
Predicting Performance of Multi-Agent
Systems During Feasibility Study

 S.Ajitha,
M.S.R.I.T, Bangalore,

India

D.Evangelin Geetha
M.S.R.I.T, Bangalore

India

T.V.Suresh Kumar,
M.S.R.I.T, Bangalore

India

K.Rajanikanth
M.S.R.I.T, Bangalore

India

Abstract—Agent Oriented software engineering (AOSE) is a
software paradigm that has grasped the attention of
researchers/developers for the last few years. As a result, many
different methods have been introduced to enable
researchers/developers to develop multi agent systems. However
Performance, a non- functional attribute have not been given that
much importance for producing quality software. Performance
issues must be considered throughout software project
development. Predicting performance early in the life cycle
during feasibility study is not considered for predicting
performance. In this paper, we consider the data collected
(technical and environmental factors) during feasibility study of
Multi-Agent software development to predict performance. We
derive an algorithm to predict the performance metrics and
simulate the results using a case study on scheduling the use of
runways on an airport.

Keywords-Multi Agents, Agent Oriented Software Engineering,
Software Performance Engineering, Feasibility Study, Use case
point

I. INTRODUCTION
Building high-quality, industrial strength software is

difficult. Developing software in domains like tele-
communication, industrial control and business process
management represents one of the most complex construction
tasks humans undertake. Against this background a wide range
of software engineering paradigms have been devised. For
designing and implementing complex software systems as a
collection of interacting, autonomous agents, affords software
engineers significant advantages over contemporary methods
[13]. An agent is an encapsulated computer system situated in
some environment and capable of flexible, autonomous action
in that environment. In other words agents provide high level
communication and interaction which can perceive the
situation of the environment and respond appropriately. Agents
are different from objects which are static and cannot change
with the environment. When adopting an agent-oriented view
most problems require multiple agents, to represent the
decentralized nature of the problem, the multiple loci of
control, multiple perspectives or the competing interests.

Performance is an important issue for a Multi-Agent
system. Even several development methodologies for MAS
have been evolved; performance issues are addressed very
rarely. For software developers, if performance evaluation is
intrinsic throughout Software Development Life Cycle
(SDLC), it is easier for them to produce quality software.
Several industries canopy their performance issues and
addressing performance issues after coding phase. Coding
phase has severe consequences for software’s, whose
performance is critical. It gives impetus thinking in looking
into issues while developing software systems. The plausible
solutions may be easy for team members to construct quality
software systems. Current situation in building performance
intensive software system is cumbersome. This led to several
researchers to work in this important performance engineering
area. Basic idea of works including ours is to make team
members to understand easily the performance issues and
consequences of Multi-Agent systems. In [14] the author
discusses the importance of performance engineering in Agent
systems and suggested to define benchmarks and metrics that
help to compare and contrast different Agent systems to
support software engineering themes within Agent systems. In
[11, 12] estimating costs for agent oriented software is
discussed. Few authors Addressed the performance issues early
in SDLC [5], [6], [7], [8].

In general, performance evaluation system must address
performance questions from varied stakeholders. The questions
range from user’s point of view to tester point of view. From
user point of view, the questions may be related to response
time of the software solutions. For remaining it may be from
analysis phase to testing phase. Whatever may be the likely
questions to encounter it is important to develop performance
evaluation systems with easy to use by team members.
Selecting appropriate evaluation techniques and corresponding
performance metrics required. The prediction process using
these techniques and metrics do help team members of
software systems to evaluate the performance at various phases
of SDLC. Several authors worked towards this direction to

978-1-4244-4711-4/09/$25.00 ©2009 IEEE
IAMA 2009

Downloaded from www.VTUplanet.com

increase the acceptance of performance evaluation of software
systems at all phases of SDLC [10], [16], [17].

Software Performance Engineering (SPE) is a method to
predict the performance of any software systems early (analysis
phase) in the life cycle [4].We use the same technique for
Multi-Agent Systems. SPE continues through the detailed
design, coding and testing stages to predict and manage the
performance of the evolving software and to monitor, report
actual performance against specifications and predictions.
Modeling software systems to predict the performance using
Unified Modeling Language (UML) is a better choice since
UML is seamless from requirements to deployment. The
Unified Modeling Language (UML) is a graphical modeling
language that is used for visualizing, specifying constructing
and documenting software systems [18]. UML is a large and
varied modeling language intended to model most application
domains, to use in many styles of programming, and at many
stages of the development lifecycle. Performance models can
be generated from use cases during requirements phase [8],
sequence diagrams during analysis and design phase [8] and
from state chart and activity diagrams during design phase [5],
[10].

In all the approaches, the researchers do not consider the
data gathered during feasibility study of the project. During
feasibility study, project managers, CEOs, and concerned will
participate in discussions with stakeholders to assess the
project feasibility. In all these feasibility studies several issues
would be discussed: Identification of document, description of
current situation, problem description, business and financial
aspects, technical aspects and organizational aspects of
proposed development, development costs and operational
costs, envisaged benefits and recommendation. These technical
factors gathered during feasibility study are not accounted for
estimating performance in early SDLC. These technical factors
can be realized only during detailed design or deployment of
software systems. In all the works done in early phases, the
authors have not considered the technical factors that are
important for early prediction. Keeping these in view, in this
paper, we propose an algorithm to predict performance of
Multi-Agent Systems with technical factors and environmental
factors gathered during feasibility studies. We use in this paper
technical and environmental factors gathered for estimating
size using use case point approach [2].

II. PROPOSED ALGORITHM FOR MULTI-AGENT SYSTEMS
Performance Engineering is important for software

engineering and in particular for software quality. Smith
describes the SPE process to assess the performance of
software systems early in the life cycle by using two models,
software execution model and system execution model [3].
The software resource requirements required for software
execution model of SPE process can be obtained by use case
point method by considering appropriate technical and
environmental factors. The guidance provided by the use case
point method [2] is used to calculate the effort based on the
nature of the actors and use cases available in the use case
model developed during requirement analysis. The procedure
for estimating effort using use case point approach is well
defined in [2].

Each technical and environmental factor is assigned a value
between 0 and 5 depending on its assumed influence on the
project. The adjusted use case points obtained from use case
model are converted into equivalent Lines of Code (LOC) by
considering the programming language to be used for
implementation. The number of LOCs in turn converted into
number of executable statements (in assembler program) [15].
The amount of data in terms of kilobytes is obtained from
number of executable statements. Then the software execution
model solved with the amount of data obtained and the
overhead specifications (computer resource requirement for
each of the software request) [3]. The total response time and
overhead specifications (computer resource requirement for
each of the software request) [3]. The total response time and
for the scenario obtained from software execution model [3].
Total hardware device requirement provided as input to the
system execution model and the performance metrics such as
throughput, response time, residence time, and device
utilization, queue length for each device and also for the system
obtained. Based on these and with reference to [9] we have
developed the following algorithm for Multi-Agent Systems.

Step1: Study the Feasibility issues in Multi-Agent Systems.

Step2: Compare it with earlier Projects.

Step3: Develop Use Case Model for the entire application.

Step4: Develop Use Case model for the Agent Interactions.

Step5: Classify the Agent as Simple, Average, Complex using
probability distribution.

Step6: Calculate Unadjusted Agent weight, Unadjusted Use
Case Point, Assign values for environmental and technical
factors depending on the scenario , Calculate Technical
Complexity Factors (TCF), Environmental Factors (EF)

Step9:- Calculate Use Case Point

 UCP = UUCW * TCF * EF

Step10:- Calculate Lines of Code (LOC) for a specific
programming language, LOC for assembler Program,
equivalent number of kilobytes

 Step11:- Calculate performance with SPE Approach.

Feasibility study of any project tells the logical step whether to
proceed with the project or not. A well written feasibility study
will support the detailed planning and entering into new
business. The feasibility study process involves making
rational decisions about a number of enduring characteristics of
a project including economic feasibility, technical feasibility,
schedule feasibility and operational feasibility. We have drawn
a Use Case diagram to represent the interaction between the
Agents. Similar to the classification of actors in use case point
approach we have classified the agents in our example as
Simple, Average, Complex using triangular distribution by
considering the interaction between the agents. The interactions
are in the form of messages .If the number of messages is less
we considered it as simple agent .Similarly we define average
and complex categories based on number of messages among
agents. Since the data collected during feasibility study is

Downloaded from www.VTUplanet.com

highly valuable to development team, the performance
assessment at this level will help the team to focus on the
performance issues early.

Case Study

We consider scheduling the use of runways on an airport
application to discuss the validation of our algorithm [1].

A. Description of the Case Study
The application we have considered is a Multi-Agent

System. There are three agents in the system. The architecture

of the agent we have considered is Belief Desire Intention
(BDI). They are Aircraft agent, Air traffic control agent,
Runway agent. These three agents can reside in three different
locations and can interact with each other to get the
requirements satisfied. The most significant performance
scenarios we have considered in our application are arrival,
departure, delay, weather, runway usage, slot for new aircraft
and parking.

B. UML Models for the System

Figure 1. Use case diagram for the case study

The functional requirements for the interaction between
the agents are modeled using use case diagram shown in
Figure 1. The software module for the specified scenarios is
shown in Figure 2. With these models and considering
technical and environmental factors of use case point
approach, the calculation proceeds as follows: The use case
model given in Figure 1 consists of seven use cases namely,
arrival, departure, delay, weather, runway usage, slot for new
aircraft and parking and three agent namely, runway agent,
aircraft agent and air traffic control agent. As discussed in
[2], the use cases arrival, departure, delay, weather, runway
usage, slot for new aircraft and parking belong to the
category average, since the number of transactions for these
use cases is between four and seven. The agents described in
the model are categorized simple. Using the prototype tool
Unadjusted Actor Weight (UAW)is calculated for the agents
runway agent, aircraft agent and air traffic control agent, and
Unadjusted Use Case Weight(UACW) is calculated for the
use cases arrival, departure, delay, weather, runway usage,
slot for new aircraft and parking and UAW and UUCW are
summed up to get unadjusted use case points.

The application we have considered is highly distributed
in nature, the values for the technical factors [2] are
considered as follows; T1, T4, T8, T10, T11 the value is 5,

for T2 the value is 4 and for T5, T9 the value is 3.We assume
that the system is modeled using UML and the programming
language to be used for implementation is Java. By
considering these assumptions, the values for environmental
factors are assigned as follows; E2 the value is 5, for
E1,E3,E4 the value is 4 , for E5 the value is 1and for E8 the
value is 2 [2].

By considering the values for technical and
environmental factors and following the algorithm TFactor
and EFactor are calculated. Adjusted use case point value is
obtained as 78. The LOC is calculated by multiplying UCP
by 53 considering Java as the programming language; the
number of executable statements (6 statements per line of
code) and the amount of data in kilobytes are calculated [15].
The amount of data obtained is used as input (software
requirement) for software execution model to obtain the
response time.

runway usage slot for new aircraft

<<agent>>

runway agent

delay

weather

parking

arrival

departure

<<agent>>

aircraft agent

<<agent>>

Air traffic control
agent

Downloaded from www.VTUplanet.com

ATC
Agent

Aircraft
Agent

Runway
Agent

Figure 2. Deployment Diagram for the Case Study

C. Software Execution Model
Software execution Model is an early model to ensure

that the software architecture will make it possible to meet
system performance objectives. To obtain the complete
performance the amount of data obtained from use case point
estimation is integrated with the executing platform
configuration, the architecture of software modules and
hardware devices with user profile and software work load.
The software resources we examine for this case study are:
data size, file access. Hardware resources are CPU1, CPU2,
CPU3, Delay and Satellite. By assuming approximate values
for amount of hardware resource required for each of the
software resource, we have obtained the response time for
the scenario mentioned in section IV A as 6.04 seconds.

D. System Execution Model
The System execution model solution is obtained by

solving queuing network model for the above software
execution model. Different performance parameters such as
throughput, response time, residence time, device utilization,
queue length for each hardware resource and the system are
obtained. The different performances metrics are obtained in
the form of graphs as given in Figure 3

Figure 3. Performance Metrics

E. Discussion of Case Study
We have obtained simulated results for system execution

model by assigning different values for technical and
environmental factors depending on degree of influence (the
range for technical and environmental factor from 0 to 5). 1
means weak influence, 3 means average, and 5 means strong
influence throughout. The different categories of values and
the corresponding response time obtained by software
execution model are as follows:

• Strong influence of technical and environmental
factors – 5.13 seconds

Downloaded from www.VTUplanet.com

• Average influence of technical and
environmental factors –5.8549 seconds

• Weak influence of technical and environmental
factors –5.265 seconds

• Strong influence of technical and weak
influence of environmental factors –9.495
seconds

• Weak influence of technical and strong
influence of environmental factors –2.72
seconds

From the simulated results, it is observed that the strong,
weak and average influences are almost same. The response
time is higher when strong influence values for technical
factors and weak influence values for environmental factors
are considered compared to weak influence values for
technical factors and weak influence values for
environmental factors are considered.

III. CONCLUSION
In this paper, we proposed an algorithm to predict

performance of Multi-Agent systems during feasibility study.
Early performance prediction process requires several
technical and environmental factors for predicting
performance. We considered the data collected during cost
estimation using use case point approach. We presented a
case study by considering these factors. Future work includes
predicting performance by considering agent characteristics
such as cooperation, negotiation, mobility etc.

REFERENCES

[1] Ajitha S, Suresh Kumar T V, Evangelin Geetha D, Rajani Kanth K:
“BDI Software Process for Agent Oriented Software using UML”,
Proceedings of International conference ICDM,09, Gaziabad

[2] Bente Anda, Hege Dreiem, dag I. K Sjobergand Magne Jorgensen,
“Estimating Software development Effort based on Use Cases –
Experiences from Industry”,
www.idi.ntnu.no/emner/tdt4290/docs/faglig/uml2001-anda.pdf.

[3] Connie U. Smith, Performance Engineering of Software Systems,
Reading, MA, Addison-Wesley,1990.

[4] Connie U, Smith and Lloyd G. Williams, Performance Solutions,
2000.

[5] D.C. Petriu, H Shen, “Applying the UML Performance Profile Graph
Grammar-based derivation of LQN models from UML
specifications”, in Computer performance Evaluation-Modeling
techniques and Tools, (T.Fields, P.Harrison, J.Bradley, U. Harder,
Eds.) LNCS 2324, pp.158-177, Springer, 2002.

[6] Dorin Petriu, Murray Woodside: “Analysing Software Requirements
Specifications for Performance”, Proceedings of the 3rd international
workshop on Software and performance 2002, Rome, Italy July 24-
226, 2002, pp.1-9.

[7] Evangelin Geetha D, Suresh Kumar T V and Rajani Kanth K: “Early
Performance Modeling for Web Based Applications”, LNCS,
Springer Verlag, December 2004, pp.400-409.

[8] Evangelin Geetha D, Ram Mohan Reddy, Suresh Kumar T V and
Rajani Kanth K: “JAPET: A Java Based Tool for Performance
Evaluation of Software Systems”, Proceedings of SKIMA 2006,
International Conference on Software Knowledge Information
Management and Applications, December 2006, Chinag Mai,
Thailand, pp. 64-69.

[9] Evangelin Geetha D, Suresh Kumar T V and Rajani Kanth K:
“Predicting Performance of Software Systems during Feasibility
Study of Software Project Management”, 1-4244-0983-7/07, 2007
IEEE.

[10] Hoda Amer: “Automatic Transformation of UML Software
Specification into LQN performance Models using Graph Grammar
Techniques”, Carleton University, 2001.

[11] Jorge J.Gomez-Sanz, Juan Pavon, Francisco Garito: “Estimating
Costs for Agent Oriented Software”, TIC2002-04516-C03-03

[12] Jose Manuel Fonseca, Eugenio de Oliveira, Adolfo Steiger-Garcao:
“Multi-agent Negotiation Algorithms for Resources Cost Estimation:
A Case Study

[13] Nicholoas .R. Jennings, “ An Agent-Based approach for Building
Complex Software Systems “,April 2001/vol 44 No 4
communications of the ACM.

[14] Omer Rana, Chris Preist, Michael Luck: “Progress in Multi-Agent
Systems Research, March 2000

[15] Robert T. Futrell, Donald F. Shafer, and Linda I. Shafer: Quality
Software Project Management”, Pearson Education, 2006.

[16] Simonetta Balsamo Roberto Mamprin Moreno Marzolla:
Performance Evaluation of Software Architectures With Queuing
Network Models”, 2004.

[17] Simonetta Balsamo Moreno Marzolla, “Performance Evaluation of
UML Software Architectures with Multiclass Queueing Network
Models”, Proceedings of the 5th international workshop on Software
and performance, 2005, Palma, Illes Balears, Spain July 12-14, 2005,
pp. 37-42.

[18] www.omg.org

Downloaded from www.VTUplanet.com

