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Abstract— The ability to accurately predict a best replica from 
different sites holding replicas of a particular file is of great 
importance for applications that require access to replicated files 
for their execution. The best replica is the one that optimizes the 
desired performance criterion such as speed, cost, security or 
transfer time. As grid is dynamic in nature, the predicted best 
site for replica selection may not be the best site for replica 
selection with current network conditions. Neural network 
approaches address such dynamism and predict the best site 
more accurately for change in the network conditions. In this 
paper we compare and evaluate the prediction differences of 
various neural network approaches for replica selection problem.  
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I.  INTRODUCTION  
Data Replication is an important issue to be considered in a 

data grid environment. Applications like high energy physics, 
earth quake engineering produces large volumes of data sets 
which need to be stored and analyzed among users in the grid 
[14]. Data replication permit data sharing across many 
organizations in different geographically disperse locations [3]. 
Data Replication reduces the network bandwidth and access 
latency in grid environment. It also improves the reliability of 
the system by increasing data availability. 

As different sites hold replicas of a particular file, there is a 
significant benefit realized by selecting a best replica among 
them. By selecting the best replica, the access latency time is 
minimized. The best replica will be the one that optimizes the 
desired performance criterion such as execution time, access 
cost and data transmission time [4].  

As grid is dynamic in nature, the user requests, network 
latency, CPU load vary dynamically. Therefore the selected 
site to fetch replica may not be the best site for subsequent 
requests for change in the network conditions. Dynamism in 
such environments can be handled using neural network 
approaches to predict the behavior of the grid for subsequent 
requests. 

In this paper we developed a predictive framework for 
different neural network algorithms like Back Propagation 
(BP), Batch Back Propagation (BBP), Back Propagation with 
momentum (BPM), Quick Propagation (QProp) and Resilient 

Propagation (RProp). Using these algorithms we predicted the 
transfer time of the sites that host replicas. 

We evaluated the performance of these algorithms and 
demonstrated that Resilient Propagation algorithm is capable of 
predicting transfer time more accurately compared to other 
algorithms. This paper extends Rahman & Bakers [1] 
predictive technique for replica selection in grid environment. 
The replica selection is predicted using other neural network 
algorithms and evaluated their performances. The study of our 
replica selection algorithms is carried out using EU Data Grid 
Testbed1 [5] sites and their associated network geometry. We 
validated our model by using GridSim 4.1 simulation toolkit 
[6]. 

The reminder of the paper is organized as follows. We 
present the related work in section 2. the neural network 
architecture and various algorithms are discussed in section 3. 
The simulator and the simulation model are described in 
section 4. The performance evaluation and comparison of 
neural network approaches of replica selection problem is 
presented in section 5. Section 6 provides conclusions. 

II. RELATED WORK 
Grid is a dynamic environment in which the users requests, 

network latency, CPU load vary dynamically. The data in a 
data grid is replicated to share among the users spread across 
the network.. To execute a job, if all the files are currently 
available on a resource local storage, the job is sent to a 
resource’s scheduler for execution. Otherwise the needed files 
are fetched from the nearest locations holding the replica.  The 
ability to accurately predict the best replica is of great 
importance for applications which require replicated data to be 
accessed for their execution.  

Observation from past application performance can also 
help in predicting present performance. Basu et a. [7] 
developed a time series model for internet traffic. They 
investigate the parametric time series models for aggregated 
data traffic. They developed an algorithm that predicts the uth 
quantile of the distribution of data traffic given past history. 

Wolski [14] designed network weather service (NWS) to 
predict network behavior of small file transfers. NWS is a 
distributed system that periodically monitors and dynamically 
forecasts the performance of network and computational 
resources over a given time interval.  
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P.A.Dinda, D.R. Hallaaron [19] demonstrated that some 
applications, the relationship between the execution time of a 
CPU bound task and the measured load during the execution is 
almost perfectly linear. Therefore, load prediction is useful for 
guiding the scheduling strategies to achieve high application 
performance and efficient resource use [17,18]. 

Rashedul et. Al [1] made comparison of predictive replica 
selection using neural network with a multi-regression model. 
He demonstrated that the neural network technique is capable 
of predicting transfer time more accurately than the regression 
model.  

In this paper we further extended the Rashedul et al [1] 
work for replica selection for other neural network approaches. 
We have done the comparison of various neural network 
approaches for replica selection problem. 

III. NEURAL NETWORK APPROACHES  
The neural network tries to mimic the biological brain 

neural network into a mathematical model. It is a collection of 
simple processing units, mutually interconnected, with weights 
assigned to the connections. By modifying these weights 
according to some learning rule, the neural network can be 
trained to recognize any pattern given the training data. There 
are several types of neural network structures proposed in the 
literature. This network contains one input layer, one or more 
hidden layers and an output layer. The number of neurons in 
the input and output layers are governed by the number of 
inputs and outputs of the pattern to be recognized. However, 
the number of neurons in the hidden layer can be selected 
depending on the application. There are several types of 
training algorithms in the literature.  

A.  Learning Process 
The primary significance of a neural network is the ability 

of the network to learn from its environment and to improve its 
performance through learning. The type of learning is 
determined by the manner in which parameter changes takes 
place. Learning algorithms in neural networks are generally 
categorized as supervised or unsupervised. In supervised 
learning, the target values or desired outputs are known and are 
given to neural network during training so that the neural 
network can adjust its weights to try to match its outputs to the 
target value or desired value. In unsupervised learning, the 
neural network is not provided with the correct results during 
training. Most applications fall within the domain of estimation 
problem such as statistical modeling, blind source separation 
and clustering.  

In this paper, we are dealing with supervised learning 
algorithms like BP, BBP, BPM, QProp and RProp. The 
supervised learning rules are more useful for applications 
involving prediction, compression, digital signal processing 
and forecasting applications.  

Each learning algorithm consists of two passes through 
different layers of the network: a forward pass and a backward 
pass. In forward pass an input vector is applied to the sensory 
nodes of the network and its effect propagates through the 
network layer by layer and the synaptic weights of the network 

are all fixed. In backward pass, the synaptic weights are 
adjusted in accordance with an error-correction rule [9].  

A fully connected, multilayered perceptron with two hidden 
layers and an input layer is depicted in Fig. 1. Each unit in one 
layer is connected in the forward direction to every unit in the 
next layer. The input signal propagates through the network in 
forward direction, on a layer by layer basis and emerges as an 
error signal at the output end of the network. The error signal 
propagates backward layer by layer through the network. The 
hidden layer enables the network to learn complex tasks by 
extracting important features from the input vectors.  

B.  Back Propagation Algorithm :  
Back propagation provides a computationally efficient 

method for the training of multiplayer perceptron [9]. The back 
propagation algorithm derives its name from the fact that the 
partial derivatives of the cost function with respect to free 
parameters (synaptic weights and biases) of the network are 
determined by back propagating the error signal through the 
network. The back propagation algorithm operates in one of the 
two modes: sequential or batch. 

In the sequential mode the synaptic weights of all the 
neurons in the network are adjusted on a pattern-by-pattern 
basis. In batch mode the adjustments to all synaptic weights 
and biases are made on epoch-by-epoch basis with the result 
that a more accurate estimate of the gradient vector is used in 
the computation.  A consequence of the back propagation 
algorithm is that there are situations where it can get stuck with 
a local minima and the algorithm is trapped and prevented to 
descend further. Some enhancements to the back propagation 
algorithm have been developed to get around this, one 
approach is back propagation with momentum.  

Momentum adds a term in the weight adjustment that is 
proportional to the previous weight change. Once an 
adjustment is made it is remembered and serves to modify its 
subsequent weight adjustment. Momentum term avoids 
oscillation problems common with the regular back 
propagation algorithm when the error surface has a very 
narrow minimum area [10]. 

C. Quick Propagation Algorithm : 
One method to speed up the learning is to use information 

about the curvature of the error surface. This requires the 
computation of the second order derivatives of the error 
function. Quick propagation algorithm assumes the error 
surface to be locally quadratic and attempts to jump in one step 
from the current position directly into the minimum of the 
parabola.  

D. Resilient Propagation : 
Resilient propagation algorithm is one of the most popular 

adaptive learning rates training algorithm [11]. It employs a 
sign-based scheme to eliminate harmful influences of 
derivatives magnitude on the weight updates, and is eminently 
suitable for applications where the gradient is numerically 
estimated or the error is noisy. The ideas behind the resilient 
propagation     have   motivated   the   development  of  several  
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variants with the aim to improve the convergence behavior and 
effectiveness of the original method.  

IV. SIMULATION 
To evaluate our approach we use a simulation package 

called GridSim 4.1. GridSim toolkit is a data grid simulator. It 
provides the ability to define resources with heterogeneous 
storage components and the flexibility to implement various 
data management strategies like creation, deletion and 
replication of files in a grid environment [6].   

A.  Architecture  
The simulation design consists of number of data resources 

each consisting of one or more processing elements with one or 
more storage elements. The processing elements provide 
computational capability and storage elements serves as data 
storage resource for submitted jobs. A replica manager handles 
and manages incoming requests  about data sets in a resource 
for one or more storage elements. It also performs registration 
of files stored in the resource to a designated replica catalog 
(RC). The function of a RC is to store the metadata about files 
and to provide mapping between filename and its physical 
location.  

A data-intensive job in a GridSim is termed as a 
DataGridlet. Each DataGridlet has a certain execution size in 
MI (Million Instructions) and require access to a set of files 
which may be located at different locations. After receiving a 
DataGridlet, the Replica Manager (RM) at each resource 
checks a list of required files for executing the job.  

If all the files are currently available on a resource local 
storage, the DataGridlet is sent to a resource’s scheduler for 
execution. Otherwise RM sends a request for obtaining the 
needed files from other resources. When all the requested files 
have been transferred and stored on the local storage, then the 
DataGridlet is executed by the scheduler.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Grid Configuration 
The study of predictive technique for replica selection is 

carried out based on an EU Data Grid Testbed1 [5].  The 
resources and their associated network geometry are as shown 
in Fig 2. Initially all the master files are placed on the CERN 
(European Organization for Nuclear Research) storage. A 
master file is an original instance of the file.   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 summarizes all the resource relevant information. 
The resource’s PE rating is modeled in the form of MIPS. We 
conducted this experiment for 100 files. The average file size is 
1GB and the file size follows a power law distribution [15]. We 
have created 100 types of data intensive jobs. Each job requires 
10 to 60 files to be executed. The required files for the 
DataGridlets are chosen with Zipf-like distribution [16]. 

The experiment is conducted with 200 DataGridlets with 
the approximate size of 84000KMI ± 30%. Each resource is 
provided with a user to submit their jobs approximately for 
every 1 minute. Each resource, peak load is chosen as specified 
in the Table 1.  

 

 
Figure 1.  A fully connected  multilayered perceptron for neural network 

 

Figure 2. A simulated topology of EU Data Grid Testbed1 
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Some parameters are identical for all network links i.e., the 
Maximum Transmission Units (MTU) is 1500 bytes and the 
latency of links is 100msec. The RM of each resource follows 
least-frequently used replica strategy to delete a replica when 
the storage capacity is full. However, the master files at CERN 
can not be deleted or modified during the simulation.  

V. SIMULATION FRAMEWORK 
As grid is dynamic in nature, the predictive best site for 

replica selection may not be the best site for replica selection 
for change in the network conditions. It is shown in [1] that, 
neural network technique is capable of predicting transfer time 
more accurately than the regression model. We further extend 
the concept to compare the prediction differences of different 
neural network algorithms. 

To evaluate the performance of different learning 
algorithms for replica selection problem, we use a neural 
network consisting of one input layer, one output layer and 
multiple hidden layers. The input layer consists of 2 neurons, 
an output layer consists of one neuron and varying number of 
neurons in the hidden layers.  We set up the EU data grid 
testbed1 [5] using GridSim toolkit. During the simulation, 
when a file transfer has been made between two sites, the file 
size, the available network bandwidth and transfer time are 
saved which is later used for training and testing the neural 
network.  

The neural network is trained with a training set consist of 
three values i.e., file size, available bandwidth experienced 
between sites to transfer the file and time elapsed to transfer the 
file. We start training the neural network with 20 datasets. Each 
set is presented to the neurons of the input layer and the whole 
network is trained with the learning algorithms separately and 
the results are compared. The output of the neural network 
predict the transfer time between the sites. After training the 
neural network with first 20 datasets from the training pattern, 
the prediction is made for the datasets in the testing pattern.  

To compare the prediction differences of the algorithms, the 
neural network is trained for more than 10000 epochs with a 
learning rate of 0.2. Learning rate in neural network determines 
how much we change the weights in each step. The smaller we 
make the learning rate parameter, the smaller the changes   to   
the   synaptic   weights   in the network  from one iteration to 
the next and smoother will be the trajectory in weight space 

 

 

 

 

 

 

 

 

 

 

and algorithm converges. On the other hand too large learning 
rate parameter makes the neural network unstable, bouncing 
around the error surface, so the algorithm diverges.  

As various components in the grid environment are 
dynamic, the file transmission time between two sites varies 
according to change in the network conditions. To address the 
dynamic nature of the grid, we train the neural network with a 
smaller momentum term value of 0.5.  

A. Simulation Results : 
The performance analysis of neural network algorithms like 

BP, BBP, BPM, QProp and RProp for replica selection 
problem is done for a neural network consists of one input 
layer, one output layer and varying number of hidden layers.  
The Fig. 3 depicts the error graph of BP, BBP, BPM, QProp 
and RProp algorithm for different multi-layered neural network 
architectures.  

Fig 3 shows that the batch mode back propagation takes a 
much longer time to converge as it takes the total training error 
over all the patterns into account whereas standard back 
propagation makes estimation of the error based on the 
individual error training pattern. It is also observed from Fig 3 
that BPM converges faster than BP, BBP as the term 
momentum is helpful in speeding up the convergence and 
avoid local minima.  

The QProp algorithm takes lesser time to converge, as it 
uses the second order derivatives of the error function to jump 
in one step from the current position directly into the minimum 
of the error performance and hence it is faster than the 
backpropagation algorithms. As depicted in Fig 3. RProp is 
demonstrating better performance compared to BP, BBP, BPM 
and QProp algorithms. It takes less number of cycles to 
converge and optimize the error rate. 

The number of training cycles and their optimal error rate 
for learning algorithms for neural network with varying 
number of hidden layers is tabulated as shown in Table 2.   

The experiment is conducted and performance is analyzed 
for replica selection problem for different hidden layers in the 
neural network. To minimize the error rate, the neural network 
is trained for different cycles for different learning algorithms. 
The optimal error rate is obtained for the different algorithms at 
different training cycles.  

TABLE  I.              RESOURCE  SPECIFICATION 

Resource 
ID 

Resource Name 
(location) 

Storage 
(TB) 

#Nodes CPU 
Rating 

Policy Load #User 

Res_0 RAL(UK) 2.75 41 49000 Space-Shared 0.82 24 
Res_1 Imperial College(UK) 1.80 52 62000 Space-Shared 0.87 32 
Res_2 NorduGrid(Norway) 1.00 17 20000 Space-Shared 0.69 8 
Res_3 NIKHEF(Netherlands) 0.50 18 21000 Space-Shared 0.02 16 
Res_4 Milano(Italy) 0.35 5 7000 Space-Shared 0.34 8 
Res_5 Torino(Italy) 0.10 2 3000 Time-Shared 0.84 4 
Res_6 Rome(Italy) 0.25 5 6000 Space-Shared 0.36 8 
Res_7 Bologna(Italy) 5.00 67 80000 Space-Shared 0.34 24 
Res_8 Padova(Italy) 0.05 1 1000 Time-Shared 0.24 4 
Res_9 CERN(Switzerland) 2.50 59 70000 Space-Shared 0.42 48 

Res_10 Lyon(france) 1.35 12 14000 Space-Shared 0.62 24 
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Figure 3. Error Graph for Multi-Layered Neural Network Architectures 

TABLE II.         TRAINING CYCLES REQUIRED FOR VARIOUS NEURAL NETWORK ALGORITHMS TO GET OPTIMAL ERROR RATE 

 
TRAINING CYCLES FOR 1-2-1 NEURAL NETWORK 
Algorithm Cycles Error Rate 

BP 86500 0.0 
BBP 100000 0.407 
BPM 13650 0.0 
QProp 34000 0.038 
RProp 17610 0.05 

 

TRAINING CYCLES FOR 1-2-10-1 NEURAL NETWORK 
Algorithm Cycles Error Rate 

BP 75000 0.0 
BBP 100000 0.278 
BPM 24000 0.0 

QProp 28000 0.045 
RProp 41550 0.048 

 
TRAINING CYCLES FOR 1-5-5-1 NEURAL NETWORK 

Algorithm Cycles Error Rate 
BP 75600 0.0 

BBP 100000 0.266 
BPM 20900 0.0 
QProp 28000 0.078 
RProp 33650 0.048

 

 
TRAINING CYCLES FOR 1-3-2-1 NEURAL NETWORK 

Algorithm Cycles Error Rate 
BP 51800 0.0 

BBP 100000 0.308 
BPM 11000 0.0 
QProp 28000 0.038 
RProp 29400 0.0488 

 

  

TABLE  III.        PREDICTION TIME DIFFERENCES OF ALGORITHMS WITH TRAINING RATE OF 10000 
EPOCHS FOR 1-2-1 NEURAL NETWORK 

Res_ID 
GridSim 
Transfer 

Time 
BP(0.093)* BPM(0.025)* BBP(1.26)* QProp(0.03)* RProp(0.052)* 

Res_0 188 81 67 64 92 17 

Res_2 106 73 1 16 58 8 

Res_4 426 53 32 24 3 13 

Res_6 455 63 11 7 23 3 

Res_7 64 54 36 46 42 6

Res_8 660 37 59 147 60 21

Res_9 264 47 96 83 96 39 
                                   *error rate of the algorithms at 10000 epochs 
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The experimental results shows that, the number of epochs 
needed for training the neural network is more for BBP and is 
less for QProp.  The prediction difference for file transmission 
time between the sites by BP, BBP, BPM, QProp and RProp is 
shown in the  3. The tabulated data shows that the RProp is 
predicting the more accurate transfer time compared to other 
algorithms. Though the RProp takes more training cycles 
compared to QProp, the prediction difference from the actual 
value is very small.  

The experimental results shows that, the number of epochs 
needed for training the neural network is more for BBP and is 
less for QProp.  The prediction differences of algorithms for 
file transmission time between the sites by BP, BBP, BPM, 
QProp and RProp is shown in the Table 3 and Table 4. The 
tabulated data shows that the RProp is predicting the transfer 
time between the sites with small variation from the GridSim 
transfer time compared to other algorithms.  

VI. CONCLUSIONS 
The performance evaluation of different neural network 

approaches for replica selection problem is done. The neural 
network approaches predict the site to fetch the replica with 
more accuracy of transfer time prediction. We analyzed the 
performance measure in terms of accuracy among neural 
network approaches for predicted transfer time between sites 
that hold replica currently.  

The training time and error rate differences among the 
neural network approaches are presented. We evaluated the 
performance of these algorithms and demonstrated that 
Resilient Propagation algorithm is capable of predicting 
transfer time more accurately compared to other algorithms.  
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TABLE  IV.      PREDICTION TIME DIFFERENCES OF ALGORITHMS WITH TRAINING RATE OF 10000 EPOCHS FOR      
1-5-5-1 NEURAL NETWORK 

Res_ID 
GridSim 
Transfer 

Time 
BP(0.0616)* BPM(0.0288)* BBP(1.1109)* QProp(0.0416)* RProp(0.5055)* 

Res_0 188 99 88 21 106 15 
Res_2 106 64 39 58 82 6 

Res_4 426 31 7 44 10 15 

Res_6 455 46 12 28 27 5 

Res_7 64 23 16 58 58 3 

Res_8 660 45 78 108 47 19 

Res_9 264 79 97 64 95 37 
               *error rate of the algorithms at 10000 epochs 
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