
Performance Evaluation of Predictive Replica
Selection Using Neural Network Approaches

Shaik Naseera
Department of Computer Science & Engineering

Sri Venkateswara University
Tirupati, India

naseerakareem@gmail.com

K.V. Madhu Murthy
Department of Computer Science & Engineering

Sri Venkateswara University
Tirupati, India

kvmmurthy@yahoo.com

Abstract— The ability to accurately predict a best replica from
different sites holding replicas of a particular file is of great
importance for applications that require access to replicated files
for their execution. The best replica is the one that optimizes the
desired performance criterion such as speed, cost, security or
transfer time. As grid is dynamic in nature, the predicted best
site for replica selection may not be the best site for replica
selection with current network conditions. Neural network
approaches address such dynamism and predict the best site
more accurately for change in the network conditions. In this
paper we compare and evaluate the prediction differences of
various neural network approaches for replica selection problem.

Keywords-Replica Selection, Candidate Site, Grid Computing,
Neural Network Approaches, GridSim Toolkit-4.0.

I. INTRODUCTION
Data Replication is an important issue to be considered in a

data grid environment. Applications like high energy physics,
earth quake engineering produces large volumes of data sets
which need to be stored and analyzed among users in the grid
[14]. Data replication permit data sharing across many
organizations in different geographically disperse locations [3].
Data Replication reduces the network bandwidth and access
latency in grid environment. It also improves the reliability of
the system by increasing data availability.

As different sites hold replicas of a particular file, there is a
significant benefit realized by selecting a best replica among
them. By selecting the best replica, the access latency time is
minimized. The best replica will be the one that optimizes the
desired performance criterion such as execution time, access
cost and data transmission time [4].

As grid is dynamic in nature, the user requests, network
latency, CPU load vary dynamically. Therefore the selected
site to fetch replica may not be the best site for subsequent
requests for change in the network conditions. Dynamism in
such environments can be handled using neural network
approaches to predict the behavior of the grid for subsequent
requests.

In this paper we developed a predictive framework for
different neural network algorithms like Back Propagation
(BP), Batch Back Propagation (BBP), Back Propagation with
momentum (BPM), Quick Propagation (QProp) and Resilient

Propagation (RProp). Using these algorithms we predicted the
transfer time of the sites that host replicas.

We evaluated the performance of these algorithms and
demonstrated that Resilient Propagation algorithm is capable of
predicting transfer time more accurately compared to other
algorithms. This paper extends Rahman & Bakers [1]
predictive technique for replica selection in grid environment.
The replica selection is predicted using other neural network
algorithms and evaluated their performances. The study of our
replica selection algorithms is carried out using EU Data Grid
Testbed1 [5] sites and their associated network geometry. We
validated our model by using GridSim 4.1 simulation toolkit
[6].

The reminder of the paper is organized as follows. We
present the related work in section 2. the neural network
architecture and various algorithms are discussed in section 3.
The simulator and the simulation model are described in
section 4. The performance evaluation and comparison of
neural network approaches of replica selection problem is
presented in section 5. Section 6 provides conclusions.

II. RELATED WORK
Grid is a dynamic environment in which the users requests,

network latency, CPU load vary dynamically. The data in a
data grid is replicated to share among the users spread across
the network.. To execute a job, if all the files are currently
available on a resource local storage, the job is sent to a
resource’s scheduler for execution. Otherwise the needed files
are fetched from the nearest locations holding the replica. The
ability to accurately predict the best replica is of great
importance for applications which require replicated data to be
accessed for their execution.

Observation from past application performance can also
help in predicting present performance. Basu et a. [7]
developed a time series model for internet traffic. They
investigate the parametric time series models for aggregated
data traffic. They developed an algorithm that predicts the uth
quantile of the distribution of data traffic given past history.

Wolski [14] designed network weather service (NWS) to
predict network behavior of small file transfers. NWS is a
distributed system that periodically monitors and dynamically
forecasts the performance of network and computational
resources over a given time interval.

978-1-4244-4711-4/09/$25.00 ©2009 IEEE IAMA 2009

Downloaded from www.VTUplanet.com

P.A.Dinda, D.R. Hallaaron [19] demonstrated that some
applications, the relationship between the execution time of a
CPU bound task and the measured load during the execution is
almost perfectly linear. Therefore, load prediction is useful for
guiding the scheduling strategies to achieve high application
performance and efficient resource use [17,18].

Rashedul et. Al [1] made comparison of predictive replica
selection using neural network with a multi-regression model.
He demonstrated that the neural network technique is capable
of predicting transfer time more accurately than the regression
model.

In this paper we further extended the Rashedul et al [1]
work for replica selection for other neural network approaches.
We have done the comparison of various neural network
approaches for replica selection problem.

III. NEURAL NETWORK APPROACHES
The neural network tries to mimic the biological brain

neural network into a mathematical model. It is a collection of
simple processing units, mutually interconnected, with weights
assigned to the connections. By modifying these weights
according to some learning rule, the neural network can be
trained to recognize any pattern given the training data. There
are several types of neural network structures proposed in the
literature. This network contains one input layer, one or more
hidden layers and an output layer. The number of neurons in
the input and output layers are governed by the number of
inputs and outputs of the pattern to be recognized. However,
the number of neurons in the hidden layer can be selected
depending on the application. There are several types of
training algorithms in the literature.

A. Learning Process
The primary significance of a neural network is the ability

of the network to learn from its environment and to improve its
performance through learning. The type of learning is
determined by the manner in which parameter changes takes
place. Learning algorithms in neural networks are generally
categorized as supervised or unsupervised. In supervised
learning, the target values or desired outputs are known and are
given to neural network during training so that the neural
network can adjust its weights to try to match its outputs to the
target value or desired value. In unsupervised learning, the
neural network is not provided with the correct results during
training. Most applications fall within the domain of estimation
problem such as statistical modeling, blind source separation
and clustering.

In this paper, we are dealing with supervised learning
algorithms like BP, BBP, BPM, QProp and RProp. The
supervised learning rules are more useful for applications
involving prediction, compression, digital signal processing
and forecasting applications.

Each learning algorithm consists of two passes through
different layers of the network: a forward pass and a backward
pass. In forward pass an input vector is applied to the sensory
nodes of the network and its effect propagates through the
network layer by layer and the synaptic weights of the network

are all fixed. In backward pass, the synaptic weights are
adjusted in accordance with an error-correction rule [9].

A fully connected, multilayered perceptron with two hidden
layers and an input layer is depicted in Fig. 1. Each unit in one
layer is connected in the forward direction to every unit in the
next layer. The input signal propagates through the network in
forward direction, on a layer by layer basis and emerges as an
error signal at the output end of the network. The error signal
propagates backward layer by layer through the network. The
hidden layer enables the network to learn complex tasks by
extracting important features from the input vectors.

B. Back Propagation Algorithm :
Back propagation provides a computationally efficient

method for the training of multiplayer perceptron [9]. The back
propagation algorithm derives its name from the fact that the
partial derivatives of the cost function with respect to free
parameters (synaptic weights and biases) of the network are
determined by back propagating the error signal through the
network. The back propagation algorithm operates in one of the
two modes: sequential or batch.

In the sequential mode the synaptic weights of all the
neurons in the network are adjusted on a pattern-by-pattern
basis. In batch mode the adjustments to all synaptic weights
and biases are made on epoch-by-epoch basis with the result
that a more accurate estimate of the gradient vector is used in
the computation. A consequence of the back propagation
algorithm is that there are situations where it can get stuck with
a local minima and the algorithm is trapped and prevented to
descend further. Some enhancements to the back propagation
algorithm have been developed to get around this, one
approach is back propagation with momentum.

Momentum adds a term in the weight adjustment that is
proportional to the previous weight change. Once an
adjustment is made it is remembered and serves to modify its
subsequent weight adjustment. Momentum term avoids
oscillation problems common with the regular back
propagation algorithm when the error surface has a very
narrow minimum area [10].

C. Quick Propagation Algorithm :
One method to speed up the learning is to use information

about the curvature of the error surface. This requires the
computation of the second order derivatives of the error
function. Quick propagation algorithm assumes the error
surface to be locally quadratic and attempts to jump in one step
from the current position directly into the minimum of the
parabola.

D. Resilient Propagation :
Resilient propagation algorithm is one of the most popular

adaptive learning rates training algorithm [11]. It employs a
sign-based scheme to eliminate harmful influences of
derivatives magnitude on the weight updates, and is eminently
suitable for applications where the gradient is numerically
estimated or the error is noisy. The ideas behind the resilient
propagation have motivated the development of several

Downloaded from www.VTUplanet.com

variants with the aim to improve the convergence behavior and
effectiveness of the original method.

IV. SIMULATION
To evaluate our approach we use a simulation package

called GridSim 4.1. GridSim toolkit is a data grid simulator. It
provides the ability to define resources with heterogeneous
storage components and the flexibility to implement various
data management strategies like creation, deletion and
replication of files in a grid environment [6].

A. Architecture
The simulation design consists of number of data resources

each consisting of one or more processing elements with one or
more storage elements. The processing elements provide
computational capability and storage elements serves as data
storage resource for submitted jobs. A replica manager handles
and manages incoming requests about data sets in a resource
for one or more storage elements. It also performs registration
of files stored in the resource to a designated replica catalog
(RC). The function of a RC is to store the metadata about files
and to provide mapping between filename and its physical
location.

A data-intensive job in a GridSim is termed as a
DataGridlet. Each DataGridlet has a certain execution size in
MI (Million Instructions) and require access to a set of files
which may be located at different locations. After receiving a
DataGridlet, the Replica Manager (RM) at each resource
checks a list of required files for executing the job.

If all the files are currently available on a resource local
storage, the DataGridlet is sent to a resource’s scheduler for
execution. Otherwise RM sends a request for obtaining the
needed files from other resources. When all the requested files
have been transferred and stored on the local storage, then the
DataGridlet is executed by the scheduler.

B. Grid Configuration
The study of predictive technique for replica selection is

carried out based on an EU Data Grid Testbed1 [5]. The
resources and their associated network geometry are as shown
in Fig 2. Initially all the master files are placed on the CERN
(European Organization for Nuclear Research) storage. A
master file is an original instance of the file.

Table 1 summarizes all the resource relevant information.
The resource’s PE rating is modeled in the form of MIPS. We
conducted this experiment for 100 files. The average file size is
1GB and the file size follows a power law distribution [15]. We
have created 100 types of data intensive jobs. Each job requires
10 to 60 files to be executed. The required files for the
DataGridlets are chosen with Zipf-like distribution [16].

The experiment is conducted with 200 DataGridlets with
the approximate size of 84000KMI ± 30%. Each resource is
provided with a user to submit their jobs approximately for
every 1 minute. Each resource, peak load is chosen as specified
in the Table 1.

Figure 1. A fully connected multilayered perceptron for neural network

Figure 2. A simulated topology of EU Data Grid Testbed1

Downloaded from www.VTUplanet.com

Some parameters are identical for all network links i.e., the
Maximum Transmission Units (MTU) is 1500 bytes and the
latency of links is 100msec. The RM of each resource follows
least-frequently used replica strategy to delete a replica when
the storage capacity is full. However, the master files at CERN
can not be deleted or modified during the simulation.

V. SIMULATION FRAMEWORK
As grid is dynamic in nature, the predictive best site for

replica selection may not be the best site for replica selection
for change in the network conditions. It is shown in [1] that,
neural network technique is capable of predicting transfer time
more accurately than the regression model. We further extend
the concept to compare the prediction differences of different
neural network algorithms.

To evaluate the performance of different learning
algorithms for replica selection problem, we use a neural
network consisting of one input layer, one output layer and
multiple hidden layers. The input layer consists of 2 neurons,
an output layer consists of one neuron and varying number of
neurons in the hidden layers. We set up the EU data grid
testbed1 [5] using GridSim toolkit. During the simulation,
when a file transfer has been made between two sites, the file
size, the available network bandwidth and transfer time are
saved which is later used for training and testing the neural
network.

The neural network is trained with a training set consist of
three values i.e., file size, available bandwidth experienced
between sites to transfer the file and time elapsed to transfer the
file. We start training the neural network with 20 datasets. Each
set is presented to the neurons of the input layer and the whole
network is trained with the learning algorithms separately and
the results are compared. The output of the neural network
predict the transfer time between the sites. After training the
neural network with first 20 datasets from the training pattern,
the prediction is made for the datasets in the testing pattern.

To compare the prediction differences of the algorithms, the
neural network is trained for more than 10000 epochs with a
learning rate of 0.2. Learning rate in neural network determines
how much we change the weights in each step. The smaller we
make the learning rate parameter, the smaller the changes to
the synaptic weights in the network from one iteration to
the next and smoother will be the trajectory in weight space

and algorithm converges. On the other hand too large learning
rate parameter makes the neural network unstable, bouncing
around the error surface, so the algorithm diverges.

As various components in the grid environment are
dynamic, the file transmission time between two sites varies
according to change in the network conditions. To address the
dynamic nature of the grid, we train the neural network with a
smaller momentum term value of 0.5.

A. Simulation Results :
The performance analysis of neural network algorithms like

BP, BBP, BPM, QProp and RProp for replica selection
problem is done for a neural network consists of one input
layer, one output layer and varying number of hidden layers.
The Fig. 3 depicts the error graph of BP, BBP, BPM, QProp
and RProp algorithm for different multi-layered neural network
architectures.

Fig 3 shows that the batch mode back propagation takes a
much longer time to converge as it takes the total training error
over all the patterns into account whereas standard back
propagation makes estimation of the error based on the
individual error training pattern. It is also observed from Fig 3
that BPM converges faster than BP, BBP as the term
momentum is helpful in speeding up the convergence and
avoid local minima.

The QProp algorithm takes lesser time to converge, as it
uses the second order derivatives of the error function to jump
in one step from the current position directly into the minimum
of the error performance and hence it is faster than the
backpropagation algorithms. As depicted in Fig 3. RProp is
demonstrating better performance compared to BP, BBP, BPM
and QProp algorithms. It takes less number of cycles to
converge and optimize the error rate.

The number of training cycles and their optimal error rate
for learning algorithms for neural network with varying
number of hidden layers is tabulated as shown in Table 2.

The experiment is conducted and performance is analyzed
for replica selection problem for different hidden layers in the
neural network. To minimize the error rate, the neural network
is trained for different cycles for different learning algorithms.
The optimal error rate is obtained for the different algorithms at
different training cycles.

TABLE I. RESOURCE SPECIFICATION

Resource
ID

Resource Name
(location)

Storage
(TB)

#Nodes CPU
Rating

Policy Load #User

Res_0 RAL(UK) 2.75 41 49000 Space-Shared 0.82 24
Res_1 Imperial College(UK) 1.80 52 62000 Space-Shared 0.87 32
Res_2 NorduGrid(Norway) 1.00 17 20000 Space-Shared 0.69 8
Res_3 NIKHEF(Netherlands) 0.50 18 21000 Space-Shared 0.02 16
Res_4 Milano(Italy) 0.35 5 7000 Space-Shared 0.34 8
Res_5 Torino(Italy) 0.10 2 3000 Time-Shared 0.84 4
Res_6 Rome(Italy) 0.25 5 6000 Space-Shared 0.36 8
Res_7 Bologna(Italy) 5.00 67 80000 Space-Shared 0.34 24
Res_8 Padova(Italy) 0.05 1 1000 Time-Shared 0.24 4
Res_9 CERN(Switzerland) 2.50 59 70000 Space-Shared 0.42 48

Res_10 Lyon(france) 1.35 12 14000 Space-Shared 0.62 24

Downloaded from www.VTUplanet.com

Figure 3. Error Graph for Multi-Layered Neural Network Architectures

TABLE II. TRAINING CYCLES REQUIRED FOR VARIOUS NEURAL NETWORK ALGORITHMS TO GET OPTIMAL ERROR RATE

TRAINING CYCLES FOR 1-2-1 NEURAL NETWORK
Algorithm Cycles Error Rate

BP 86500 0.0
BBP 100000 0.407
BPM 13650 0.0
QProp 34000 0.038
RProp 17610 0.05

TRAINING CYCLES FOR 1-2-10-1 NEURAL NETWORK
Algorithm Cycles Error Rate

BP 75000 0.0
BBP 100000 0.278
BPM 24000 0.0

QProp 28000 0.045
RProp 41550 0.048

TRAINING CYCLES FOR 1-5-5-1 NEURAL NETWORK

Algorithm Cycles Error Rate
BP 75600 0.0

BBP 100000 0.266
BPM 20900 0.0
QProp 28000 0.078
RProp 33650 0.048

TRAINING CYCLES FOR 1-3-2-1 NEURAL NETWORK

Algorithm Cycles Error Rate
BP 51800 0.0

BBP 100000 0.308
BPM 11000 0.0
QProp 28000 0.038
RProp 29400 0.0488

TABLE III. PREDICTION TIME DIFFERENCES OF ALGORITHMS WITH TRAINING RATE OF 10000
EPOCHS FOR 1-2-1 NEURAL NETWORK

Res_ID
GridSim
Transfer

Time
BP(0.093)* BPM(0.025)* BBP(1.26)* QProp(0.03)* RProp(0.052)*

Res_0 188 81 67 64 92 17

Res_2 106 73 1 16 58 8

Res_4 426 53 32 24 3 13

Res_6 455 63 11 7 23 3

Res_7 64 54 36 46 42 6

Res_8 660 37 59 147 60 21

Res_9 264 47 96 83 96 39
 *error rate of the algorithms at 10000 epochs

Downloaded from www.VTUplanet.com

The experimental results shows that, the number of epochs
needed for training the neural network is more for BBP and is
less for QProp. The prediction difference for file transmission
time between the sites by BP, BBP, BPM, QProp and RProp is
shown in the 3. The tabulated data shows that the RProp is
predicting the more accurate transfer time compared to other
algorithms. Though the RProp takes more training cycles
compared to QProp, the prediction difference from the actual
value is very small.

The experimental results shows that, the number of epochs
needed for training the neural network is more for BBP and is
less for QProp. The prediction differences of algorithms for
file transmission time between the sites by BP, BBP, BPM,
QProp and RProp is shown in the Table 3 and Table 4. The
tabulated data shows that the RProp is predicting the transfer
time between the sites with small variation from the GridSim
transfer time compared to other algorithms.

VI. CONCLUSIONS
The performance evaluation of different neural network

approaches for replica selection problem is done. The neural
network approaches predict the site to fetch the replica with
more accuracy of transfer time prediction. We analyzed the
performance measure in terms of accuracy among neural
network approaches for predicted transfer time between sites
that hold replica currently.

The training time and error rate differences among the
neural network approaches are presented. We evaluated the
performance of these algorithms and demonstrated that
Resilient Propagation algorithm is capable of predicting
transfer time more accurately compared to other algorithms.

REFERENCES

[1] Rashedur M. Rahman, Ken Baker, Reda Alhajj, A Predictive Technique
for Replica Selection in Grid Environment, Seventh IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 07), 2007.

[2] Rahman, M. Rahman , Ken Baker and Reda Alhajj., Replica Placement
Design with Static Optimality and Dynamic Maintainability,
Proceedings of the IEEE/ACM International Conference on Cluster
Computing and Grid (CCGRID 06), Singapore, May 2006.

[3] Kavitha R and Foster I ., Design and Evaluation of Replication
Strategies for a High Performance Data Grid, Proceedings of computing
and high energy and nuclear physics, 2001.

[4] A. Chervenak, I. Foster, C.Kesselman, C. Salisbury, and S.Tuecke. The

data grid : Towards an architecture for the distributed management and
analysis of large scientific datasets. Journal of Network and Computer
Applications, (23): 187-200, October 2000.

[5] The European Data Grid Project
homepage : http://eu-datagrid.web.cern.ch/eu-datagrid,2005.

[6] Anthony Sulistio, Uros Cibej, Borut Robic and Rajkumar Buyya., A
Toolkit for Modelling and Simulation of Data Grids with Integration of
Data Storage, Replication and Analysis, Journal of Elsevier Science,
2006.

[7] Basu S.A Mukherjee and S. Kilvansky, Time Series Models for Internet
traffic, 1996, Georgia Institute of Technology.

[8] Simon Haykin, Neural Networks, A comprehenssive foundation, second
edition, 1999.

[9] Marvia Minsky and S Pappert, Neural Networks for pattern recognition,
MIT Press, 1969.

[10] Fausett L., Fundamentals of Neural Networks : Architecture, Algorithms
and Applications. Prentice Hall, Upper Saddle River, NJ, 1994.

[11] M. Riedmiller and H.Braun, A direct adaptive method for faster
backpropagation learning: The RProp algorithm, International
coneference on neural networks, San Fransisco, 581-591, 1993.

[12] M.Pfister and R Rojas, QProp – A hybrid learning algorithm which
adaptively includes second order information, Proc. 4th Dortmund Fuzzy
Days, 55-62, 1994.

[13] Prechelt L, P ROBEN1 – A set of benchmarks and benchmarking
rules for neural network training algorithms, Technical Report 21/94.
Fakultat fur Informatik, University of Karlsruhe, 1994.

[14] R. Wolski. Dynamically forecasting network performance using the
network weather service, journal of cluster computing Vol. 1, pp 119-
132, 1998.

[15] W. Gong, Y. Liu, V. Misra and D. Towsley. On the tails of web file size

distributions. In Proceedings of 39th Allerton Conference on
Communication, Control and Computing, November 2001.

[16] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenkar. Web catching and
zipf-like distributions: Evidence and implications. In INFOCOM (1),
pages 126-134, 1999.

[17] P.A. Dinda, A predictive based real-time scheduling advisor,
Proceedings of 16th international parallel and distributed processing
symposium (IPDPS 2002) pages 35-42, 2002.

[18] L. Yang, J.M. Schops and I.Foster, Conservative scheduling : Using
predictive variance to improve decisions in dynamic environment,
Supercomputing ’03, pages 1-16, 2003.

[19] P.A. Dinda, D. R. O’Hallaron, Host load prediction using
linear models, cluster computing 3(4) pages 265-280,
2000.

TABLE IV. PREDICTION TIME DIFFERENCES OF ALGORITHMS WITH TRAINING RATE OF 10000 EPOCHS FOR
1-5-5-1 NEURAL NETWORK

Res_ID
GridSim
Transfer

Time
BP(0.0616)* BPM(0.0288)* BBP(1.1109)* QProp(0.0416)* RProp(0.5055)*

Res_0 188 99 88 21 106 15
Res_2 106 64 39 58 82 6

Res_4 426 31 7 44 10 15

Res_6 455 46 12 28 27 5

Res_7 64 23 16 58 58 3

Res_8 660 45 78 108 47 19

Res_9 264 79 97 64 95 37
 *error rate of the algorithms at 10000 epochs

Downloaded from www.VTUplanet.com

