
A Non-Pheromone based Intelligent Swarm
Optimization Technique in Software Test

Suite Optimization

*D.Jeya Mala, M.Kamalapriya, R.Shobana,V.Mohan
Thiagarajar College of Engineering, Madurai, Tamil Nadu, India.

{djmcse@tce.edu, mkpriya@tce.edu, rsshobana@tce.edu}

Abstract - In our paper, we applied a non-pheromone based
intelligent swarm optimization technique namely artificial bee
colony optimization (ABC) for test suite optimization. Our
approach is a population based algorithm, in which each test case
represents a possible solution in the optimization problem and
happiness value which is a heuristic introduced to each test case
corresponds to the quality or fitness of the associated solution.
The functionalities of three groups of bees are extended to three
agents namely Search Agent, Selector Agent and Optimizer
Agent to select efficient test cases among near infinite number of
test cases. Because of the parallel behavior of these agents, the
solution generation becomes faster and makes the approach an
efficient one. Since, the test adequacy criterion we used is path
coverage; the quality of the test cases is improved during each
iteration to cover the paths in the software. Finally, we compared
our approach with Ant Colony Optimization (ACO), a
pheromone based optimization technique in test suite
optimization and finalized that, ABC based approach has several
advantages over ACO based optimization.

Keywords: Software Testing, Test Optimization, ABC (Artificial Bee
Colony) Optimization, Agents, Test adequacy criterion, ACO (Ant
Colony Optimization)

I. INTRODUCTION
The Major Objectives of Software Testing are to uncover as
many as errors (or bugs) as possible in a given timeline, to
demonstrate a given software product matching its
requirement specifications, to validate the quality of a
software testing using the minimum cost and efforts and to
generate high quality test cases that perform effective tests,
and issue correct and helpful problem reports (4).

As per Deb (2), many of the complex multi-variable
optimization problems cannot be solved exactly within
polynomially bounded computation times. Software testing is
one of the multi-variable optimization problems in which
generation and selection of efficient few test cases cannot be
solved within bounded times. Meta-heuristic search algorithms
are applied to solve these types of problems to find near-
optimal solutions in reasonable running times. The non-
pheromone based swarm intelligence algorithm described in
this paper is a search algorithm capable of locating good
solutions efficiently. The algorithm is inspired by the food
foraging behavior of honey bees.

The paper uses path coverage (4) as the test adequacy criterion
to find out the efficient test cases in covering the SUT within
less time and cost. Finally, the proposed approach is compared
with ACO (Ant Colony Optimization) and proved that, ABC
based approach outperforms ACO.

A. EFFICIENCY OF TEST CASES

A test case is a set of conditions or variables and inputs that
are developed for a particular goal or objective to be achieved
on a certain application to judge its capabilities or feature. Test
Cases are the formal implementation of a test case design. The
goal of any given test case or set of test cases is to detect
defects in the system being tested. A Test Case should be
documented in a manner that is useful for the current test cycle
and any future test cycles (4). Test Efficiency can be defined
internal to the organization as how much resources were
consumed how much of these resources were utilized.
Usually, it is computed using the following formula (4):
Test Efficiency =Number of test cases executed / unit of time
(generally per hour).

B. LITERATURE SURVEY

Many research works on Genetic Algorithms, Neural
Networks (NN), ACO, and Simulated Annealing and Fuzzy
logic have been applied for test case optimization.

1) Genetic Algorithms in Test Data Generation
 As per (7), GA as a population based algorithm can be
applied for test case generation. In their paper, they applied
the basic Genetic operators to generate the test cases. And
fitness is designed to find the efficient test cases to be used as
parents for next generation of offspring. However, Genetic
Algorithm has some disadvantages: strike up at local optima,
thereby is difficult to find global optimization.

2) Ant Colony Optimization in Software Test Suite

Optimization – (ACO)
 ACO simulates the behavior of real ants. The first ACO
technique is known as Ant System (3) and it was applied to
the traveling salesman problem. Since then, many variants of
this technique have been produced. ACO is a probabilistic
technique that can be applied to generate solutions for
combinatorial optimization problems. The artificial ants in the
algorithm represent the stochastic solution construction

978-1-4244-4711-4/09/$25.00 ©2009 IEEE IAMA 2009

Downloaded from www.VTUplanet.com

procedures which make use of (1) the dynamic evolution of
the pheromone trails that reflects the ants' acquired search
experience and (2) the heuristic information related to the
problem in hand, in order to construct probabilistic solutions.
However, it still has some shortcomings, for example: at initial
stages it lacks pheromone, search slowly, and easily to trap
into the local optimal solution if the quantity is large, which is
to say premature convergence.

II. ARTIFICIAL BEE COLONY OPTIMIZATION
(ABC)

Karaboga (2005) analyzes the foraging behavior of honey bee
swarm and proposes a new algorithm simulating this behavior
for solving multi-dimensional and multi-modal optimization
problems, called Artificial Bee Colony (ABC) (1)(5) and (6).
The main steps of the algorithm are:

• Send the employed bees onto the food sources and
determine their nectar amounts;

• calculate the probability value of the sources with
which they are preferred by the onlooker bees;

• stop the exploitation process of the sources
abandoned by the bees;

• send the scouts into the search area for discovering
new food sources, randomly;

• memorize the best food source found so far.

III. ABC BASED SOFTWARE TEST SUITE
OPTIMIZATION - PROPOSED APPROACH

In ABC model, we have the following types of bees (6)
1) Employed,
2) Onlooker and
3) Scouts

In our model, the system consists of three agents: Search
Agent, Optimizer Agent and Selector Agent. Agents exhibit
autonomy, social ability and inter operability to perform the
task (8). It is understood that, there is exactly one test case
needed for each test sequence or path. The test cases to be
executed for the corresponding test sequences or paths are
determined by following the path in the state space.

Initially, a population of test cases is generated. The Search
Agent searches for an executable state in the SUT for each test
case as it goes to an executable state in the test sequence /path
as per the information in the knowledge source and determines
the best next neighbor state.

This determination is done by analyzing all the neighbor states
from the current state based on the selected test case’s
coverage (12). Based on that, it evaluates the happiness value
(nectar amount) of each node surrounding the current node for
the selected test case. Then the selection of the best node to
transit is chosen. If the node is not feasible or not covered by
the particular test case, then the node is removed from

memory and the Selector Agent will start a new search for
finding the node with higher feasibility in that path. Based on
that, a happiness value or coverage measure is associated with
each test case. A test case with highest happiness value or
coverage measure is remembered and all the other test cases
are removed from the memory.

The Optimizer Agent watches the Selector Agent and chooses
the test cases depending upon the happiness value associated
with each test case.

A. ABC BASED TEST OPTIMIZATION ALGORITHM

• Initial test cases are produced as random test cases

for all test sequences
• REPEAT

o The Search Agent monitor each test case as
it goes to an executable state in the test
sequence /path as per the information in the
knowledge source and determines a
neighbor state, then depending upon its
feasibility, it updates the happiness value of
each test case for each test sequence.

o If the node is not feasible or not covered by
the particular test case, then the node is
removed from memory and the Selector
Agent will start a new search for finding the
node with higher feasibility in that path.
Based on that, a happiness value or coverage
measure is associated with each test case. A
test case with highest happiness value or
coverage measure is remembered and all the
other test cases are removed from the
memory.

o The Optimizer Agent watches the happiness
value of each test case and chooses one of
them based on the happiness value and then
goes to that node. After choosing a neighbor
around that, it evaluates its happiness value.

o Abandoned test cases are determined and
then, they are replaced with the new test
cases discovered by the Selector Bee

o The best test case found so far is stored in
the optimized test case repository for
regression testing

• UNTIL (all the nodes have been visited at least once)

B. ABC BASED TEST SUITE OPTIMIZATION

1) Problem Formulation
Let TC={tc1,tc2,..tcn} be the set of test cases. And let hv(tci)
represents the happiness value of test case tci. Let
S={s1,s2,..sm} be the set of executable states in the software
under test. Let TS={ts1,ts2,..tsn} be the set of test sequences
in the software under test.

Downloaded from www.VTUplanet.com

2) Pseudo Code for Search Agent:
Step1: Initialize TC rand(seed) for each tsi in TS.
Step 2: start-search(Search-Agent) with i 1
Step 3: search-point = s1
Step 3: Compute hv(tci) for each si in neighbor(search-point)
Step 4: if (feasible(si, tci)) = nil then

 remove si; start-new search(Search- Agent)
 Else remember tci ; remove all other tci

3) Pseudo Code for Optimizer Agent:

Step 1: Select-test-case(Optimizer-Agent)
Step 2: if (hv(tci)) > hv(tci+1)) for all i, optimal-test-suite
optimal-test-suite + tci

4) Pseudo Code for Selector Agent :

Step 1: if (hv(tci)) = 0 then Replace-test-case(Selector-Agent)
Step 2: new-testcase-gen(Selector-Agent)

IV. IMPLEMENTATION – ABC TESTER

Sample problem taken is finding biggest among three
numbers. Here the decision making is done based on the
values of the three numbers.

For the above program the cyclomatic complexity is 4 which
indicate there are 4 independent paths.
• Initially we have randomly generated test cases for

each of these paths.
• Let Xij be the initial test cases where j stands for each

of these paths and i denotes the variables. So ,in this
case 1<=i<=3 and 1<=j<=4.

• Consider we have got {0,3,3} for path1; {4,4,4} for
path2;{1,1,3} for path3; {3,0,0} for path4

• Xij represents a test case i related to path j . Here we
have three variables and so i=1 means it is for a,
similarly i=2 for b and i=3 for c.

• Qij=(-1,1) which is a random number generated
during program execution.

• Now vij=xij+qij(xij-xkj) , where i=1 to 3 , j = 1 to 4
,k = (i+1)%size of the test case in this case size=3
V11=x11+q11(x11-x21)=0+0(0-4)=0;
V12=x12+q12(x12-x22); V13= x13+q13(x13-x23)

• Compare the fitness of xij and vij. Apply greedy
selection between xi and vi for each path j .

• Calculate the probability pi for the solution xi/vi by
means of fitness values. Pi=fit/sum(1 to j)fit i.

• Based on them, test cases are selected based on their
fitness value. Apply the greedy selection process
between xi and vi. Unfortunately, both of these test
cases have their fitness value as 0 and so we need to
abandon these solutions and replace them with new
solution by the Scout bees.

• Determine the abandoned solution and replace it with
newly generated test cases by the scout using the
formula

 Xij=minj+rand(0,1)*(maxj-minj)
• Again determine the fitness of this test case.

Memorize the best cases achieved so far based on
their fitness value.

• Run = Run +1.
• If (Run = max Run) read the minj and maxj value

from the user.
• Repeat this until (path coverage =100 %) (In other

words until all the paths are covered).
The above procedure is coded in java and we applied the
said approach for each unit of the software under test. We
found that the results were generated so fast because of the
operation of the three agents are working in parallel way.
Since the agents work in parallel, decision making is simple.
Once a path is covered then it is indicated by the scout by a
flag. Once this flag is set to true, it goes for new path. The
generation of test cases using ABC is shown in Fig. 1, 2 and
3.

V. COMPARISON BETWEEN ABC Vs.ACO

From Li and Lam’s methodology proposed in paper (14), we
derived the following observations as its functionality and
problems.

A. ACO – FUNCTIONALITY

(1) Pheromone based tracking of nodes - For the non-negative
connections in the connection set, the ant senses and gathers
the corresponding pheromone levels P at the other ends of the
connections. (2) Moving to the next node based on pheromone
level. (3) Updation of the pheromone value due to frequent
evaporation of it. (4) The final optimal solution can be

//Sample program is Compare.java
import java.io.*;
public class compare
{ public static void main(String [] args) throws Exception
{ (1)int a ,b,c;
BufferedReader br = new BufferedReader(new
InputStreamReader (System.in));
System.out.println(“Enter the value of A”);
a=Integer.parseInt(br.readLine());
System.out.println(“Enter the value of B”);
b=Integer.parseInt(br.readLine());
System.out.println(“Enter the value of C”);
c=Integer.parseInt(br.readLine());
(2)if(a>b) {
(3)if(a>c){
System.out.println(“The Biggest no is : ” + a); }
(4)else{
System.out.println(“The Biggest no is : ” + c);}}
(5)else {
(6)if(b>c)
{System.out.println(“The Biggest no is : ” + b);}
(7)else
{System.out.println(“The Biggest no is : ” + c);}
(8)}}}

Downloaded from www.VTUplanet.com

obtained by examining all of the solution candidates created
by ant exploration. (5) If the upper bound of search has been
reached, then it is concluded that, the current group of ants
fails to find a solution which achieves the required coverage.
More ants will have to be deployed in order to find a solution.

B. PROBLEMS IDENTIFIED IN ACO

Since, the tracking is based on the pheromone values at each
node, the values of them must be updated frequently to keep
its current level due to its evaporation. This updation process
presents substantial overhead in the optimization process. The
final optimal solution can be obtained by examining all of the
solution candidates created by ant exploration. Since, the
process is a sequential one in which the solution selection is
done only at the end, leads to computational overhead and
memory limit problems. Suppose a group of ten ants have
been deployed for the optimal solution generation, and if this
group of ants fails, then a new group of ten other ants have to
be deployed. The time spent for the initial process will be a
mere waste and leads to substantial time overhead.

C. ABC – SOLUTIONS TO THE PROBLEMS

Since, ABC is a Non –Pheromone based technique, there is no
need for the updation of pheromone values. The
communication between the bees is by means of waggle
dance; that is done by setting a status flag for each bee.
Parallel behavior of group of bees (multi-threading) makes the
algorithm faster in reaching near global optimal solution. The
final optimal solution is the improvement done during each
iteration of the bees’ exploration process. There is no need to
examine all the solution candidates generated from the
beginning to the end at the final step. Hence, computational
overhead and memory limit problems were balanced. If there
is no improvement in the current solution, then the scout will
start a new search and a new set of test cases are generated.
There is no need to deploy more bees for this case. Hence,
time overhead is reduced.

D. COMPARISON CHARTS

ABC Algorithm has been applied to the following problem
which is given in the table 1.We have Calculated the no of
runs taken by each problem

 TABLE1 Time Taken - ABC vs. ACO

Time Taken - ABC Vs. ACO

0

2

4

6

8

10

Low Medium High

Complexity of the Problem

Ti
m

e
(M

S)

ABC
ACO

Figure. 4 – Time taken by ABC and ACO

1) Efficiency of the test cases (Improvement over iterations)

– ABC vs. ACO

0

33 35

60

100

0
20
40
60
80

100

1 5 10 15 20 25

RUNS

PA
TH

 C
O

VE
R

A
G

E(
10

0%
)

Figure. 5 –Path Coverage % using ABC

0

15
20

45
50

65
70

80
90

95

0
10
20
30
40
50
60
70
80
90

100

1 5 10 15 20 25 30 35 40 45

Runs

Pa
th

 C
ov

er
ag

e
(1

00
%

)

Figure. 6 –Path Coverage % using ACO

S.No. Problem Description Level
1. Factorial Program Low
2. Greeting Message Low
3. Marks Processing Medium
4. Discount Calculation Medium
5. Credit Card Validation High
6. Calculator High

Downloaded from www.VTUplanet.com

The graph shown in Fig. 4 describes the time taken by ABC
and ACO algorithms. The graphs given in Fig. 5 and 6 shows
the path coverage obtained in our case study by applying ABC
and ACO.

VI. CONCLUSION

We discussed in this paper, how a non-pheromone based
swarm intelligence algorithm is used in software test suite
optimization. The size of the test suite is reduced by
improving the quality of test cases during every iteration and
keeping only the efficient test cases in the repository. When
compared to ACO, the ABC based approach provides
consistent results and does not have any problems in ACO
like, continuous pheromone updation, computational, time and
memory overheads. Hence, ABC model based test case
optimization generates optimal results and it converges within
less number of test runs.

REFERENCES

1. B.Basturk, Dervis Karaboga, “An Artificial Bee Colony (ABC)
Algorithm for Numeric function Optimization”, IEEE Swarm
Intelligence Symposium 2006, May 12-14, 2006, Indianapolis,
Indiana, USA.

2. Deb K. “Multi-Objective optimization using Evolutionary
Algorithms”. 2001, Chichester, UK: Wiley.

3. Huaizhong Li and C.Peng Lam, “Software Test Data Generation
using Ant Colony Optimization”, Transactions on Engineering,
Computing and Technology, 2004, ISSN 1305-5313.

4. Roger S.Pressman, “Software Engineering: A practitioners
Approach”, 4th Edition,2007

5. D. Karaboga, B. Basturk, “On The Performance Of Artificial Bee
Colony (ABC) Algorithm”, Applied Soft Computing, Volume 8,
Issue 1, January 2008, Pages 687-697.
doi:10.1016/j.asoc.2007.05.007

6. D. Karaboga, B. Basturk, “Artificial Bee Colony (ABC)
Optimization Algorithm for Solving Constrained Optimization
Problems”, LNCS: Advances in Soft Computing: Foundations of
Fuzzy Logic and Soft Computing, Vol: 4529/2007, pp: 789-798,
Springer- Verlag, 2007, IFSA 2007. DOI: 10.1007/978-3-540-
72950-1_77.

7. Christoph C. Michael Gary E. McGraw Michael A. Schatz Curtis
C. Walton, “Genetic Algorithms for Dynamic Test Data
Generation”, Proc. ASE’97.

8. Stuart Russel, Peter Norvig “Artificial Intelligence: A modern
approach”, 1995, Prentice-Hall Inc.

APPENDIX A

The Snapshots for the problem which we had taken into
consideration

Downloaded from www.VTUplanet.com

