
Algorithmic Agent for Effective Mobile
Robot Navigation in an Unknown

Environment

 A. Francy Golda S. Aridha D. Elakkiya
B.E., Final Year Student B.E., Final Year Student B.E., Final Year Student
amalagolda@gmail.com aridhasrini@gmail.com elakkiya.d@gmail.com

Dept. Computer Science & Engineering
Thiagarajar College of Engineering, Madurai 625 015, Tamil Nadu, India

 Abstract - The proposed algorithm for mobile robot supports for
the optimal shortest path navigation in an unknown maze-type
environment. The approach to find the shortest path through flood
fill algorithm considers only the static maze-type environment. The
proposed strategy deals with the dynamicity (moving obstacles) and
plans the path accordingly. While exploring the maze by wall
following, it considers also the number and the position of walls in-
between to reach the goal by taking local optimal decisions.

Keywords- Mobile robot navigation; flood fill; dynamic path
planning; maze traversal.

I. INTRODUCTION

Nowadays, mobile robots are applied in military, mining and
various other fields. The mobile robots which are highly
efficient are used to reduce the risks of humans in mining and
so on. Robots need to know about the structure of their
environment to be able to fulfill complex tasks [1]. Anyway,
in rescue situations resulting from earthquakes, this
knowledge is not available a priori. Therefore, the robots have
to build their own maps while localizing themselves. The
algorithm is intended for use in applications such as search-
and-rescue operations and emergency environment
monitoring. Developing accurate environment maps is one of
the most difficult challenges for autonomous navigation
systems. An accurate representation of the environment [3]
improves the capabilities of the robot in navigation and
dealing with dynamic objects. The pre-requisite of the task is
correct map creation while maintaining an accurate estimate
of the pose of the moving robot. This is commonly referred to
as the Simultaneous Localization and Mapping (SLAM)
problem. The inclusion of dynamic objects can cause
difficulties to SLAM, and therefore may require additional
information to simplify the problem.

The flood fill algorithm proposed by Bellman deals with static
obstacles in an indoor environment. Our proposed algorithm
focuses on the static and dynamic movement of the obstacles
in an unknown, indoor environment. The ‘unknown’
environment is one which the robot doesn’t aware of it. The
robot explores the environment from source to destination and

then traces backwards in the shortest path to the source. When
an obstacle is encountered, it takes the next shortest path.
Since we deal with the dynamic obstacles, the neighbors of
the new and the old positions of the particular obstacle have to
be flooded again by using the same flood fill algorithm.

II. FLOOD FILL ALGORITHM

Flood-fill algorithm is based on the modified depth first
algorithm. The flood-fill algorithm [2] is used primarily for
path planning. It is used to plan an optimal (shortest) path to
the nearest unexplored cell in the event that a repeated state is
detected and it is also used to plan a path back “home” when
the goal is reached. Furthermore, the flood-fill guarantees
completeness in that it is exhaustive in determining the
existence of a potential solution; however, it can only plan a
path within the confines of the “known” environment. The
shortest path is found from destination to source. The robot
explores the maze from source to destination by wall
following with the following steps.

Consider the maze in Fig.1

 Fig. 1
Step 1: Labeling the grid cells (Fig. 2)

978-1-4244-4711-4/09/$25.00 ©2009 IEEE IAMA 2009

Downloaded from www.VTUplanet.com

The label of each cell denotes the shortest distance from the
source to the particular cell. Initially, each grid cells are
labeled with -1. While the robot explores the maze, flooding
starts.

Figure . 2

Source is labeled as zero. Accessible grid cells adjacent to the
source are labeled with a distance 1 and the cells that can’t be
accessed (because of the presence of walls) are left
undisturbed (-1) this flooding repeats until we reach the goal.
If the sensors find that the three sides are walls, then the agent
decide to backtrack the path till it finds the grid point covered
by a minimum of 1 wall. This is illustrated as

An empty stack S => to hold the neighbor cells
Push source cell onto S
Do
 Cell = pop from S
 If (Cell is the goal) then
 Empty the stack
 Exit => Goal is reached
 Else If ((Cell is not yet visited) and

(Cell can be accessible)) then
 Mark Cell as visited and Label the Cell
 Push the 4 neighbors of Cell to S
 End If
While (S is non-empty)

Step 2: Now the robot is in the goal. When it comes time to
make a move, the robot must examine all adjacent cells which
are not separated by walls and choose the one with the lowest
distance value. To find the optimal shortest path the robot
plans a path to home through the explored (visited) grid points
in the descending order of their labels (from label of the
destination (maximum label) to label of source (0)). If the
robot finds two or more possible adjacent nodes, then it

follows the priority as: straight ahead, east, west, north or
south.

Figure. 3

The mobile robot can go South or West at the grid cell with
the label 10 to reach the grid cell with label 9 and traverse the
same number of cells on its way to the destination cell. Since
turning would take time, the robot will choose to go forward
to the West cell. The shaded boxes (in Fig.3) represent the
shortest path between the source and the goal as per the flood
fill algorithm in static environment.

Consider the same maze in Fig.1 with mobile obstacles and a
mobile robot. The flood fill algorithm can be extended to
handle the dynamicity.

III. PROPOSED ALGORITHM AGENT

The algorithm is successful only if the proper data structures
are used effectively. To implement this algorithm the
following are the requirements in terms of mode of storage.

A. Data Structures in Need

Data structures are the containers to hold data. The simplest
one is array. It is suitable for static situations. To consider
dynamicity the linked lists can be used.

1. To handle the dynamic behavior of the obstacles (walls) the
position of the walls has to be noted. The information about
the position of walls is collected from the sensor data while
the mobile robot explores the environment and stored in a
structure named cell_info as

Downloaded from www.VTUplanet.com

struct cell_info
{

 int label;
 boolean front, back;

boolean left, right;
} cell[row][column];

The variables row, column denote the number of grid cells in
the environment taken horizontally or row wise and vertically
or column wise respectively. Each grid cell has an object of
this structure to store its information about its label using label
integer. The boolean values are used to denote the presence of
walls on the respective sides. For example, front variable has
the value of yes/true if a wall is present at the front, of the
particular grid cell else it has the value of no/false. This is the
same for other three back, left and right variables. From the
boolean values the accessible neighbors for the particular cell
can be found. To save memory space we can also use the bit-
fields concept as 8 bits for label, a single bit for each boolean
variable. Each object occupies only 12 bits. Thus the space
occupied by all the objects is the product of 12 and number of
grid cells.

2. The information about the walls can be stored in a simple
data structure linked list of linked lists since an entire linked
list is necessary to have the details about the location of a
single wall. The nodes contain the grid point number on which
the wall lies. The significances of using linked lists are
• To allocate only the necessary memory space (instead of

having static fixed size arrays) since memory
requirements change, if any change occurs in the
environment.

• Allows dynamic updates including the creation and
deletion of linked lists (walls) thus saving memory space.

• Can store any type and any number of data in a single
node by using structure to hold data.

3 .The grid cell environment can be considered as a two
dimensional array since we consider the indoor environment.
This is to save grid point values which will be further used in
the nodes of the linked lists to specify the location of walls.

4. It is essential to store the (old and new) neighbors of the
walls in an array dynamically. For this, we can use the
dynamic allocation techniques. The number of neighbors
depends upon the length of the wall. It is usually twice its
length. The length of the wall can be obtained from the linked
lists.

B. Dynamic Planning

Initially, these values are filled for the explored grid cells in
their respective objects as per the sensed data about the

position of walls. After the initial exploration, the robot plans
the shortest path to the source as per the flooded values stored
in the label variable in each object. Meanwhile, any change
may have been happened that is the walls may have changed
its positions or some new walls may have appeared or some of
the walls may be missing.

To manage this change in the environment we propose the
following steps after exploration.

1. Verify the label values of all the neighbors from
their objects of the structure cell_info.

2. The mobile robot (in the destination) moves to the
nearest neighbor cell according to the value of the label if
there is no wall in-between them.

3. If the mobile robot find any change in the
environment (with the help of sensors), then the flooding has
to be repeated in the neighborhood of the location where the
change has occurred.
• If the wall has changed its position, the object values of

the neighbors of the old and new position of the wall have
to be updated.

• If the wall has disappeared, the past neighbor (object)
values have to be updated.

• If a new wall appears dynamically, the neighbor (object)
values have to be updated.

The boolean (object) values of all the affected neighbors have
to be updated first in order to find their label values later. The
label of the cell can be found only if the accessible neighbors
of the particular cell are known. The accessible neighbors can
be known only from the boolean values of the particular cell.
The affected neighbors can be pushed into a stack and popped
one cell at a time to update its values if necessary. A cell is
popped out and its label is found from the values of the
neighbors as

label = min (label of accessible neighbors) + 1

if there is at least one accessible neighbor.

label = -1

if there is no accessible neighbor. Each cell is popped out and
their object values are updated. After the update of all the
neighbors, the robot takes its path.

C. Collision Avoidance

The robot moves in the local optimal path until it encounters a
wall at its path. It is difficult to predict the position and
movement of walls in a dynamic environment. If it finds any
wall at its path, it takes the next optimal path if available. If
the label of the neighbors is in such a way that the robot can’t
take that path, then the neighbor values are flooded again as

Downloaded from www.VTUplanet.com

per the proposed strategy and then the robot continues its path.
The processing time is comparatively shorter than the time
taken by the wall to move. So there is less chance of collision.
Our future work is to avoid the collision completely and to
find the global optimal path.

IV. CONCLUSION

 The proposed algorithm agent supports for the robot
to reach the place despite moving obstacles or walls. The
proposed algorithm will be suited for the personal robot
assisting the physically challenging/old age people for
fetching the things and the exploration of map with vision will
guide the visually challenging people also. The future work
can be with the maze to find the shortest path between any
two points in the maze in a shorter time.

REFERENCES

[1] Sebastian Thrun.” Learning metric-topological maps for indoor robot

navigation.” Artificial Intelligence, 99(1):21–71, 1998.
[2] R. Clark, A. El-Osery, K. Wedeward, and S. Bruder “A Navigation

and Obstacle Avoidance Algorithm for Mobile Robots Operating in
Unknown, Maze-Type Environments” Proc. International Test and
Evaluation Association Workshop on Modeling and Simulation,
Las Cruces, NM, December 2004

[3] James Ballantyne “Robotic Navigation in Crowded Environments:
Key Challenges for Autonomous Navigation Systems” Imperial
College London.

[4] Borentein, J. and Y. Koren, “Real-time obstacle avoidance for fast
mobile robots in cluttered environments,” Proceedings IEEE
International Conference on Robotics and Automation, Cincinnati
(OH), USA, May 13-18, 1990, pp. 572 – 577.

[5] Wang, L., “Computational intelligence in autonomous mobile
robotics- A review”, Proceedings of the 2002 International
Symposium on Micromechatronics and Human Science, Nagoya,
Japan, Oct. 20-23, 2002, pp 227 – 235.

[6] An Efficient Dynamic System for Real-Time Robot-Path Planning
Allan R. Willms and Simon X. Yang, IEEE transactions on systems,
man, and cybernetics – part B: cybernetics, vol. 36, no. 4, August
2006.

[7] Fedor A.kolushev and Alexandar A.Bogdanov,”Multi- agent
Optimal Path Planning for Mobile Robots in Environment with
Obstacles”.

[8] C. W. Warren, “Fast path planning using modified a* method,” in
Proc.IEEE Int. Conf. Robotics and Automation, Atlanta, GA, May
1993,pp. 662–667.

[9] “A Robust Layered Control System for a Mobile Robot”, Rodney
A.Brooks, Aritificial Intelliegence Laboratory, Massachusetts
Institute of Technology, 1985

[10] “Artificial Life and Real Robots”, Rodney A. Brooks, MIT
Artificial Intelligence Laboratory, 1992.

[11] Map Building with Mobile Robots in Dynamic EnvironmentsDirk
H¨ahnel Rudolph Triebel Wolfram Burgard Sebastian Thrun
University of Freiburg, Department of Computer Science,
Germany Carnegie Mellon University, School of Computer
Science, PA, USA.

[12] Robot Navigation Planning Problems in Dynamic Environments
R. Urniezius, S. Bartkevicius Department of Theoretical
Electrical Engineering, Kaunas University of
Technology,Studentu 48, Lt- 51367 Kaunas, Lithuania, 2008.

[13] Anytime Dynamic A*: An Anytime, Replanning Algorithm
Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony
Stentz, and Sebastian Thrun School of Computer Science
Computer Science Department Carnegie Mellon University
Stanford University Pittsburgh, PA, USA Stanford, CA, USA

Downloaded from www.VTUplanet.com

