
Dynamic Web Service Composition:
Challenges and Techniques

S. Prasath Sivasubramanian

Dept. of Computer Science, Avvaiyar Women’s Govt. College,
Karaikal, Puducherry, India

E. Ilavarasan
Dept. of Computer Science and Engineering,

Pondicherry Engineering College, Puducherry,
 India

G. Vadivelou
Dept. of Computer Science, Kanchi Mamunivar

Centre for PG Studies, Puducherry,
India

Abstract -- One of the great challenges to be faced in order to
enable the success of future Web-based applications is to find
effective ways to handle with the interoperability demands. In
this context, Service-Oriented Architectures and Web Services
technology are being considered as the most affordable solution to
promote interoperability, by applying strategies like Service
Composition. Nevertheless, most composition approaches applied
nowadays in real world contexts lack dynamism. In fact, there is
not yet a consensus regarding what would really be a dynamic
composition. In this paper we propose some criteria to identify the
levels of dynamism and automatization in service compositions.
Furthermore, taking into account a model driven approach, we
propose a strategy where different techniques can be used to make
compositions more dynamic and automatic. This strategy is then
exemplified and discussed considering an e-Government composition
scenario.

Keywords -- Model Driven Architecture, Semantics, Service
Selection and Web Services Composition.

I. INTRODUCTION
The term interoperability can be defined as ’the ability of

two or more systems or components to exchange information
and to use the information that has been exchanged’ [8]. In
fact, interoperability plays a key role in the new world of
networked applications, specially in the e-Business and e-
Government domains. In this context, much has been discussed
in the literature regarding SOA (Service Oriented
Architectures) and the so-called dynamic (or automatic,
adaptive and even autonomic) Service Composition, but the
fact is that there is up to the moment no consensus regarding
the exact definition and broadness of these terms. The first
contribution of this paper is the proposal of a set of
parameters to classify the compositions into different levels of
dynamism and automation. Based on these parameters, we
then identify that most composition approaches applied in
real-world contexts using traditional Web service technologies
[9] (such as WSDL and BPEL) can be classified as static
since the process model is created manually and the services
are bound at design time. There are some attempts to apply late

binding of services based on fixed interfaces and message
formats, being these considered to be semi-dynamic service
compositions. Approaches exposing a higher degree of
dynamics can hardly be found in a real world context.
Apart from obstacles such as performance and trust, the
reason is clearly related to the fact that traditional Web services
just partially kept their promise of being self-contained and
self-describing software components.

Taking all this into account, we propose a path to increase
the levels of dynamism and automatization in the service
composition process, showing where resources such as
ontologies and Artificial intelligence (AI) techniques could be
applied using the Model Driven Architecture (MDA)
approach. The strategy is then exemplified through a
composition in the e-government context. Throughout the
paper, our main goal is to discuss more general strategies and
techniques, which can be further applied in different scenarios,
instead of focusing on some specific technology or
implementation. This article is organized as follows:
Section 2 presents an overview of the steps of a service
composition process; Section 3 compares different composition
strategies and draws one path towards a fully dynamic
composition process; Section 4 presents an example in the e-
Government context; and finally in Section 5 conclusions
and final remarks are stated.

II. THE SERVICE COMPOSITION
A composite service can be regarded as a combination of

activities (which may be either atomic or composite services),
invoked in a predefined order and executed as a whole. In this
way, a complex service has the behavior of a typical business
process. In order to build a service composition, some steps
must be taken (not necessarily in this order): (1) A process
model specifying control and data flow among the activities has
to be created; (2) Concrete services to be bound to the process
activities need to be discovered. The service composer usually
interacts with a broker, e.g. a service registry, in order to look
up services which match with certain criteria; (3) The

978-1-4244-4711-4/09/$25.00 ©2009 IEEE IAMA 2009

Downloaded from www.VTUplanet.com

composite service must be made available to potential
clients. Again the broker is used to publish a description and
the physical access point of the service; (4) During invocation
of a composite service a coordinating entity (e.g. a process
execution engine) may manage the control flow and the data
flow according to the specified process model (see Section
2.3). Next we further analyze some characteristics of these
steps which we will use later as criteria to classify the
compositions.

 2.1 Discovery, selection and binding
The selection of the activities which will participate in a

service composition may be done either at design time or at
run-time. In the former, the bindings are static, i.e. each
instantiation of the composite service will be made up of
the same constituent services. In the latter, the constituent
services are selected at runtime, based on automatically
analyzable criteria, such as service functionality, signature
and QoS parameters. Late binding implies the dynamic
invocation of the constituent services, i.e. a sufficient level of
interoperability has to be established, either through fixed
interfaces or by applying more sophisticated matchmaking
and mapping mechanisms. For a service provider, the applied
binding mechanism has several business implications.

In a growing service market, third party service
providers may offer the same functionality at different
conditions, e.g. regarding QoS parameters like price.
Applying late binding, the discovery and invocation may
become scalable as the number of services increases. Thus the
costs of a composite service offered by a provider may decrease
along with the growing competition in the associated
marketplace. The cost advantage can be either handed over to the
consumer or it will increase profitability at the provider’s
side. Furthermore, late binding may enhance fault-tolerance
and thus reliability. Since the actions in a process are not
hardwired to concrete services, the unavailability of a service
may be compensated through the invocation of a functionally
equivalent one. In addition, there are some scenarios where
important service characteristics (like price) change
constantly, what makes the use of run-time service discovery
almost essential for the success of the composition. On the
other hand, in some specific application domains, the lack of
determinism, i.e. the fact that it is not possible to previously
know which service is going to be selected, is not acceptable.

2.2 Creation of the process model
Another significant characteristic of a service composition

strategy is the degree of automation in the creation of the
process model. Traditional service composition methods
require the user to define the data flow and the control flow
of a composite service manually, either directly or by means of
designer tools, e.g. in a drag-and-drop fashion. Subsequently
the process description is deployed in a process execution
engine. Depending on the abstraction level provided by the

tools and also on the applied binding mechanism, the user
either creates the process model based on concrete service
descriptions or based on abstract service templates which are
representatives for sets of services, i.e. for service classes. With
respect to the multitude of available services and service
templates, it may be a time-consuming task to manually select
reasonable building blocks for the composite service.

Furthermore, the creation of the data flow, i.e. the
parameter assignments between the activities, can be complex
and might require the user to have extensive knowledge about
the underlying type representations. More advanced
composition strategies actively support the user with the
creation of the process model, which is often referred to as
semi-automated service composition. Corresponding
modeling tools may interact with a broker in order to
automatically look up services which match (regarding
IOPEs - Inputs, Outputs, Preconditions, Effects) with the
already available control and data flow, thus facilitating and
accelerating the creation of the process model. The same applies
for the creation of models that are based on abstract functional
building blocks (which will be bound to concrete services at
run-time). Parameter assignments between these building
blocks may be automatically recommended based on an
analysis of the underlying types and concepts.

 Fully-automated composition approaches intend to
generate a service composition plan without human
interaction. Mostly AI inspired methods based on formal logic
are used for that matter, such as automated reasoning through
theorem proving. By means of a planning algorithm a
workflow graph containing available activities or concrete
services is generated to satisfy the requirements established by
the requestor. If there are multiple solutions for the problem,
i.e. several plans satisfy the given set of requirements, a
selection is made based on QoS parameters. This selection can
either be made by the process designer or automatically
through predefined weighting and ranking functions.
Combining the latter with late service binding implies that the
complete service composition (i.e. process model generation
and service selection) can be performed at run-time. The
question to which extent the composition procedure can be
automated is subject to research. Fully automated service
composition may work in narrow and formally well-defined
application domains. The more complex the context however
the more difficult it will be to apply the automated service
composition approach in real-world applications. Again the
applied degree of automation for generating the process model
has significant business implications for a provider who
composes services and delivers them to consumers. As
mentioned above, modeling the control flow and the data flow
of a composite service may be time-consuming tasks. (Semi-)
automated composition techniques promise to speed up this
procedure, thus bringing down the costs for developing new
services. Furthermore time-to-market is accelerated since the
provider may react faster and more flexible to the customer
requirements. In addition the designed composite services

Downloaded from www.VTUplanet.com

improve in quality as the application of "intelligent" tools
helps to create more efficient processes, e.g. by proposing
parallel execution of functionally independent activities. One
interesting (and feasible) approach for semi-automated
compositions was proposed in the SATINE project [4]. It is
based on self-contained activity components, which are
created semi-automatically based on OWL-S [3] service
ontologies.

1.3 Execution
When composing Web Services, two different execution

models are usually applied: Orchestration and Choreography.
There is not a common sense regarding these two definitions,
but we can consider that in an Orchestration all interactions
that are part of a business process (including the sequence of
activities, conditional events, among others) must be
described, like on a traditional workflow system. This
description is then executed by an orchestration engine, which
has control of the overall composition. On the other hand, a
Choreography is more collaborative and less centralized in
nature. Only the public message exchanges are considered
relevant and more, each service only knows about its own
interactions and behavior. Differently from Orchestration,
there is not an entity that has a global view/control of the
composition [12, 14]. If we refer to the origin of the words, a
good comparison can be made. The first, orchestration, can be
compared to a set of musicians (services) commanded by a
conductor (engine). The second, choreography, can be
compared to a group of dancers (services) that already know
how to perform and that don't obey to a central coordination.
Usually real scenarios involving complex systems with multi-
part interactions demand both approaches. In [5] the authors
propose a set of policies to regulate service compositions and
establish a relationship among these policies and the execution
models.

III. TOWARDS A DYNAMIC

 SERVICE COMPOSITION PROCESS
In this section we first present a clear classification of

different composition strategies in terms of dynamism and
automation. Then we draw a possible path towards a fully
dynamic composition process based on a model-driven
approach.

3.1 Service composition strategies
Besides the execution model (orchestration or

choreography), two service composition characteristics have
been examined, namely the type of service
discovery/selection/binding and the degree of automation
applied for the creation of a process model: service
composition approaches may use early binding or late

binding; the process model can be created manually, semi-
automatically or automatically. As illustrated in Figure 1,
these characteristic values can be used for a classification of
existing service composition strategies in six main categories.
The fact that the borders between these categories are not
strict but fluent is made clear through the smooth transitions
between the squares. Some categories may overlap, i.e. there
are composition approaches that may be assigned to two or
more categories. To give an example: besides early and late
binding there may be several variations in between, such as
the specification of a restricted set of service candidates at
design time from which one service is chosen and invoked at
run-time.

In the previous discussion regarding the implications for
an actor who creates and provides composite services, it was
argued that composition approaches applying late binding
mechanisms are more adaptable to a changing environment,
where

Figure 1: Classification of Service Composition Strategies

third party providers are frequently leaving and joining.

Furthermore it was argued that a high degree of automation
during creation of a process model cuts down development
costs and accelerates time-to-market, thus resulting in a higher
flexibility of a composite service provider. In addition, quality
aspects, such as reliability, have been considered. When
combining the terms adaptiveness and flexibility to the more
generic term dynamics, a coarse-grained and more business-
oriented classification in static, semi-dynamic and dynamic
service composition strategies can be made (see Figure 1).
Taking into account the above mentioned attributes cost
efficiency, time-to-market and reliability, it can be argued that
a high degree of dynamics for service composition has
positive effects on the providers' profitability. On the other
hand this does not inherently mean the more automation the
better. The degree of dynamics applicable in a real world
context is limited by many more factors, being trust (see
Section 3.2) one of the most relevant. In addition,
performance issues can also represent a problem, since
interacting with a broker for service discovery and match-
making as well as applying sophisticated AI algorithms for
automated plan generation may be time-consuming tasks.

 3.2 Model Driven Approach
The Model Driven Architecture (MDA)[10] is a new

Downloaded from www.VTUplanet.com

approach proposed by the Object Management Group (OMG)
to develop applications and write software specifications. It is
based on three standards: the Unified Modeling Language
(UML), the MetaObject Facility (MOF) and the Common
Warehouse Metamodel (CWM). These standards should
facilitate the design, description, storage and exchange of models.
The MDA approach separates the specification of the
operation of a system from the details of the way that system
uses the capabilities of its platform. It uses abstract models
to specify all the logic of the application where concepts on
languages or platform are irrelevant. Later, these models are
used to create new models which express the requirements of
the system in a specific platform. Note that Platform
independent and platform specific are not absolute concepts:
what is specific to one system can be independent to another.
The MDA specifies that the following models should be
created during a development process [10]:

• Computation Independent Model (CIM): also
called a domain model, focuses on the
environment and requirements of the system.
The details of the structure and processing are
hidden;

• Platform Independent Model (PIM): provides a
description of the system from a platform
independent viewpoint, focusing only on the
system functionalities;

• Platform Specific Model (PSM): describes the
system combining the specifications in the PIM
with the details regarding the platform where the
system will run.

The great advantage in using MDA is the ability to
transform a platform independent model (PIM) into a
model capable of running into a great variety of technologies.
MDA assumes that technology is very volatile, thus an
automatic PIM-PSM transformation can save time and money
by improving the efficiency of steps like implementation,
integration, maintenance, testing and simulation. In an ideal
world, the developer would simply submit the PIM to
generators which would produce in the end executable code.
But the reality is different and we are far away from this - in
practice a lot of manual work must still be done. In Figure 2
we see a composition process following the MDA approach.
The process starts at the definition of CIM, usually a manual
task (step 1). This definition must include, among other
things, the identification, specification and modeling of the
composition. The UMM (UN/CEFACT Modeling
Methodology) [2] is an example of methodology that could
be used at this phase of the project. The first
transformation takes place into CIM-PIM (step 2).

 The transformation between models can be complex and,
in almost every case, parameters need to be set in the source
model in order to drive the transformation. After the
transformation, refinements should be performed in the PIM

in order to go in the direction of the executable code (step 3).
In order to stay aligned with the RM-ODP, the information
and computational viewpoint languages must be used.
Otherwise, BPMN (Business Process Modeling Notation),
UML activity diagram or EDOC profiles are also typical
languages used to design the PIM in a service composition
context. Next, a transformation from a PIM into a PSM
takes place (step 4). This transformation plays a special role
in MDA and a mapping language can be defined to automate
it. In an ideal world, the same PIM could be transformed in
several PSMs, for instance, a PSM-J2EE, PSM-CORBA,
PSM-.NET, PSM-WS or any other. The PSM can be specified
using the engineering viewpoint language defined by
ISO/IEC or UML activity diagrams with extensions for a
specific platform. As the previous transformation, some
parameters can be set in the PIM to drive the transformation
and, after it, the refinement of the PSM should be necessary
(step 5). Bzivin et al. [1] describes a PIM (UML and
EDOC) transformation to PSM (Java and Web Services),
focusing on the static aspects of the mappings. Patrascoiu [11]
presents the mapping from EDOC profiles to Web Services
using a transformation language called YATL, also

Figure 2: The Composition process following an MDA approach

considering the dynamic aspects of a composition. A
framework proposal for service composition using the MDA
approach applied to the e-Government area was presented by
Tizzo et. al.[15].

Finally, the last transformation: PSM-code (step 6). The
code is the composition described in some executable
language (BPEL for example). A very detailed PSM can
describe the whole service composition logic. So, the gap
between PSM and code can be very small. But, as the
previous transformations, fine adjustments can be necessary
before actually running it (step 7). The code, added to the
deployment description, completes the models that are
necessary to run the composition (step 8). Analyzing the
MDA approach in a reverse way, the automatic code
generation would start in the PSM-code transformation.
When it’s possible to produce a full executable code from this
transformation, the code would be hidden and in fact the PSM
would be executed by a virtual machine. This process is
analogous to the one that happens with a traditional compiler
or interpreter. Going further, if we apply this automatization

Downloaded from www.VTUplanet.com

within the PIM-PSM transformation, a virtual machine could
execute the PIM. The next section presents the challenges and
guidelines in order to archive this goal.

3.3 Using Semantics and MDA to increase the dynamism in
service composition
According to the MDA (see previous section), the

automation may take place in to different directions: from
one model to another (model transformations) and inside a
model (model refinement). During these steps, the
abstraction level is gradually reduced. Note that the service
compositions, which are described using abstract services, need
to be binded to concrete services at a certain moment in time.
The use of semantic descriptions and ontologies plays a
special role in this stage. The composition described in a CIM
is a description of a sequence of tasks and its data and
control flow. At this point, a task is an abstract service, i.e.,
it is only a service description and it may not have an
implementation. The information used to describe a task is
composed of four fundamental elements: signature,
preconditions, post conditions and information invariants [7].
Non-functional aspects can also be described. The activities
in a CIM must then be detailed process done during the
CIM-PIM transformation and/or PIM refinement. The
automatic (or semi-automatic) transformation and refinement
must rely on semantic descriptions to provide machine-
readable information about each task. Algorithms based on
AI techniques [13] (such as Situation calculus, PDDL, Rule-
based planning or Linear Logic) can use these descriptions to
decompose CIM tasks or refine the PIM. As already mentioned
in Section 2.1, one of the characteristics that can be found in
dynamic compositions is the possibility of selecting the
participant services. Theoretically, this can be done at the
PIM, PSM, code or run-time (late-binding): when it will
happen can be determined by a technology restriction or by a
project decision: (1) the BPEL language does not allow service
selection at run-time, forcing the developer to do it before; (2)
on the other hand, when the process environment changes
over time, the developer can decide to do the selection as later
as possible.

 In order to perform the selection of services and
considering the late-binding scenario, the result of step 8
(Figure 2) would be a composition of Abstract Services, to be
bound to Concrete Services at run-time. In Figure 4, this
process is illustrated. An engine receives the composition
description (i.e. the code), starts to run it and for each abstract
service (described with semantic information), a service
repository (or a service broker) is contacted in order to
discover which service will be the responsible for executing
that activity, always considering the associated ontology.

IV. AN EXAMPLE

In order to apply the techniques presented in Section 3,
we consider now an example in the e-Government context.
The goal of the composition is to provide birth certificates to
citizens through an e-Government portal. First of all, the
portal checks the municipality where the citizen was born
(city of birth). This is an essential step in order to correctly
determine which services will participate in the
composition. For different municipalities, even though the
CIM is the same, different services should be selected and a
different sequence of activities might be performed. That is
also an important fact to justify the use of a dynamic
strategy in this scenario. Furthermore, each one of the
activities involved in the process can be performed by services
located in different organizations. This would also create the
necessity of considering aspects such as privacy, autonomy
and security, omitted in the example for not being in the
scope of this paper. An interesting strategy for handling
these cross-border issues is the use of Interaction Policies [5].
Referring back to the strategies presented in Section 3, and
considering a unique CIM as input, the information ”city
of birth” may be used in one of the following manners:

• Considering that each activity of the CIM could
be implemented in a different way for different cities, the
”city of birth” is used to determine the result of the CIM-
PIM transformation and refinement. That is, each city
might have a different associated PIM;

• If besides the same CIM, the PIM is also identical
for all municipalities, the differences might occur in the
PSM. It means that the activities are exactly the same for all
cities, but each city may rely on a different technological
platform;

• when the CIM, PIM and PSM are identical, only
one composition is built, deployed, and the ”city of birth” is
used as parameter for selecting the correct concrete services to
perform each of the activities in a given execution instance.

Note how one single variable, depending on the strategy
adopted and on the characteristics of the problem, may have a
great impact on the result composite service. Remember that in
our example, the citizen requests the emission of a birth
certificate at an e-Government portal. The steps of this
process described in the CIM (Figure 5) are:

1. The citizen has to pay for the emission of the
certificate;

2. If the payment succeeds, the process continues and the
request is forwarded to a public servant (step 3). If not, the
citizen must be notified about the problem;

3. A municipality servant must check the pending
certificate emission request and validate them. In case of his
approval, the request proceeds to step 4. If the servant, for
any reason, denies the request, the citizen must be notified;

Downloaded from www.VTUplanet.com

4. Finally, the certificate must be emitted and the citizen
notified about the status of his request.

Other requirements of the process could also be modeled in
the CIM (in fact they are necessary if we desire to
automatically proceed to next step in the MDA process), but
it is not in the scope of this article to further detail them. As
shown in Figure 2, the next steps in our strategy are then the
transformation of the CIM into a PIM and the PIM refinement
(Figure 6). We consider in our example that each municipality
may have its own PIM, and that the information ”city of
birth” will be important in all transformations and
refinements and also in the execution phase (to correctly select
and bind the abstract services to concrete implementations).
Therefore, the PIM-PSM and PSM-Code transformation
would be analogous to the CIM-PIM transformation
illustrated in Figure 6.

In order to implement these transformations we consider
the associated ontology, the services registry and also a database
with previous existing activity models. This model database is
particularly important because it contains, at each level, a
description of the possible activity mappings to the immediate
lower abstraction level in the composition (see Figure 3).
Note that if we do not rely on this strategy, we must them
adopt some AI technique (Section 2.2) to perform the
abstraction level change.

In Figure 7 we see the UML Activity Diagram which
is part of the PIM for a given municipality. Differently
from the CIM, the PIM describes in more details the sequence
of activities that should be performed to successfully complete
the process:

• An activity called ”receiveCitizenData” is
responsible for getting the citizen request and information;

Figure 4: Composition with late (semantic-based) binding

Figure 5: CIM (UML Activity Diagram)

• The payment information is sent to the activity
”receivePaymentInfo”, that checks whether the
citizen will pay by Credit Card or by Payment
Order, and then calls the associated activity to
actually perform the payment (”debitCC” or
”paymentOrder”);

• If the payment was successful, the process proceeds
to step 4. If not, an e-mail notification activity must
inform the citizen the reason of he failure;

• A public servant participates in the activity
”employeeApprovalService” and checks if everything
is fine with the request, validating it. In case of
approval, the process proceeds to step 5. In case of
failure, the citizen must be informed by the activity
”emailNotification”;

• The certificate is generated electronically
(”certificate-Generator”) and then printed and
stamped (”certificateEmission”), being finally the
citizen notified of the success of his request and
informed about the procedures to pick up the
document.

Next follows a (possible automatic) transformation from the
PIM into a PSM which can be, for instance, a BPEL specific
one. Finally a PSM-Code transformation takes place, and the
resulting composition code (made of abstract services) is
deployed. At run-time, the binding to the concrete services is
performed like Figure 4 illustrated.

Figure 6: CIM-PIM transformation and refinement

Downloaded from www.VTUplanet.com

Figure 7: PIM (UML Activity Diagram)

V. CONCLUSIONS AND FINAL REMARKS
The proposal of effective solutions to enable

interoperability among heterogeneous and inter-organizational
systems remains a key issue in the development of new Web-
based applications, especially in the e-Business and e-
Government contexts. The so called Service-Oriented
Architecture, and more specifically its Composition layer,
appears as a promising solution to deal with these demands.
Even though most part of the academia and industry
considers that Dynamic (and/or Automatic) Service
Composition is the next stage to be reached, there is still a
lot of misuse and misunderstanding regarding these
concepts. In this paper, our first contribution is the proposal
of a clear classification of different composition strategies
with regards to their levels of dynamism and automatization.

Besides this classification, another important contribution
of our paper is the introduction of a generic model driven
approach for composing services, which is further specialized to
illustrate the techniques that can be applied to enable fully
dynamic service compositions. Aspects like dynamic selection
of services and the use of AI techniques to automatically
generate the execution plans are also discussed. An example
service in the e-Government context is presented to illustrate the
use of the proposed techniques. As already mentioned, the goal
of this paper was not to focus on any specific technology or
implementation solution, but rather to critically analyze the
challenges and possible alternatives regarding service
compositions in general. An interesting extension to this
work would be to apply the proposed strategies in some
technology specific scenario and evaluate its potentials and
limitations considering different domains and platform
characteristics.

Current Web services, without any support from agents,
still do provide the capability to seamlessly integrate different
platforms. They provide an excellent choice for implementing
distributed applications because they are architecturally

neutral. Agent technology provides several advantages, which
can be easily incorporated in existing Web services. The
capability of agents to be autonomous, cooperate with other
agents, be aware of the context in which they are invoked, and
dynamically adapt to changes in the environment are some of
the main advantages that agent have compared to current Web
services. Agent-based Web services would provide clients with
a fast, personalized, and intelligent service. This is turn will
increase the percentage of returned customers because of
higher satisfaction from services provided.

We believe that much research is still necessary and also
that a fully dynamic composition may be still far from
becoming a reality, except for specific and well-defined
application domains. Nevertheless, the research community,
having recognized the potential of the evolving Semantic Web,
has spawned several activities in the direction of Semantic
Web Services. With languages like the Web Ontology
Language (OWL), machine-understandable Web service
descriptions can be created and shared. Generic service
ontologies, such as OWL-S [3] and WSMO [7], in combination
with appropriate rule languages and new AI techniques lay the
foundations for semantically describing the functionality and
the behavior of services, and keep the road open for a future of
dynamic service compositions.

REFERENCES

[1] J . Bzivin, S. Hammoudi, D. Lopes, and F. Jouault.Applying mda

approach for web service platform. In Proc. of the 8th IEEE Intl
Enterprise Distributed Object Computing Conference (EDOC
2004), pages 58-70, 2004.

[2] CEFACT. UN/CEFACT Modeling Methodology (UMM)
 User Guide CEFACT/TMG/N093.
[3] T. O. S. Coalition. Owl-s: Semantic markup for web
 services. White paper - http://www.daml.org/services, July
 2004.
[4] A. Dogac, Y. Kabak, G. Laleci, S. Sinir, A. Yildiz, S. Kirbas, and

Y. Gurcan. Semantically enriched web services for the travel
industry. ACM Sigmod Record, 33(3), Sep. 2004.

[5] I. J. G. dos Santos and E. R. M. Madeira. Applying orchestration
and choreography of web services on dynamic virtual
marketplaces. International Journal of Cooperative Information
Systems (IJCIS), 15(1):57-85, Mar. 2006.

[6] C. Feier and J. Domingue. The Web Service Modeling Language
WSML. DERI International, WSML Final Draft, Apr. 2005.

[7] D. Frankel. Scaling the business process platform up. MDA journal
- http://www.bptrends.com, Dec. 2005.

[8] IEEE. IEEE Standard Computer Dictionary: A Compilation of
IEEE Standard Computer Glossaries. New York, NY, 1990.

[9] N. Milanovic and M. Malek. Current solutions for web service
composition. IEEE Internet Computing, 8(6):51-59, Nov.-Dec.
2004.

[10] OMG. MDA Guide Version 1.01. http://www.omg.org/cgi-
bin/apps/doc?omg/03-06-01.pdf,

 2003.

Downloaded from www.VTUplanet.com

[11] O. Patrascoiu. Mapping edoc to web services using yatl. In Proc.
of the 8th IEEE Intl. Enterprise Distributed Object Computing
Conference (EDOC 2004), pages 286-297, 2004.

[12] C. Peltz. Web services orchestration and choreography. IEEE
Computer, 36(10):46-52, 2003.

[13] J. Rao and X. Su. A survey of automated web service
composition methods. In Proc. of 1st Intl. Workshop on Semantic
Web Services and Web Process Composition, July 2004.

[14] S. Ross-Talbot and N. Bharti. Dancing with Web Services: W3C

chair talks choreography.
 http://searchwebservices.techtarget.com/, Mar 2005.
[15] N. P. Tizzo, J. R. Borelli, M. de Jesus Mendes, L. Damasceno, A.

Kamata, A. Figueiredo, M. A. Rodrigues, and J. G. S. Junior.
Service composition applied to e – government. In IFIP 18th
World Computer Congress, Building the E-Service Society: E-
Commerce, E-Business and E-Governement, pages 307-326. Kluwer
Academic publishers, 2004.

Downloaded from www.VTUplanet.com

