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Abstract—Agent-based systems have gained immense popu-
larity in the last decade or so. Reasoning methods such as
planning and decision-making under uncertainty applied to
agents and multi-agent systems is an important area of research
in agent-based systems. Most works in planning in uncertain
environments incorporate sensing actions. We wish to address
planning problems when there are no such sensing actions. For
this, we introduce the notion of ‘try actions’ and develop a
logic PDL try that is an extension to propositional dynamic
logic (PDL). The logic also allows specification of the implicit
knowledge of an agent. We illustrate planning in our logic with
a new adaptation of the popular blocks world domain. Example
programs (plans) are discussed in detail for single agent and two
agent situations.
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I. INTRODUCTION

One of the primary goals of Artificial Intelligence is to de-
sign intelligent agents. Some typical tasks of intelligent agents
are searching, planning, and learning. Most of the planning
research in classical planning is about finding a sequence of
actions to achieve some goal. Deductive planning [10], [8],
on the other hand, considers plans as programs and planning
as kind of program synthesis. In classical planning, plan
synthesis process is algorithmic, i.e., to design an efficient
algorithm (planner) that finds a plan. In deductive planning,
plan synthesis is reduced to theorem-proving [10], i.e., proving
a theorem implies finding a plan. The difficulty in classical
planning is due to the large size of the state-space. In deductive
planning, the difficulty is in reasoning about plans, which
implies reasoning about correctness, termination conditions of
programs.

Uncertainty in the real-world usually manifests in the fol-
lowing ways: (i) incomplete state information, and (ii) nonde-
terministic outcomes of actions. It has been shown in [10], [8],
[1] that even for simple domains involving uncertainty, there
exist no classical plans. In such scenarios it is meaningful
to specify plans as programs. In this paper we consider
planning under uncertainty where the world manifests the
above features.

The idea is to specify and reason about plans viewed as
programs. We wish to look at logical formalisms for reason-
ing about actions of an agent. Propositional dynamic logic
(PDL) [7] is a natural vehicle for studying how actions (plans)
change truth values. There has been some work in automated
planning [11], [6], [12], and agent programming [13] that
employs PDL. Our work also employs and enhances PDL.
However, the directions in which PDL is extended differs from

others [11], [6], [12]. A detailed discussion in this regard is
given in Section V.

The rest of the paper is structured as: in Section II we
give some motivations, in Section III we present the logic
PDL try, in Section IV we give detailed example programs
for single agent and multiple agent scenario, in Section V we
discuss on the related works, and in Section VI we conclude.

II. MOTIVATION

One way to overcome uncertainty in unpredictable environ-
ments is by using sensing actions. A sensing action is like
an observer that does not change the state of the world. Some
examples of sensing actions include litmus test, a read action, a
look/observe action, and the Unix commands ‘ls,pwd’. Sensing
actions are considered in [8], [1], [4], [5], [9]. However,
Spalazzi and Traverso [12] consider planning in a reactive
system where sensing actions may change the state of the
world and moreover such actions may fail (actions may abort).
Thus, when sensing actions fail, the plans–programs–involving
sensing actions cannot be executed.

We wish to address the following: how can we do planning
in (some) uncertain environments when there are no sensing
actions similar to those mentioned above.

The example domain that we consider is adapted from
the popular Blocks World (BW) domain. The fluents
in BW domain are ontable(x), clear(x), handempty,
on(x, y). The operators are pickup(x), putdown(x),
stack(x, y), unstack(x, y). The operator stack(x, y) is used
to denote put block x on top of block y; unstack(x, y) is
the reverse of stack(x, y). An action is a ground instance
of an operator. For example, if we have 3 blocks-A,B,C,
pickup(A), putdown(C), stack(A, B), etc., are the actions.
Let the initial configuration be that all the blocks are placed
on the table. The final configuration is a tower of blocks with
A at the bottom, C at the top, and B on top of A.

The planning problem is to find a plan that transforms the
initial configuration to the final configuration.

Modified BW domain: We assume that the blocks are of
different weights. In the original BW domain, the precondi-
tions of pickup(x) are clear(x), handempty, and ontable(x).
We redefine pickup(x) by attaching one more pre-condition:
block is not heavy. In the modified domain, we assume that
the planning agent has no information regarding the weight
of a block. We define a new operator apply lever(x, y) that
places a block x on top of block y, when both the blocks

Downloaded from www.VTUplanet.com

Admin
Text Box
978-1-4244-4711-4/09/$25.00 ©2009 IEEE 

Admin
Text Box
IAMA 2009



x, y are heavy, and there is nothing on top of x, y. During
planning a heavy block should not rest on a light block.
Consider an example scenario given in figure 1. Let the initial
configuration be that all the blocks are placed on the table. The
final configuration is a tower of blocks such that the lighter
blocks rest on top of heavy blocks.

A B C

final

weights unknown

A,B: heavy

C: light

initial configuration configuration

B

A

C

Fig. 1. Modified Blocks World Domain

The modified BW (MBW) domain differs from the BW
domain in the following:

1. In BW domain, the initial state is completely known.
States are completely observable. In MBW domain, states are
partially observable.

2. In BW domain, the action outcomes are deterministic.
In MBW, only the ‘try’ actions–that we introduce here–are
nondeterministic.

Some Possible approaches to the Modified BW domain
1. Using sensing actions that provide information regarding

weights of the blocks. Let us assume that these actions act as
observers and that they do not fail. Then, there exists a plan
(program), similar to those given in [8], [1], that solves the
planning problem. It may be noted that there is no sequential
plan that solves the above problem.

2. Using sensing actions that may fail (abort). Then, there
exists a plan (program) specified in the logic FSP [12],
an extension to propositional dynamic logic, for the above
problem.

3. [Our approach] We assume that there are no sensing
actions. The planning agent has no information about the
weight of a block. But it can always ‘try’ some action to find
whether a block is heavy or not. We introduce the operator
try pickup(x) that is quite similar to pickup(x), except that
unlike pickup(x) now try pickup(x) may be enabled at the
initial state. If it succeeds, its outcome is exactly that of
pickup(x), i.e., holding(x) becomes true. Now suppose that
try pickup(x) fails. (In this paper we assume that the notion
of failure is with respect to goal attainment and not that of
failure of actions (abort) as in [12].) Then the agent comes
to know that the block is heavy, implying that pickup(x)
cannot be executed at that state. So the try action allows the
agent to update its knowledge about the world. A try action
is nondeterministic with two possible outcomes depending on
whether it succeeds or it fails.

In order to specify plans (programs), we propose a logic
that is an extension to propositional dynamic logic (PDL) in
two directions–(i) it incorporates such try actions, and (ii) it
allows specification of the implicit knowledge of an agent.

III. A PROPOSITIONAL DYNAMIC LOGIC WITH TRY
ACTIONS

In propositional dynamic logic (PDL) [7], complex formulas
and programs are built from atomic propositions and primitive
actions. Our logic PDL try is an enhancement of PDL where
we introduce try actions and a knowledge operator.

Our logic consists of two sets of symbols: P–the set of
atomic propositions and A–the set of primitive actions. We
include in A the set of ‘try actions’, i.e., try a is a primitive
action corresponding to an action a ∈ A. If try a is an
action for some a ∈ A, we include the propositions σ(try a)
and τ(try a) in the set of atomic propositions P to indicate
that the ‘try action’ has succeeded or failed respectively. By
success we mean that an action has achieved the desired
postcondition. By failure we mean that an action did not
achieve the desired postcondition.

Syntax: From P and the set of actions (including the ‘try
actions’) the set φ of propositions and the set π of plans is
defined by mutual induction as:

φ := p ∈ P | ¬φ1 | φ1 ∨ φ2 | [π]φ1 | 〈π〉φ1 | Kφ

π := a, try a ∈ A | π1; π2 | π1 ∪ π2 | π∗

1 | φ?

Semantics: The semantics of PDL is defined in terms of a
labeled transition system (LTS). Since PDL try is similar
to PDL, so it will also be defined in terms of an LTS.
The difference in the two logics is due to the presence
of the constructs try and K that denote ‘try actions’ and
‘knowledge’ respectively.

Thus we define the transition system (or frame) as F =
(S,∼,→), where

• S is a (finite) set of possible-world states,
• ∼ is the equivalence relation called the indistinguishabil-

ity relation of the agent; ∼ defines an equivalence class,
• →⊆ S × A′ × S is the transition relation, where A′ =

A ∪ {try a | a ∈ A}, such that,
– →a⊆ S × S, a ∈ A, and
– →try a⊆ S × S, a ∈ A

and the following conditions(1-4), given below, hold in F .

The information state of the agent is captured by the
equivalence class. The agent does not know the true state
of the world. The agent views the actual (true) state of the
world as a set of states that it thinks is possible. For example,
if the weight of a block in the BW domain is not known,
then the agent considers two states possible–one in which
block heavy(x) and the other in which ¬block heavy(x).
So to the agent a set of states is possible when it is in some
state. try a is a way by which the agent can learn and refine
the partition.

For the transition system F , we define the following con-
ditions as:
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• Condition1. ∀(s1, s2, a) if s1 ∼ s2 then try a is
enabled at s1 iff try a is enabled at s2

• Condition2. ∀(s1, s2, s
′

2, a) if (s1, a, s2) and
(s1, try a, s′2) then s2 = s′2

• Condition3. ∀(s, a) if try a is enabled at s, then ∃s′

s.t. s ∼ s′ and a is not enabled at s′

• Condition4. ∀(s1, s2, s
′

1, s
′

2, a) if s1 ∼ s2 and
(s1, a, s′1) and (s2, a, s′2), then s′1 ∼ s′2

Condition1 says that try a is enabled in all the equivalent
states. We can express this condition in our logic as:
〈try a〉> ⊃ K〈try a〉>, the formula is to be read as: if a
‘try’ action is enabled at a state then the agent knows it.

Condition2 says that if the state resulting from performing
an action a at s1 is s2 and that of performing try a at s1 is
s′2, then s′2 is no different from s2.

Condition3 says that in any set of equivalent states, there
always exist a state where the basic action corresponding to
the ‘try’ action is not enabled. We can express this condition
in our logic as: 〈try a〉> ⊃ ¬K〈a〉>, the formula is to be
read as: if a try a is enabled at a state s then it implies that
the agent does not know whether a is enabled at s. This is
obvious, since if the agent knew that a is enabled then why
would it try.

Condition4 says that if there is no information gain in a
set of equivalent states, then the resulting states are also
equivalent. This condition is equivalent to saying in our logic:
[a]Kα ≡ K[a]α

A model is defined as M = (F, V ) where F = (S,∼,→)
and V is a valuation function V : S → 2P such that,

–if (s, a, s′) and (s, try a, s′) then σ(try a) ∈ V (s′) (by
this we mean that try a succeeded at s)

–if (s, try a, s′) and a is not enabled at s then
τ(try a) ∈ V (s′) (by this we mean that try a failed
at s)

Given a model M , a state in S, the satisfaction relation |=
for different types of formulas α is given as:

M, s |= p iff p ∈ V (s) for p ∈ P

M, s |= α1 ∨ α2 iff M, s |= α1 or M, s |= α2

M, s |= ¬α iff M, s 6|= α

M, s |= [π]α iff for all t, s →π t and M, t |= α

M, s |= 〈π〉α iff there exists t, s →π t and M, t |= α

M, s |= Kα iff for all s′, s′ ∼ s and M, s′ |= α

The transition relation for any general plan π is obtained
recursively from the transition relation of the primitive actions.
This is done in a standard way as in PDL.

s →π1;π2
t iff there is a u such that s →π1

u and
u →π2

t

s →π1∪π2
t iff s →π1

t or s →π2
t

s →π∗

1
t iff there are s1, . . . , sn such that s =

s1 →π1
s2 →π1

. . . →π1
sn = t

s →φ? s′ iff s′ = s and s′ |= φ

IV. ILLUSTRATIONS

We shall illustrate with the MBW domain the plans (pro-
grams) for the logic PDL try. Let us assume that there are
3 blocks (A,B,C). See figure 1. Let the initial configuration
(I) be that all the blocks are placed on the table. The final
configuration (G) is a tower of blocks such that the lighter
blocks rest on top of heavy blocks. The weights of the blocks
are not known initially. The planning problem is to find a
plan (program) π that transforms I to G. That is, find π such
that I ⊃ [π]G, or (equivalently expressed as a Hoare-tuple)
{I}π{G} holds.

A. Single Agent

We give below the program π, that solves the given
problem, when try pickup(A) is chosen as the first action.
The programs are similar when the first action chosen is
either try pickup(B) or try pickup(C). The program
if ϕ then α else β ≡ ϕ?; α ∪ ¬ϕ?; β. The changes in
agent’s knowledge is also given (within comments).

π = try pickup(A);
if σ(try pickup(A)) then (π1 ∪ π2) // K ¬heavy(A)
else try pickup(B); // K heavy(A)

if σ(try pickup(B)) then π3 // K ¬heavy(B)
else try pickup(C); // K (heavy(A) ∧ heavy(B))

if σ(try pickup(C)) then π4 // K ¬heavy(C)
else apply lever(C, B); apply lever(A, B) //

K (heavy(A) ∧ heavy(B) ∧ heavy(C))

π1 = putdown(A);
try pickup(B);
if σ(try pickup(B)) then P1 // K ¬heavy(B)
else try pickup(C); // K heavy(B)

if σ(try pickup(C)) then P2 // K ¬heavy(C)
else P3 // K (¬heavy(A) ∧ heavy(B) ∧

heavy(C))

π2 = putdown(A);
try pickup(C);
if σ(try pickup(C)) then P2 // K ¬heavy(C)
else try pickup(B);

if σ(try pickup(B)) then P1 // K ¬heavy(B)
else P3 // K (¬heavy(A) ∧ heavy(B) ∧

heavy(C))

π3 = putdown(B);
try pickup(C);
if σ(try pickup(C)) then P4 // K ¬heavy(C)
else P5 // K (heavy(A) ∧ ¬heavy(B) ∧ heavy(C))

π4 = putdown(C); apply lever(A, B); pickup(C); stack(C, A)
// K (heavy(A) ∧ heavy(B) ∧ ¬heavy(C))

P1 = stack(B, C); pickup(A); stack(A, B) // A,B light; C
anything
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P2 = stack(C, B); pickup(A); stack(A, C) // A,C light; B
anything
P3 = apply lever(C, B); pickup(A); stack(A, B) // B,C
heavy; A light
P4 = stack(C, A); pickup(B); stack(B, C) // A heavy; B,C
light
P5 = apply lever(A, C); pickup(B); stack(B, A) // A,C
heavy; B light

The program (π), above, solves the planning problem
I ⊃ [π]G.

B. Two Agents

There are two agents collaborating with each other
to solve the above problem in the MBW domain. Let
try pickup(A)1, try pickup(B)2 be the first actions chosen
by the agents 1 and 2 respectively. Before the actions were
performed there are 4 world states that the agents collectively
considers possible for the two blocks. After the actions are
performed each agent knows the correct world state. Now the
agents communicate among themselves to know the outcomes
of the individual actions. As a result of the communication,
the knowledge of the agent changes, thereby reducing its
uncertainty of the world. The if-fi construct is defined as
if ϕ1 ⊃ α1 | . . . | ϕn ⊃ αnfi ≡ ϕ1?; α1 ∪ . . . ∪ ϕn?; αn

is the alternative guarded command. Thus the overall program
π will look like:

π = try pickup(A)1 || try pickup(B)2; // || denotes
actions performed concurrently
// Now the agents communicate. There are 4 possible
outcomes of the ‘try’ actions. Consider the case when
both the try actions succeed. Thus, K1 ¬heavy(A) and
K2 ¬heavy(B)–so agent 2 performs stack(B, C). After
communication, K2 ¬heavy(A) and K1 ¬heavy(B)–
so agent 1 performs stack(A, B). Moreover the mutual
knowledge of the agents become K1K2 ¬heavy(A) and
K2K1 ¬heavy(B).

if (σ(try pickup(A)1) ∧ σ(try pickup(B)2)) ⊃
stack(B, C)2; stack(A, B)1

| (σ(try pickup(A)1) ∧ τ(try pickup(B)2)) ⊃ P1

| (τ(try pickup(A)1) ∧ σ(try pickup(B)2)) ⊃ P2

| (τ(try pickup(A)1) ∧ τ(try pickup(B)2)) ⊃ P3

fi // end of program π

P1 is given below. P2 is similar.
P1 = try pickup(C)2;

if σ(try pickup(C)2) then stack(C, B)2; stack(A, C)1

else apply lever(C, B)2; stack(A, C)1

P3 = apply lever(A, B)1; try pickup(C)1;

if σ(try pickup(C)1) then stack(C, A)1

else apply lever(C, A)1

V. RELATED WORK

We compare our work with that of others’ based on the
following broad areas.

Sensing actions have been addressed in [4], [5], [1], [9],
[12]. In [4], [5] action description languages are proposed.
It allows specification of conditional plans arising out of
the outcomes of sensing actions. In [9] plans are viewed
as programs and a theory based on situation calculus is
developed for reasoning about actions. A theory of sensing
actions based on a transition function approach is given
in [1]. In all these papers except [12] sensing actions are like
observers–their outcomes do not change the world state. We
consider ‘try actions’ that change the world state; so it differs
from the sensing actions in [4], [5], [1], [9].

World state and information state. In uncertain
environments, we need to distinguish between the actual state
of the world and the information state of an agent (agent’s
knowledge of the world). The paper [1] considers three types
of states–world state, knowledge state (k-state), and combined
state (c-state) that consists of a world state and a k-state.
Transition functions map a pair of c-state and an action to
another c-state. In our work, an agent’s information state is
modeled by the equivalence relation ∼ on the possible-world
states.

Failure of actions. In [12] some example scenarios from
reactive planning domains are considered where sensing
actions fail. Here success/failure of actions are not related
to goal attainment/non-attainment. Actions fail when they
abort. In our work success/failure of actions are related
to goal attainment/non-attainment. Another line of work,
though not closely related to ours, is that in [3], [2]. They
consider a robotic application where plans encoding iterative
trial-and-error strategies like ‘pick up a block until succeed’
are the only acceptable solutions [3]. The failures of actions
in [3], [2] are similar to those in [12], so the iterative plans
in the former can be specified using FSP [12].

Knowledge operator. Explicit use of knowledge operator
when sensing actions are present is considered in [5], [9],
[6]. Formulations of knowledge based on situation calculus
is given in [5], [9]. They define the operator Know(φ, s)
to mean that the agent knows φ at situation s, which is
true when φ holds at all situations that the agent considers
possible at s. In [6], the meaning of Know(φ) is based on
the possible-worlds semantics, where φ is restricted to atomic
propositions. The definition of knowledge operator Kφ, given
in this paper, is also based on possible-world semantics, but
φ may involve complex plans as well.

Dynamic logic based planning. A logic for failure, sensing,
and planning (FSP ) is proposed in [12]. FSP is an extension
of PDL with the converse operator. A loop-free fragment of
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PDL is considered in [11], [6] that concerns programs with
if-then-else construct. In [6] the Know(φ) operator occurs
in programs, when sensing actions are used. PDL try differs
from FSP in that (i) converse operators are not used in the
former, (ii) the semantics of failure/success are different, (iii)
the ‘try actions’ and the knowledge operator Kφ are not used
in the latter. PDL try uses the full expressive power of PDL,
which is not the case in [11], [6].

VI. CONCLUSIONS AND FUTURE WORK

The paper made a first attempt to deal with planning under
uncertainty when there are no conventional sensing actions.
We demonstrated the usefulness of ‘try actions’ with the MBW
domain taking both single agent and multi agent cases. As
part of our ongoing/future work we wish to address: (i) to
establish the complexity of the plan existence problem for
PDL try, (ii) to show how plan extraction can be done for
PDL try formulas, and (iii) to extend PDL try for multi
agent systems, and then to address the problems given in (i)
and (ii).
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