

Improved Classification Association Rule Mining

M.Naresh Kumar

M.Tech (Software Engineering)
J.N.T.University

Anantapur
Andhra Pradesh, India

B.Eswara Reddy

Associate Professor
J.N.T.University

Anantapur
Andhra Pradesh, India

eswarcsejntu@gmail.com

Abstract— Classification aims to define an abstract model of
a set of classes, called classifier, which is built from a set of
labeled data, the training set. However, in large or
correlated data sets, association rule mining may yield
huge rule sets. Hence several pruning techniques have
been proposed to select a small subset of high-quality
rules. Since the availability of a “rich” rule set may
improve the accuracy of the classifier, we argue that rule
pruning should be reduced to a minimum. A small subset
of high-quality rules is first considered. When this set is
not able to classify the data, a larger rule set is exploited.
This second set includes rules usually discarded by
previous approaches. To cope with the need of mining
large rule sets and to efficiently use them for classification,
a compact form is proposed to represent a complete rule
set in a space-efficient way and without information loss.
An extensive experimental evaluation on real and synthetic
data sets shows that improves the classification accuracy
with respect to previous approaches.

Keywords- Data mining, associative classification, association rules,
condensed representations

I. INTRODUCTION
Classification aims to define an abstract model of a set of

limiting rule pruning has already been discussed in classes,
called classifier, which is built from a set of labeled data, the
training set. The classifier is then used to appropriately
classify new data for which the class label is unknown.
Different approaches have been proposed to build accurate
classifiers, for example, naive Bayes classification [1],
decision trees [2], and SVMs [3]. Recently, association rules
[2] have become a valuable tool for classification purposes.
(for example, CAEP [2], CMAR [1], CBA [2], and ADT [3]).

In associative classification, the rule consequent is a class
label, and the classifier is a set of association rules. Since
association rules represent the correlation among values of
different attributes simultaneously, in general, associative
classifiers yield better accuracy than decision trees and rule-
based classifiers. The generation of an associative classifier
consists of two steps. First, classification rules are extracted
from the training data. Then, pruning techniques are applied to
select a small subset of high-quality rules and build an
accurate model of training data. Usually, a large rule set is
mined to allow a wide selection of rules and the generation of
accurate classifiers. However, in large or correlated data sets,
rule mining may yield a huge number of classification rules.
Rule extraction becomes difficult (or at least time consuming),
and it becomes hard to optimally exploit the generated rules.
Hence, pruning techniques, in particular, support-based
pruning, are exploited to reduce the complexity of the
extraction task. Most pruning techniques may go too far, by
discarding also useful knowledge together with low-quality
rules. Since the availability of a large rule model may improve
the accuracy of the classifier pruning should be limited to a
minimum. The opportunity of limiting rule pruning has
already been discussed in [3] and [1]. Liu et al. [1] proposed
multiple support thresh-olds to limit the number of extracted
rules for frequent classes, without hiding infrequent classes.
CMAR [3] proposed a modified database coverage technique,
which is the first step toward the reduction of excessive
pruning. To address both an excessive rule set size and over-
pruning, we propose a new associative classifier that relies on
a lazy pruning approach coupled with a compact
representation of the rule set We named our classifier L3,
which stands for Live and Let Live1 (that is, pruning only
takes place when strictly necessary). The lazy pruning
technique performs a reduced amount of pruning by
eliminating only “harmful rules,” that is, rules that only
misclassify training data.

978-1-4244-4711-4/09/$25.00 ©2009 IEEE IAMA 2009

Downloaded from www.VTUplanet.com

During classification, L3 adopts a two-step approach in which
high-quality rules (that is, rules used in the classification of
training data) are considered first, and “unchecked” rules, that
is, rules unused during the training phase, are used next to
classify unlabeled data. Rules of the secondtype are only
considered when unlabeled datcannot be classified by means
of the first type of classification is a well-studied problem
(see [2,3] for excellent overviews) and several models have
been proposed over the years, which include neural
networks [1], statistical models like linear/quadratic
discriminates [1], decision trees [2], and genetic algorithms
[1]. Among these models, decision trees are particularly
suited for data mining. Decision trees can be constructed
relatively fast compared to other methods. Another advantage
is that decision tree models are simple and easy to understand
[1]. And yields improved accuracy over decision trees [2]. As
an alternative to decision trees, associative classifiers have
been proposed. These methods first mine association rules
from the training data, and then build a classifier using these
rules. This classifier produces good results and yields
improved accuracy over decision trees. Decision trees
perform a greedy search for rules by heuristically
selecting the most promising features. They start with an
empty concept description, and gradually add restrictions to
it until there is not enough evidence to continue, or
perfect discrimination is achieved. Such greedy (local)
search may prune important rules. Associative classifiers, on
the other hand, perform a global search for rules satisfying
some quality constraints.

 This global search, however, may generate a large
number of rules, and many of the generated rules may be
useless during classification (i.e., they are not used to classify
any test instance) In this paper we propose a novel lazy
associative classifier, in which the computation is
performed on a demand driven basis. We place our
associative classifier within an information gain framework
that allows us to compare it to decision tree classifiers.
Our method can overcome the large rule-set problem of
traditional (eager) associative classifiers, by focusing on the
features that actually occur within the test instance while
generating the rules. We show that the proposed lazy
classifier outperforms its eager counter- part, since in the
lazy approach only the "useful" portion of the training
data is mined for generating the rules applicable to the
test instance. Due to this local focus, the lazy classifier
can better classify a test instance, for which a global,
eager rule-set may not work that well. Simple caching
mechanisms are used to avoid work replication during lazy
associative classification. First we demonstrate that associative
classifiers perform no worse than decision tree classifiers.
Then we show that lazy classifiers outperform the
corresponding eager classifiers. Our claims are empirically
confirmed by an extensive set of experimental results. Timings
are also showed in order to evaluate different classifiers with
respect to computational complexity of the training data set.

II. GENERATING CLASSIFICATION ASSOCIATION RULES
USING TFPC

selected correctly, then the existence of a rule X → c1
should make it unnecessary to consider any other rules
whose antecedent is a superset of X. In practice, however,
we may still find a rule Y → c2, say, where Y is a superset
of X, which has higher confidence and to which we would
wish to give higher precedence. It remains possible, also,
that there will be a further rule Z→ c1, where Z is a superset
of Y , with still higher confidence, and so on. This reasoning
leads other methods to a process in which all possible rules
are first generated and then evaluated.

In this paper we adopt an alternative heuristic: If we can
identify a rule X → c which meets the required support and
confidence thresholds, then it is not necessary to look for other
rules whose antecedent is a superset of X and whose consequent
is c. It will still of course be necessary to continue to look
for rules that select other classes. This heuristic both
reduces the number of candidate rules to be considered, and
the risk of over fitting. We use a method derived from our
TFP (Total From Partial) algorithm to generate a set of
CARS. This method, described in [3], first builds a set-
enumeration tree structure, the P-tree that contains an incomplete
summation of support-counts for relevant sets. Using the P-tree,
the algorithm uses an Apriori- like procedure to build a
second set enumeration tree, the T-tree, that finally contains
all the frequent sets (i.e. those that meet the required
threshold of support), with their support-counts.

The T-tree is built level by level, the first level
comprising all the single items (attribute-values) under
consideration. In the first pass, the support of these items is
counted, and any that fail to meet the required support
threshold are removed from the tree. Candidate-pairs are then
generated from remaining items, and appended as child nodes.
Most work on lazy classification [1] was based on nearest
neighbor algorithms [3].

The problem of small disjuncts was first noted in [3], where it
was showed that existing classifiers create models that are
good for large disjuncts but are far from ideal for small disjuncts
(which correctly classifies only few training instances). To
investigate the performance of TFPC, we carried out
experiments using a number of data sets taken from the
UCI Machine Learning Repository. It is hard to assess the
accuracy of small disjuncts because they cover few instances, yet
removing all of them is unjustified since many of them may be
significant and the overall accuracy would be degrade.

Downloaded from www.VTUplanet.com

III EXPERIMENTAL RESULTS

To investigate the performance of TFPC, we carried
out experiments using a number of data sets taken from
the UCI Machine Learning Repository. The
implementation of TFPC was as a Java program, and
for comparison purposes we have used our own (Java)
implementations of the published algorithms for

CMAR [3] and CPAR [1]. In the first set of
experiments, as in [3] and [2], we have assumed a
support threshold of 1% and a confidence threshold of
50%.For the implementation of CPAR, we used the
same parameters used in [10],i.e. minimum gain
threshold = 0.7, total weight threshold = 0.05, decay
factor = 2/3, and similarity ratio 1 : 0.99. We tried to
use the same data sets as those used to analyze CMAR
and CPAR. However in many cases the data sets that
were used in [2] and appear to be no longer available,
and in others were found not have identical parameters
to those reported. The data sets chosen therefore comprise
a subset of those used in [3] and [1], augmented by a further
selection from the UCI repository. The choice of addi-
tional data sets concentrated on larger/denser data sets
(2000+ records) because the majority of the data sets used in
the reported analysis of CMAR and CPAR were relatively
small (less than 1000 records). Most work on lazy
classification [1] was based on nearest neighbor algorithms
[3]. The problem of small disjuncts was first noted in [1],
where it was showed that existing classifiers create
models that are good for large disjuncts butare far from ideal
for small disjuncts (which correctly classifies only few
training instances). It is hard to assess the accuracy of small
disjuncts because they cover few instances, yet removing all
of them unjustified since many of them.

A lazy decision tree was proposed in [1] and it was
shown that the lazy approach is superior than the
corresponding eager one (i.e., C4.5). Despite all the
improvements obtained by using lazy algorithms, we are not
aware of any proposals of lazy associative classification
algorithms, as well as an assessment that demonstrates
why they perform better than both decision and eager
associative classifier. Due to the local focus, the lazy
classifier can better classify a test instance, for which a
global, eager rule-set may not work that well simple
catching mechanism are used to avoid work replication
during lazy associative classification. First we demonstrate
that associative classifiers to perform to worse than the
decision tree classifier. Then we show that lazy classifier
outperform the corresponding eager classifier. Our claims
are empirically confirmed by an extensive Set of
experimental results. Timing are also showed in order to
evaluate different classifiers with respect to computational
complexity.

Figure1.Test instance data set

IV EAGER ASSOCIATIVE CLASSIFIER

In this section we describe eager associative
classifiers, and demonstrate why they perform better
than decision trees. We start by discussing how decision
rules may be generated from decision trees. Then we
describe associative classifiers that are based on
information gain, so that we may compare them
regarding the rules that are generated by each approach.

V. DECISION TREE AND DECISION RULES

Given any subset of training instances S, let Si denote the
number of instances with class ci, and let |S| = Pi si be the
total number of training instances. Then pi = si |S| denotes
the probability of class ci in S. The entropy of S is then
given as E(S) = Pi pi log pi. For any partition of S into m
subsets Si, with S = [mi=1Si, the resulting split entropy is
given as E({Si}) = Pm i=1 |Si||S| E(Si). The information
gain for the split is then given as I(S, {Si}) =E(S) −
E({Si}).A decision tree is built using a greedy, recursive
splitting strategy, where the best split is chosen at each
internal node according to the information gain criterion.
The splitting at a node stops when all instances are from a
single class or if the size of the node falls below a minimum
support threshold, called minsup. Figure 1 shows an
example of training data, and Figure 2 shows the
corresponding decision tree

Downloaded from www.VTUplanet.com

Figure 2. Decision tree

The last row of the table in Figure 1 shows one test
instance which is recognized by the decision tree in Figure
2. The decision tree can be considered as a set of disjoint
decision rules, with one rule per leaf. In that way, a decision
tree can be simulated by a set of decision rules. In this case,
the information gain for each decision rule is calculated in
the same way as it is calculated for each path of the decision
tree. Thus, a decision rule has the same value of information
gain of its corresponding path in the decision tree.

VI. ENTROPY-BASED ASSOCIATIVE CLASSIFIER

 We denote as Class association rule (CARs) those
association rules of the form X ! c, where the antecedent (X)
is composed of feature variables and the consequent (c) is
just a class. CARs may be generated by a slightly modified
association rule mining algorithm. Each item set must
contain a class and the rule generation also follows a
template in which the consequent is just a class. CARs are
essentially decision rules, and as in the case of decision
trees, CARs are ranked in decreasing order of information
gain. Finally, during the testing phase, the associative
classifier simply checks whether each CAR matches the test
instance; the class associated with the first match is chosen.
Note that, seen in the light of CARs, a decision tree is
simply a greedy search for CARs, using a level-wise search
algorithm that only expands the current best rule with other
features. On the other hand, an eager associative classifier
mines all possible CARs with a given minsup. It is also
interesting to note that sorting the final rule-set on
information gain, and using the best CAR for classification,
is also a greedy strategy. While the greedy approach has its
limitations, eager associative classifiers are not limited by
the prefix problem of decision rules, that is, once the best
feature is chosen a teach node, all nodes under that sub tree
must contain it.

Figure 3. Eager Associative Classifier
.

Figure 3 shows the basic steps of the eager associative
classifier. In the initial step, the algorithm mines all frequent
CARs, and sorts them in descending order of information
gain. Then, for each test instance ti, the first CAR matching
ti is used to predict the class. Figure 4 shows an associative
classifier built from our example set of Training instances in
Figure 1, using the algorithm showed in Figure 3. Three
CARs match the test instance of our example (last row of
Table 1):

1. {windy=false and temperature=cool play=yes}

2. {outlook=sunny and humidity=high play=no}

 3. {outlook=sunny and temperature=cool play=yes}

Rule {windy=false and temperature=cool play=yes}

Would be selected, since it is the best ranked CAR. By
applying this CAR, the test instance will be correctly
classified. Intuitively, associative classifiers perform better
than decision trees because associative classifiers allow
several CARs to cover the same partition of the training
data. In our example, the test case is recognized by only one
rule in the decision tree, while the same test case is
recognized by three CARs in the associative classifier.
Selecting the proper CAR to be applied is an issue in
associative classification. Next we present a theoretical
discussion about the performance of decision trees and
eager associative classifiers.

Theorem 1 The rules derived from a decision tree are a
subset of the CARs mined using an eager associative
classifier based on information gain.

Proof 1 Let max E be the maximum entropy of all decision
tree rules. Select a set Ce from all CARs that their entropy is
at most max E. It is clear that the decision tree rules are a
subset of Ce

Downloaded from www.VTUplanet.com

Theorem 1 states that, for a given minsup, CARs contain (at
least) all information of the corresponding decision tree. Since
each decision tree rule may be seem as a CAR, and since all
possible CARs were enumerated, then the decision
tree can be built by choosing the proper CARs

Theorem 2 CARs perform no worse than decision tree rules,
according to the information gain principle.

Proof 2 Given an instance to be classified, and, without loss of
generality, a decision tree with just pure leaves, the decision
tree predicts class c for that instance. We analyze two
scenarios: first, just one CAR matches the instance, and
second, more than one CAR matches. When just one CAR
matches, it is the same as the decision tree rule, since the set
of CARs subsumes the set of decision rules. In this case, the
associative classifier and the decision tree make the same
prediction. When more than one CAR matches an instance, the
prediction may be either the same class (say c) as the
matching decision rule or another class. If the associative
classifier predicts c then the two approaches are equivalent
.In case a class other than c is predicted, by definition, the
best matching CAR provides a better information gain than
the decision rule, and thus, according to the information gain
principle, the CAR will make a better prediction

Theorem 2 states that the additional CARs of the associative
classifier that are not in the decision tree, cannot degrade CAR
is only used if it is better than all decision rules (according to
the information gain principle).However, eager associative
classifiers generate a large number of CARs, most of which
are useless during classification. For instance, from the set of
13 CARs showed in Figure 4, only 3 match the test instance
(the remaining 10
CARs are useless). Next, we present a lazy classifier and
compare it to the eager version described in this section.

VII LAZY ASSOCIATIVE CLASSIFIER

Unlike the eager associative classifier that extracts a set of
ranked CARs from the training data, the lazy associative
classifier induces CARs specific to each test instance. The
lazy approach projects the training data, D, only on those
features in the test instance, A. From this projected training
data, DA, the CARs are induced and ranked, and the best CAR
is used. From the set of all training instances,

D, only the instances sharing at least one feature with the test
instance A are used to form DA. Then, a rule-set ClAis
generated from DA. Since DA contains only features inA, all
CARs generated from DA must match A. The lazy associative
classifier is presented in Figure 5.

 Figure 5. Lazy Associative Classifier

Now we demonstrate that the lazy associative classifier
produces better results than its eager counterpart. Given a test
instance A, and a set of CARs C, we denote by CA those
CARs {X →c} in C where X ⊆ A.
Theorem 3 Let A be the set of features in a given test
instance.Let Ce A be the set of CARs obtained from the eager
associative classifier induced by A, and Cl A be the set of
CARs obtained from the lazy associative classifier induced by
A. For a given minsup, we have C

e
A ⊆  C

l
A

Proof 3 By definition, both CeA and ClA are composed of
CARs {X →c} in which X →A, that is, all CARs contain only
features in A. Also the training instances matching A (i.e., the
projected training data) are a subset of the set of

All training instances (i.e., DA ⊆ D). Thus, for a given minsup,
if a rule {X →c} is frequent in D, and then it must also be
frequent in DA. Since C

l
A is generated from DA and C

e
A is

generated from D (and DA ⊆  D), C
e
A ⊆  C

l
A.

The next example illustrates Theorem 3. Figure 6 shows the
training data given in Figure 1 (i.e., D), projected by the
features in the test instance (i.e., A) showed in the last row in

Downloaded from www.VTUplanet.com

Figure 6. The projected training data (i.e., DA) is composed of
the 5 instances showed in the figure. Suppose minsup is set to
40%. In this case, the set of CARs, Ce,
found by the eager classifier is composed of the two CARs:

1. {windy=false and humidity=normal!play=yes}
2. {windy=false and temperature=cool!play=yes}

None of the two CARs matches the test instance, and thus,
C

e
A =Ǿ;. On the other hand, the projected training data has

less instances (DA ⊆  D), and therefore, CARs not frequent in
D may be frequent in DA. This is because a frequent CAR
must occur at least 4 times in D (since|D|=10), but only 2
times in DA (since |DA|=5). The lazy classifier found two
CARs in DA:
1. {outlook=overcast! play=yes}
2. {temperature=hot! Play=yes}
These lazy CARs not only predict the correct class, but also
are simpler than the eager CARs. Next we discuss how the
lazy CARs perform when compared to the eager CARs
Theorem 4 Lazy CARs perform no worse than eager CARs,
according to the information gain principle.
Proof 4 Theorem 3 showed that, for a given minsup C

e
A ⊆ 

C
l
A. Let Re be the best rule in CeA (according to the

information gain principle), and let Rl be the best rule in ClA.
Two
scenarios have to be considered when determining a class for
the test instance A. In the first scenario, Rl is identical to Re ;
in this case the same class is predicted by both eager and lazy
classifiers. In the second scenario, Rl is better than Re, and
thus Rl must provide a better prediction. _

Theorem 4 states that the CARs added by the lazy classifier do
not degrade the classification accuracy. This is because an
additional lazy CAR is only used if it is better than all eager
CARs (according to the information gain principle).
Intuitively, lazy classifiers perform better than eager
classifiers because of two characteristics:

• Missing CARs: Eager classifiers search for CARs in a large
search space, which is induced by all features of the training
data. While this strategy generates a large rule-set, CARs that
are important to some specific test instances may be missed
(this is particularly true for skewed/unbalanced distributions).
Lazy classifiers, on the other hand, are context-sensitive and
focus the search for CARs in a much smaller search space,
which is induced by the features of the test instance.
• Highly Disjunctive Spaces: Eager classifiers generate CARs
before the test instance is even known. In this case, the
difficulty for the classifier is in anticipating all the different
directions in which it should attempt to generalize its training
examples (i.e., what CARs must be generated). For this
reason, eager classifiers often combine small disjuncts in order
to generate more general
Predictions (more general CARs should be applicable to more
test instances). This can reduce classification performance in

highly disjunctive spaces, where single disjuncts may be
important to classify specific instances. Lazy classifiers, on
the other hand, generalize their training examples exactly as
needed to cover the test instance. Thus, lazy classifiers are
often most appropriate when the search space is complex, and
there are myriad ways to generalize a case.

VIII EXPERIMENTAL EVALUATION

In this section we show the experimental results for
the evaluation of the proposed classifiers in terms of
classification effectiveness and computational performance.
Our evaluation is based on a comparison against C4.5 [1] and
Lazy DT [1] decision tree classifiers. We also compare our
Numbers to some results from other associative classifiers,
such as CPAR [2], CMAR [1] and HARMONY [1], and to
some results from rule induction classifiers, such as RISE [2],
RIPPER [3], and SLIPPER [3]. We used 26 datasets from the
UCI Machine Learning Repository to compare

IX EAGER AND LAZY ASSOCIATIVE CLASSIFIERS

We continue our analysis by comparing the
effectiveness of eager (EAC) and lazy classifiers (LAC). Table
1 shows their corresponding error rates. For very small
datasets eager and lazy classifiers perform similarly, since the
CARs that were generated by both classifiers were essentially
the same for the parameters used. For instance, the result
obtained with labor and zoo datasets were exactly the same.
Also, we can observe that lazy classifiers perform better when
the dataset is sparse (i.e., auto, pima, diabetes, german, and
wine datasets). The error reduction in these datasets range
from 13.9% to 52.7%. This result is expected, since the small
disjuncts problem is more likely to happen in sparse datasets.
Further, we can also notice that
the lazy classifiers always outperform the corresponding eager
ones, except for the ionosphere dataset. We believe that, for
this dataset, the lazy classifiers have over fitted the data.

9.1 Rule Induction and Associative Classifiers

We also compared the proposed eager and lazy associative
classifiers against RISE, RIPPER and SLIPPER, using results
reported in [3,2,1]. Table 2 shows the relative performance for
each classifier (i.e., the accuracy of one classifier divided by
the accuracy of the other classifier), when compared to eager
associative classifiers. Each number in this table indicates how
many times EAC is superior than the corresponding adversary
RISE, RIPPER or SLIPPER (in terms of accuracy). The
SLIPPER algorithm won in 6 of the 26 datasets (and lost in 1),
showing to be most competitive rule induction classifier. The
RIPPER classifier won in 4 datasets and the RISE classifier
won in only one dataset.
Table 2 also shows the relative performance of rule induction
classifiers when compared to the lazy associative classifiers.
RISE and RIPPER lost in almost all datasets, and SLIPPER
was the most competitive one. Compared toLAC (inf. gain),
SLIPPER won in one dataset (and matched

Downloaded from www.VTUplanet.com

X CONCLUSIONS AND FUTURE WORK

Decision tree classifiers perform a greedy search
which may discard relevant information. Based on this
observation we present an assessment of associative
classification. The generated CARs are ranked based on their
information gain, so that we can compare the performance of
decision trees and associative classifiers. We present evidence
regarding the superiority of associative classifiers. However, it
is well known that no classifier can outperform others in all
settings [2], and thus there may be certain specific situations
Where decision trees outperform associative classifiers.We
also propose improvements to associative classification by
introducing a novel lazy classifier. The lazy classifier searches
a larger hypothesis space than the corresponding eager

classifier, because it uses many different local models to form
its implicit global approximation to the target function. Eager
classifiers commit at training time to a single global
approximation. An important feature of the proposed lazy
classifier is its ability to deal with the small disjuncts problem.
Based on this observation, we present evidence showing that a
lazy associative classifier outperforms the corresponding eager
one. Our claims were con- firmed by empirical comparisons to
C4.5 and LazyDT decision tree classifier, using datasets from
the UCI data repository. We also compared the proposed
Classifiers against other three associative classifiers and three
rule induction Classifiers and outperformed them in most of
the cases. So far, our classifiers use only the best CAR for
sake of classification. In the future we will combine simple
and complex CARs in order to enhance classification. Finally,
we will explore more realistic application scenarios.

REFERENCES

[1] Elena Baralis, Silvia Chiusano, and Paolo Garza,” Lazy
approach for classification and Association rule mining,
”IEEE Trans. Knowledge and Data Eng., vol. 20,Feb.
2008

[2] W. Li, J. Han, and J. Pei, “CMAR: Accurate and Efficient Classification
Based on Multiple Class-Association Rules,” Proc. IEEE Int’l Conf.
Data Mining (ICDM ’01), Nov. 2001

[3] Jiawei Han ,Micheline Kamber, ”Data Mining concepts and
Techniques” Second Edition 2008

Downloaded from www.VTUplanet.com

