

 

IV. EXPERIMENTAL RESULTS 

A. Design 
In this section a simple slot-filling dialogue system is 

presented based on railway reservation domain to verify the 
effectiveness of dialogue strategy learning by the proposed 
stochastic learning automaton model. The goal of the system is 
to acquire the values for four slots: departure city, destination 
city, date for the outward journey and date for the return 
journey. Each slot has three possible values (unknown, known, 
or confirmed), which gives a total of 34 = 81 possible states. 
For each state three possible actions are associated (implicit, 
explicit, or repetitive question). The number of combinations of 
the pair (state and action) thus becomes 813 = 531441. This 
corresponds to the maximal number that system could explore 
in order to identify an optimal strategy. This number can be 
reduced by eliminating non relevant actions in certain states, 
such as for example, at the start of the dialogue, there cannot be 
a repetitive or implicit question. However the aim is to exploit 
the learning capability of the agent in an uncertain environment 
and without prior knowledge. 

The chosen system and user dialogue acts are summarized 
in Table 1. The system dialogue acts allow the system to 
request the user for the slot values or to confirm these values, 
either explicitly or implicitly and to restart or end the dialogue. 
Finally, the system can present the results of a user’s database 
query. The user dialogue acts allow the user to provide slot 
information and to terminate the dialogue. 

TABLE I.  SYSTEM AND USER DIALOGUE ACTS 

System Acts User Acts 

Greeting Command (bye) 

Request_Info(dep_value) Provide_ Info(dep_value) 

Request_Info(dest_value) Provide_ Info(dest_value) 

Request_Info(out_value) Provide_ Info(out_value) 

Request_Info(ret_value) Provide_ Info(ret_value) 

Database Results  

 

B. Results 
After several thousand simulated dialogue sessions, the 

behavior of the Reward-Inaction Learning Scheme for the 
proposed approach with different settings of the parameter 
(learning rate) η, i.e. η = 0.1, η=0.5 and η=0.8 is plotted in 
Figure 4 shows that the bigger we set η, higher the probability 
of convergence to an optimal action. Table 2 shows the 
percentage of runs over which action converges to 0 as a 
function of η. From Table 2, it is clear that if one were to 
tolerate a 5% error, a suitable value for the learning rate would 
be 0.3, which would substantially increase the speed of 
convergence. 

 
 
 
 
 

(1) Let S denote the set of states and Aj be the finite number 
of actions 

(2) Initialize action probabilities p(i,a) = 1/ri for all i ε S 
and a ε Aj , cumulative reward Cr(i), total reward earned Tr 
for every i ε S, iteration count m to zero and Smin and Smax 
according to the knowledge of the conversational system. 

(3) While (m < MAXSTEPS) do 

(a) If state i has been visited for the first time goto (c) else 

 Set R(i) = Tr – Cr(i), S(i) = R(i) / N(i) and  

 β(i) = S(i) – Smin / Smax – Smin  

(b) Update p(i,a) using Reward-Inaction Learning scheme  
by equation (3)  

(c)   With probability p(i,a) choose the action a in Aj and  

              Set  Cr(i) = Tr 

(d) Observe immediate reward r = g( i, a, j ) from selecting 
action a in state i and simulate  the chosen action a.   

(e)  Compute Tr = Tr + r  

(f)   Set i = j and m = m+1 
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Figure 4.  Convergence of the Reward-Inaction Learning scheme with 
learning parameter η 

TABLE II.   EFFICIENCY OF LEARNING PARAMETER 

 
 
 
 
 
 
 
 
 
 

C. Evaluation 
In order to find the most significant parameters (i.e., 

predictors) of the proposed dialogue management 
performance, the PARADISE framework [21] was used. It 
maintains that the system’s primary objective is to maximize 
user satisfaction, and it derives a combined performance metric 
for a dialogue system as a weighted linear combination of task-
success measures and dialogue costs. To evaluate the dialogue 
strategies 60 undergraduate students (32 female, 28 male) with 
an average age of 21 have tested our system. It is important to 
mention that since our testers had no previous experience with 
a dialogue system, our experiments were performed with 
novice users. 

To evaluate user satisfaction, users were given the user-
satisfaction survey used within PARADISE framework, which 
asks to specify the degree to which one agrees with several 
questions about the behavior or the performance of the system 
(TTS Performance, ASR Performance, Task Ease, Interaction 
Pace, User Expertise, System Response, Expected Behavior, 
and Future Use). The answers to the questions were based on a 
five-class ranking scale from 1, indicating strong disagreement, 
to 5, indicating strong agreement. For our experiment, the 
mean User Satisfaction value was 33.32 as shown in Table 3. 
In this table we can observe some relevant positive results for 
the dialogue strategy: Task ease-of-use, user expertise, 
expected behavior and future use. 

 
 

TABLE III.  USER SATISFACTION SURVEY RESULT 

 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSION 
This paper presents a method for the development of 

model-based learning automata algorithm for dialogue 
management that can learn from training samples to generate 
the system actions. This representation allows the system to 
automatically generate specialized actions that takes into 
account the current situation of the dialogue depending on the 
use of expected cumulative reward. This approach is appealing 
due to the following benefits: a) faster learning, b) reduced 
computational demands, c) Knowledge transfer. Some 
experiments have been performed to test the behavior of the 
system with respect to PARADISE framework. The results 
show the satisfactory operations of the developed approach. An 
important area for future research could be in the area of 
reinforcement schemes, to analyze the finest configuration 
parameters for the environment. We hope that such a 
formulation would lead to a finer learning curve that would 
mimic more closely the behavior of the learning algorithm. Our 
tests are geared towards stochastic domain of interest; this may 
form an interesting avenue for further research. 
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