
A Propound Method For Agent Based Dynamic
Load Balancing Algorithm For Heterogeneous

P2P Systems

Rupali Bhardwaj V.S. Dixit Anil Kr. Upadhyay
Research Scholar, AIMACT Dept of CS & IT Dept of IT
Banastali Vidyapeeth ARSD College IMR
Rajasthan, India Delhi, India Ghaziabad, India
rupalibhardwaj09@gmail.com veersaindixit@rediffmail.com anilupadhyay2005@gmail.com

Abstract- In peer to peer (P2P) systems agent based load balancing
is one of the most important problem. P2P systems are
characterized by decentralization, scalability and dynamicity, such
that they can been seen as instances of complex adaptive systems
(CAS). In this paper we present ant-based load balancing
algorithm, which effectively balances loads of peers distributed
among P2P systems with the help of autonomous agents called
Ants. Ants search a pair of overloaded and underloaded nodes
through wandering on network and transfer tasks from different
overloaded nodes to different underloaded nodes simultaneously. It
is assumed that time break that ants spend on searching a pair of
overloaded, underloaded node and transfer of virtual servers
between them is negligible. The algorithm developed increases
response time of submitted jobs and decreases communication
overhead by load transfer in terms of virtual servers between
overloaded and underloaded nodes simultaneously.

Keywords- agent, underloaded node, overloaded node , Ant

I. INTRODUCTION

A P2P system in which every participating node acts both as
a client and as a sever (servent) and share a part of their own
hardware resources such as processing power, storage capacity
or network bandwidth. These resources accessible by other peers
directly without passing intermediate entities. The participants
of such a network are thus resource providers as well as resource
requestors. Peer to Peer systems have a no of advantages over
client server system such as scalability, fault tolerance,
dynamicity, and performance. Scientists/ Researchers conducted
a large amount of research in some challenging areas such as
security, Reliability, Flexibility, Load balancing, Searching etc.
A p2p system will have a number of peers (nodes) working
independently with each other. Some of them are connected by
link while some are not. Each node has an initial load, in terms
of virtual server, and has a different processing capacity. To
minimize the time needed to perform all tasks, load has to be
uniformly distributed over all resources according to their
capacity [3]. A load balancing algorithm attempts to improve the

response time of user’s submitted jobs by ensuring maximum
utilization of available resources. Generally load balancing
algorithms can be classified into static and dynamic
categories. In static load balancing algorithm a job is assigned
to a fixed resource when it is generated to the system, it is
easier to implement and placement of task on a resource is
static so that estimation of computation cost can be made in
advance but movement of task is not allowed in the system so
that system remained in an imbalanced state. In dynamic load
balancing algorithm jobs allocated/ reallocated to resources at
run time so that imbalanced state of system can be resolved by
redistributing jobs in real time. A load balancing algorithm
attempts to balance the load by transferring the virtual servers
from heavily loaded nodes to lightly loaded nodes in an
attempt to ensure better system throughput in terms of
response time. A load balancing algorithm is designed by
taking into consideration the following issues: Load
estimation policy, process transfer policy, state information
exchange policy, location policy, priority assignment policy
and migration limiting policy [4, 5, 14]. Complex Adaptive
Systems (CAS) can be a new programming paradigm for P2P
applications. In the CAS framework, a system consists of a
large number of relatively simple autonomous computing
units, or agents. From a P2P perspective, CAS offers several
attractive properties, including total lack of centralized control
[13, 18, 21]. In this paper we present a load balancing
algorithm, which effectively balances the loads distributed
among interconnected nests with the help of autonomous
agents called Ants. Autonomous agents (Ants) search a pair of
overloaded and underloaded nodes through wandering on network
and transfer tasks from different overloaded nodes to different
underloaded nodes simultaneously. It is assumed that time break that
ants spend on searching overloaded, underloaded node and transfer
of virtual servers between them is negligible.

The rest of the paper is organized as follows. Section 2
discusses other work that relates to the development of load
balancing algorithm. Section 3 introduces some basic

978-1-4244-4711-4/09/$25.00 ©2009 IEEE IAMA 2009

Downloaded from www.VTUplanet.com

definitions related to paper. Section 4 presents a propound
method for agent based dynamic load balancing algorithm for
heterogeneous P2P systems. Finally, Section 5 concludes the
paper and indicates directions for future work.

II. RELATED WORK

Most structured P2P system [1], [11], [19] provide a DHT

abstraction for data storage and retrieval. Under this assumption
the number of objects per node varies within a factor of O (log
N), where N is the no of nodes in the system. [19] improves this
factor by considering a subset of existing nodes instead of a
single node when deciding what portion of the ID space to
allocate to a new node. [11] was firstly use the concept of virtual
server for load balancing by allocating log N virtual servers per
node. They assume that node capacities and loads are
homogeneous and object Ids are uniformly distributed. [7]
accounts for node heterogeneity by allocating to each node some
number of virtual servers proportional to node capacity. [6] for
load balancing dynamically balance load among peers without
using multiple virtual servers by reassigning light nodes to be
neighbor of heavy nodes. However they do not fully handle the
case of heterogeneous node capacities and while they prove
bounds on maximum node utilization and load movement, it is
unclear whether their techniques would be efficient in practice.
[1] proposed three load balancing scheme one to one. One to
many and many to many based on virtual server. [15] combines
elements of many to many scheme (for periodic load balancing
results in this emergency load balancing of one particularly
overloaded node) simulation results in this have shown that this
approach can achieve a good load balance in dynamic
environment. However it reduces load balancing problem to a
centralized problem, which may cause a single point of failure
problem and make the directory nodes more vulnerable. On the
other hand, virtual serves may be transferred between two nodes
with large link latency because it does not account for proximity
relationships of nodes when transferring virtual servers. [22]
achieves load balance by constructing a k-ary tree on top of
structured overlay. Load balancing information is aggregated
and disseminated along the k-ary tree. The nodes of the k-ary
tree are responsible for scheduling the reassignment of virtual
servers. [12] have proposed the use of the “ power of two
choices” paradigm to achieve better load balance. Each object is
hashed to d>=2 different Ids, and is placed in the least loaded
node w of the nodes responsible for those Ids. The other nodes
are given a redirection pointer to W so that searching is not
slowed significantly. [23] did not use the concept of virtual
server, proposed an fully distributed mechanism to maintain the
history of file access information, used to predict the future file
access frequencies and support the load distribution and
redistribution operations. They designs a novel load balancing
algorithm which takes the file access history and peer
heterogeneity properties into account to determine the load

distribution. [17] presented two new location policies that by
adapting to system load, capture the advantages of sender
initiated, receiver initiated and symmetrically initiated
algorithms. [10] constructed simulation for perfect balancing
algorithm in which each node had immediate and free access
to the states of all other nodes in the system. The reason why
this perfect load balancing failed is that even if a node is able
to locate least loaded node in the system there is no guarantee
that other nodes in the system are not acting on the same
information and sending their jobs to the least loaded node. In
[20] an important part of a distributed system design is the
choice of a load sharing algorithm. A performance metric
called the Q-factor (quality of load sharing) is defined which
summarizes both overall efficiency and fairness of an
algorithm and allows algorithms to be ranked by performance.
[8] given a possibly suboptimal assignment of jobs to
processors relocate a set of the jobs so as to decrease the
makespan. The goal is to achieve best possible makespan
under the constraint that no more than k jobs are relocated.

This paper [13] presented a load balancing framework which
effectively balances the workloads of the jobs distributed
among interconnected nests with the help of information
carrying autonomous agents called Ants. The ants helps to
effectively balance the loads as it wanders via the
interconnection network to find a pair of under loaded and
over loaded nests (collection of nodes)[9]. In [16] the given
work presents the “Module migration algorithm” that performs
load balancing by sort the node them in decreasing order of their
load imbalance (i.e. the deviation of a node’s load from its
reference load (w-ref)). This gives a better pairing and a more
optimized solution and by pairing nodes which is having
maximum and minimum values of load imbalance. Module
migration initiate within the pair of the nodes only.

III. DEFINITIONS

A. Autonomous Agents (Ants) – Ants are generated by nests,
autonomously moving across nest network until it fulfill its
tasks or with TTL terminated. Ants communicate with each
other by modifying their environment (modifying information
stored in nests).
B. Nest - Each nest is a peer entity capable of performing
computations and hosting resources, has a unique identifier.
Any machine connected to the internet and running anthill can
act as a nest. In response to a user request one or more ants are
generated by nest and assigned them a particular task.
C. Virtual Server - A virtual server looks like a single peer in
underlying DHT, responsible for a contiguous region of
DHT’s identifier space. A physical node can host multiple
virtual servers by accompany multiple noncontiguous region
of DHT’s identifier space. When a node become overloaded, it
can transfer one or more virtual servers to a light one. Basic
unit of load movement is virtual server. Movement of virtual

Downloaded from www.VTUplanet.com

servers can be vision as a leave operation followed by a join op,
both operations which are supported by all DHT’s.
D. Categorization of node – After collecting load information
for each node, each node is categorized as either heavy or light
or normal loaded node.

For each nest i of P2P system do
 {
 If (Li < T nesti)
 Type i = underloaded
 Else
 {
 If (Li > Tnesti)
 Typei = overloaded
 Else
 Typei =
normalloaded
 }

}
where Tnesti = (L'/C') Cnesti

 n
L' = ∑i=1 (Li/n)
 n
C'= ∑i=1 (Ci/n)

IV. ALGORITHM
The load balancer performs load balancing of nodes based on

the amount of load present in it. The nodes can be classified in
to three categories e.g. overloaded, normalloaded and
underloaded. The load of a nest is based on the number of jobs
currently in the job queue of that nest. The control flow of the
algorithm is shown in Fig 1.

.

.

Ants find a pair of overloaded and underloaded nest through
wandering on network. Each pair has one overloaded and one
underloaded node, former one is called source and later one is
called destination. The ant based load balancing algorithm is
described below-
Procedure loadbalancer ()
{

Sort nodes according to their loads in ascending order such
that most underloaded and most overloaded nest is on top and
bottom of list
For each pair of (nd,ns) do
{
removed_vs=choose_best_vs_to_remove(ns)
Transfer removed_vs from ns to nd
}
}
Procedure choose_best_vs_to_remove (nest ns)

{
removed_vs = nil
For each vs of nest ns do
{

If ((ns’s load – vs’s load) < Tns)
 {

If ((removed_vs = nil)|| (vs’s load < removed_vs’s
load))

 removed_vs = vs
}
if(removed_vs = nil)

Set removed_vs as the virtual server which has the
heaviest load

}
return removed_vs

}

V. FUTURE WORK AND CONCLUSION
In future we implement agent based load balancing

algorithm using java and compare it with other algorithms in
terms of response time and communication overhead. Ants
search a pair of overloaded and underloaded nodes through
wandering on network and transfer tasks from different overloaded
nodes to different underloaded nodes simultaneously. It is assumed
that time break that ants spend on searching a pair of overloaded,
underloaded node and transfer of virtual servers between them is
negligible. The algorithm developed decreases response time of
submitted jobs and also decreases communication overhead by load
transfer in terms of virtual servers between overloaded and
underloaded nodes simultaneously.

REFERENCES

[1] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp
and Ion Stoica, “ Load Balancing in Structured P2P systems.”, In 2nd
International Workshop on Peer to Peer Systems (IPTS) Feb 2003.

[2] Antony Rowstron and Peter Drushel, “ Pastry: Scalable, Distributed

Initialization of nests

Allocation of jobs to nests

Classification of nests
 Underloaded
 Overloaded
 Normalloaded

Threshold
parameter

Threshold
calculation

Search overloaded
and underloaded nest If exists

Process the jobs

Transfer of vs from
overloaded node to
underloaded node

No

Yes

Downloaded from www.VTUplanet.com

Object Location and Routing for Large-scale Peer to Peer Systems”, in
proc. Middleware, 2001.

[3] B. Yagoubi, Y. Slimani: Dynamic Load Balancing Strategy For Grid
Computing. Proceedings of WASET, Vol. 13, page no 260-265, 2006.

[4] B. Yagoubi, Y. Slimani: Task Load Balancing Strategy For Grid Computing.
Journal of Computer Science 3 (3), page no 186-194,2007.

[5] B. Yagoubi,H. Tayeb Lilia, H. Si Moussa: Load Balancing in Grid
Computing. Asian Journal of Information Technology 5 (10): 1095-1103,
2006.

[6] David Karger and Matthias Ruhl, “New Algorithms for Load Balancing in
Peer to Peer Systems”, Tech. Rep. MIT-LCS-TR-911, MIT LCS, July 2003.

[7] Frank Dabek, Frans Kasshoek, David Karger, Robert Morris, Ion
Stoica,”Wide Area Cooperative Storage with CFS”, Proc. ACM SOSP, 2001

[8] G. Aggarwal, R. Motwani and A. Zhu, “ The Load
Rebalancing Problem”, in Proc. ACM SPAA,2003.

[9] Hein Meling, Alberto Montresor , O zalp Babaog˘lu : Peer-to-Peer Document
Sharing using the Ant Paradigm

[10] Ian R. Philip,” Dynamic Load Balancing in Distributed System”, IEEE
1990, page no 304-307

[11] Ion Stoica, Robert Morris, David Karger, M. Frans Kasshoek and Hari
Balakrishnan, “ Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications,” in Proc. ACM SIGCOMM, San Diego, 2001,
pp149-160.

[12] J. Byres, J. Considine , M. Mitzenmacher,
” Simple load balancing for distributed hash tables”, Proc. IPTPS, Feb.
2003.

[13] K. Saruladha, G. Santhi :Behavior of Agent Based Dynamic Load
Balancing Algorithm for Heterogeneous P2P Systems. International
Conference on Computational Intelligence and Multimedia Applications
2007, IEEE, 109-113

[14] Kabalan, K.Y., W.W. Smar and J. Y. Hakimian: Adaptive Load Sharing in
Heterogeneous Systems: Policies, Modifications and Simulation. Intl. J.
Simulation, Page No. 89-100, 2002.

[15] Karthik Lakshminarayanan, Sonesh Surana, Richard Karp and Ion Stoica,
B. Godfrey “ Load Balancing in Dynamic Structured P2P Systems.”, In
Proc IEEE INFOCOM Mar 2004.

[16] Neeraj Sharma, Girish Sharma: An Algorithm for Dynamic Load Balancing
in Heterogeneous Distributed System using Module Migration
Probabilities. IACC 2009, 2483-2486

[17] Niranjan G. Shivaratri, Philip Krueger, “ Two adaptive location policies for
global scheduling algorithms”, IEEE 1990, page no 502-5098.

[18] O zalp Babaoglu, Hein Meling, Alberto Montresor: Anthill: A Framework
for the Development of Agent-Based Peer-to-Peer Systems

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker, “ A scalable
Content- Addressable Network”, in Proc. ACM SIGCOMM, 2001

[20] Wang, Y.T., and Morris, R.J.T.,” Load sharing in distributed Systems” ,
IEEE Transactions on Computers, 34:204-217,1985

[21] Y.Wang, J. Liu: Dynamics of Agent Based Load Balancing on Grids
[22] Y. Zhu, Y.Hu,” Efficient proximity Aware load balancing for DHT-based

P2P systems”, IEEE Transactions on parallel and distributed systems, Vol.
16, No.4, April 2005.

[23] Z. Xu, Laxmi Bhuyan,”Effective load balancing in P2p Systems”, Proc.
CCGRID 06 IEEE.

Downloaded from www.VTUplanet.com

