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Abstract— Classification aims to define an abstract model of 
a set of classes, called classifier, which is built from a set of 
labeled data, the training set. However, in large or 
correlated data sets, association rule mining may yield 
huge rule sets. Hence several pruning techniques have 
been proposed to select a small subset of high-quality 
rules. Since the availability of a “rich” rule set may 
improve the accuracy of the classifier, we argue that rule 
pruning should be reduced to a minimum. A small subset 
of high-quality rules is first   considered. When this set is 
not able to classify the data, a larger rule set is exploited. 
This second set includes rules usually discarded by 
previous approaches. To cope with the need of mining 
large rule sets and to efficiently use them for classification, 
a compact form is proposed to represent a complete rule 
set in a space-efficient way and without information loss. 
An extensive experimental evaluation on real and synthetic 
data sets shows that   improves the classification accuracy 
with respect to previous approaches.  

Keywords- Data mining, associative classification, association rules, 
condensed representations 
                       

I. INTRODUCTION  
Classification aims to define an abstract model of a set of 

limiting rule pruning has already been discussed in classes, 
called classifier, which is built from a set of labeled data, the 
training set. The classifier is then used to appropriately 
classify new data for which the class label is unknown. 
Different approaches have been proposed to build accurate 
classifiers, for example, naive Bayes classification [1], 
decision trees [2], and SVMs [3]. Recently, association rules 
[2] have become a valuable tool for classification purposes.  
(for example, CAEP [2], CMAR [1], CBA [2], and ADT [3]).  
 
 
 
 
 

In associative classification, the rule consequent is a class 
label, and the classifier is a set of association rules. Since 
association rules represent the correlation among values of 
different attributes simultaneously, in general, associative 
classifiers yield better accuracy than decision trees and rule-
based classifiers. The generation of an associative classifier 
consists of two steps. First, classification rules are extracted 
from the training data. Then, pruning techniques are applied to 
select a small subset of high-quality rules and build an 
accurate model of training data. Usually, a large rule set is 
mined to allow a wide selection of rules and the generation of 
accurate classifiers. However, in large or correlated data sets, 
rule mining may yield a huge number of classification rules. 
Rule extraction becomes difficult (or at least time consuming), 
and it becomes hard to optimally exploit the generated rules. 
Hence, pruning techniques, in particular, support-based 
pruning, are exploited to reduce the complexity of the 
extraction task. Most pruning techniques may go too far, by 
discarding also useful knowledge together with low-quality 
rules. Since the availability of a large rule model may improve 
the accuracy of the classifier pruning should be limited to a 
minimum. The opportunity of limiting rule pruning has 
already been discussed in [3] and [1]. Liu et al. [1] proposed 
multiple support thresh-olds to limit the number of extracted 
rules for frequent classes, without hiding infrequent classes. 
CMAR [3] proposed a modified database coverage technique, 
which is the first step toward the reduction of excessive 
pruning. To address both an excessive rule set size and over-
pruning, we propose a new associative classifier that relies on 
a lazy pruning approach coupled with a compact 
representation of the rule set We named our classifier L3, 
which stands for Live and Let Live1 (that is, pruning only 
takes place when strictly necessary). The lazy pruning 
technique performs a reduced amount of pruning by 
eliminating only “harmful rules,” that is, rules that only 
misclassify training data.  
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During classification, L3 adopts a two-step approach in which 
high-quality rules (that is, rules used in the classification of 
training data) are considered first, and “unchecked” rules, that 
is, rules unused during the training phase, are used next to 
classify unlabeled data. Rules of the secondtype are only 
considered when unlabeled datcannot be classified by means 
of the first type of  classification is a well-studied problem 
(see [2,3] for excellent  overviews)  and  several  models  have  
been  proposed  over  the  years,  which  include  neural  
networks  [1], statistical  models  like  linear/quadratic  
discriminates  [1], decision trees [2], and genetic algorithms 
[1].  Among these models, decision trees are particularly 
suited for data mining. Decision trees can be constructed 
relatively fast compared to other methods.  Another advantage 
is that decision tree models are simple and easy to understand 
[1]. And yields improved accuracy over decision trees [2]. As 
an alternative to decision trees, associative classifiers have 
been proposed. These methods first mine association rules 
from the training data, and then build a classifier using these 
rules. This classifier produces good results and yields 
improved accuracy over decision trees. Decision  trees  
perform  a  greedy  search  for  rules  by heuristically  
selecting  the  most  promising  features.   They start with an 
empty concept description, and gradually add restrictions  to  
it  until  there  is  not  enough  evidence  to  continue,  or  
perfect  discrimination  is  achieved.   Such greedy (local) 
search may prune important rules.  Associative classifiers, on 
the other hand, perform a global search for rules satisfying 
some quality constraints.     

 This  global  search, however,  may  generate  a  large  
number  of  rules,  and  many of  the  generated  rules  may  be  
useless  during  classification (i.e., they are not used to classify 
any test instance) In this paper we propose a novel lazy 
associative classifier,  in  which  the  computation  is  
performed  on  a  demand driven  basis.   We  place  our  
associative  classifier  within  an information  gain  framework  
that  allows  us  to  compare  it to decision  tree  classifiers.   
Our  method  can  overcome  the large rule-set problem of 
traditional (eager) associative classifiers, by focusing on the 
features that actually occur within the  test  instance  while  
generating  the  rules.   We  show  that  the  proposed  lazy  
classifier  outperforms  its  eager  counter- part,  since  in  the  
lazy  approach  only  the  "useful"  portion of  the  training  
data  is  mined  for  generating  the  rules  applicable  to  the  
test  instance.   Due  to  this  local  focus,  the lazy  classifier  
can  better  classify  a  test  instance,  for  which a  global,  
eager  rule-set  may  not  work  that  well.  Simple caching 
mechanisms are used to avoid work replication during lazy 
associative classification. First we demonstrate that associative 
classifiers perform no worse than decision tree classifiers. 
Then   we show that lazy classifiers outperform the 
corresponding eager classifiers.  Our claims are empirically 
confirmed by an extensive set of experimental results. Timings 
are also showed in order to evaluate different classifiers with 
respect to computational complexity of the training data set.  
 

II. GENERATING CLASSIFICATION ASSOCIATION  RULES 
USING TFPC 

 

selected  correctly,  then  the  existence  of  a  rule  X →  c1  
should  make it  unnecessary  to  consider  any  other  rules  
whose  antecedent  is  a  superset  of  X. In  practice,  however,  
we  may  still  find  a  rule  Y →  c2,  say,  where  Y   is  a superset  
of  X,  which  has  higher  confidence  and  to  which  we  would  
wish  to  give higher  precedence.  It remains  possible,  also,  
that  there  will  be  a  further  rule  Z→ c1, where Z  is a superset 
of Y , with still higher confidence, and so on. This reasoning  
leads  other  methods  to  a  process  in  which  all  possible  rules  
are  first generated  and  then  evaluated.   

In this paper we adopt an alternative heuristic: If we can 
identify a rule X → c which meets the required support and 
confidence thresholds, then it is not necessary to look for other 
rules whose antecedent is a superset of X and whose consequent 
is c. It  will  still  of  course  be  necessary  to continue  to  look  
for  rules  that  select  other  classes.  This  heuristic  both  
reduces the  number  of  candidate  rules  to  be  considered,  and  
the  risk  of over fitting. We  use  a  method  derived  from  our  
TFP  (Total  From  Partial)  algorithm to  generate  a  set  of  
CARS. This   method,   described in [3], first builds a set- 
enumeration tree structure, the P-tree that contains an incomplete 
summation of support-counts for relevant sets. Using the P-tree, 
the algorithm uses an Apriori- like  procedure  to  build  a  
second  set  enumeration  tree,  the  T-tree,  that  finally contains  
all  the  frequent  sets  (i.e.  those  that  meet  the  required  
threshold  of  support),  with  their  support-counts.   

The  T-tree  is  built  level  by  level,  the  first  level 
comprising  all  the  single  items  (attribute-values)  under  
consideration.  In the  first  pass,  the  support  of  these  items  is  
counted,  and  any  that  fail  to  meet the  required  support  
threshold  are  removed  from  the  tree.  Candidate-pairs are then 
generated from remaining items, and appended as child nodes. 
Most work on lazy classification [1] was based on nearest 
neighbor algorithms [3].  

The problem of small disjuncts was  first  noted  in  [3],  where  it  
was  showed  that  existing  classifiers create models that are 
good for large disjuncts but  are far from ideal for small disjuncts 
(which correctly classifies only few training instances). To  
investigate  the  performance  of  TFPC,  we  carried  out  
experiments  using  a number  of  data  sets  taken  from  the  
UCI  Machine  Learning  Repository. It is hard to assess the 
accuracy of small disjuncts because they cover few instances, yet 
removing all of them is unjustified  since many of them may be 
significant and the overall accuracy would be degrade.  
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III     EXPERIMENTAL RESULTS 
 

To  investigate  the  performance  of  TFPC,  we  carried  
out  experiments  using  a number  of  data  sets  taken  from  
the  UCI  Machine  Learning  Repository.  The 
implementation  of  TFPC  was  as  a  Java  program,  and  
for  comparison  purposes we  have  used  our  own  (Java)  
implementations  of  the  published  algorithms  for  

CMAR [3] and CPAR  [1].  In  the  first  set  of  
experiments,  as  in  [3]  and  [2],  we have  assumed  a  
support  threshold  of  1%  and  a  confidence  threshold  of  
50%.For  the  implementation  of  CPAR,  we  used  the  
same  parameters  used  in  [10],i.e.  minimum  gain  
threshold  =  0.7,  total  weight  threshold  =  0.05,  decay  
factor = 2/3,  and  similarity  ratio  1 : 0.99.  We  tried  to  
use  the  same  data  sets  as  those used  to  analyze  CMAR  
and  CPAR.  However  in  many  cases  the  data  sets  that 
were  used  in  [2]  and   appear  to  be  no  longer  available,  
and  in  others  were found  not  have  identical  parameters  
to  those  reported. The data sets chosen therefore comprise 
a subset of those used in [3] and [1], augmented by a further 
selection from the UCI repository. The  choice of  addi-
tional data sets concentrated on larger/denser data sets 
(2000+ records) because the majority of the data sets used in 
the reported analysis of CMAR and CPAR were  relatively  
small  (less  than  1000  records). Most work on lazy 
classification [1] was based on nearest neighbor algorithms 
[3]. The problem of small disjuncts was  first  noted  in  [1],  
where  it  was  showed  that  existing  classifiers create 
models that are good for large disjuncts butare far from ideal 
for small disjuncts (which correctly classifies only few 
training instances). It is hard to assess the accuracy of small 
disjuncts because they cover few instances, yet removing all 
of them unjustified since many of  them.  

A lazy decision tree was proposed in [1] and it was 
shown that the lazy approach is superior than the 
corresponding eager one (i.e., C4.5).  Despite all the 
improvements obtained by using lazy algorithms, we are not 
aware of any proposals of  lazy  associative  classification  
algorithms,  as  well  as  an  assessment that demonstrates 
why they perform better than  both decision and eager  
associative classifier. Due to the local focus, the lazy 
classifier can better classify a test instance, for which a 
global, eager rule-set may not work that well simple 
catching mechanism are used to avoid work replication 
during lazy associative classification. First we demonstrate 
that associative classifiers to perform to worse than the 
decision tree classifier. Then we show that lazy classifier 
outperform the corresponding eager classifier. Our claims 
are empirically confirmed by an extensive Set of 
experimental results. Timing are also showed in order to 
evaluate different classifiers with respect to computational 
complexity.  
 

 

 
 

Figure1.Test instance data set 
 

IV  EAGER ASSOCIATIVE CLASSIFIER 
 

In  this  section  we  describe  eager  associative  
classifiers, and  demonstrate  why  they  perform  better  
than  decision trees. We  start  by  discussing  how  decision  
rules  may  be generated  from  decision  trees. Then  we  
describe  associative  classifiers  that  are  based  on  
information  gain,  so  that we  may  compare  them  
regarding  the  rules  that  are  generated by each approach.  

 

V. DECISION TREE AND DECISION RULES 
 

Given any subset of training instances S, let Si denote the 
number of instances with class ci, and let |S| = Pi si be the 
total number of training instances. Then pi = si |S| denotes 
the probability of class ci in S. The entropy of S is then 
given as E(S) = Pi pi log pi. For any partition of S into m 
subsets Si, with S = [mi=1Si, the resulting split entropy is 
given as E({Si}) = Pm i=1 |Si||S| E(Si). The information 
gain for the split is then given as I(S, {Si}) =E(S) − 
E({Si}).A decision tree is built using a greedy, recursive 
splitting strategy, where the best split is chosen at each 
internal node according to the information gain criterion. 
The splitting at a node stops when all instances are from a 
single class or if the size of the node falls below a minimum 
support threshold, called minsup. Figure 1 shows an 
example of training data, and Figure 2 shows the 
corresponding decision tree 
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Figure 2.    Decision tree 

 

The last row of the table in Figure 1 shows one test 
instance which is recognized by the decision tree in Figure 
2. The decision tree can be considered as a set of disjoint 
decision rules, with one rule per leaf. In that way, a decision 
tree can be simulated by a set of decision rules. In this case, 
the information gain for each decision rule is calculated in 
the same way as it is calculated for each path of the decision 
tree. Thus, a decision rule has the same value of information 
gain of its corresponding path in the decision tree. 

 

VI. ENTROPY-BASED ASSOCIATIVE CLASSIFIER 
 

    We denote as Class association rule (CARs) those 
association rules of the form X ! c, where the antecedent (X) 
is composed of feature variables and the consequent (c) is 
just a class. CARs may be generated by a slightly modified 
association rule mining algorithm. Each item set must 
contain a class and the rule generation also follows a 
template in which the consequent is just a class. CARs are 
essentially decision rules, and as in the case of decision 
trees, CARs are ranked in decreasing order of information 
gain. Finally, during the testing phase, the associative 
classifier simply checks whether each CAR matches the test 
instance; the class associated with the first match is chosen. 
Note that, seen in the light of CARs, a decision tree is 
simply a greedy search for CARs, using a level-wise search 
algorithm that only expands the current best rule with other 
features. On the other hand, an eager associative classifier 
mines all possible CARs with a given minsup. It is also 
interesting to note that sorting the final rule-set on 
information gain, and using the best CAR for classification, 
is also a greedy strategy. While the greedy approach has its 
limitations, eager  associative classifiers are not limited by 
the prefix problem of decision rules, that is, once the best 
feature is chosen a teach node, all nodes under that sub tree 
must contain it. 

 
 

 
 

Figure 3. Eager Associative Classifier 
.  

Figure 3 shows the basic steps of the eager associative 
classifier. In the initial step, the algorithm mines all frequent 
CARs, and sorts them in descending order of information 
gain. Then, for each test instance ti, the first CAR matching 
ti is used to predict the class. Figure 4 shows an associative 
classifier built from our example set of Training instances in 
Figure 1, using the algorithm showed in Figure 3. Three 
CARs match the test instance of our example (last row of 
Table 1):  
 

 
1. {windy=false and temperature=cool play=yes} 

 
2. {outlook=sunny and humidity=high play=no} 

 
     3. {outlook=sunny and temperature=cool play=yes} 

Rule {windy=false and temperature=cool play=yes} 
 
 

Would be selected, since it is the best ranked CAR. By 
applying this CAR, the test instance will be correctly 
classified. Intuitively, associative classifiers perform better 
than decision trees because associative classifiers allow 
several CARs to cover the same partition of the training 
data. In our example, the test case is recognized by only one 
rule in the decision tree, while the same test case is 
recognized by three CARs in the associative classifier. 
Selecting the proper CAR to be applied is an issue in 
associative classification. Next we present a theoretical 
discussion about the performance of decision trees and 
eager associative classifiers. 
 
Theorem 1 The rules derived from a decision tree are a 
subset of the CARs mined using an eager associative 
classifier based on information gain. 
 
Proof 1 Let max E be the maximum entropy of all decision 
tree rules. Select a set Ce from all CARs that their entropy is 
at most max E. It is clear that the decision tree rules are a 
subset of Ce 
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Theorem 1 states that, for a given minsup, CARs contain (at 
least) all information of the corresponding decision tree. Since 
each decision tree rule may be seem as a CAR, and since all 
possible CARs were enumerated, then the decision 
tree can be built by choosing the proper CARs 
 
Theorem 2 CARs perform no worse than decision tree rules, 
according to the information gain principle. 
 
Proof 2 Given an instance to be classified, and, without loss of 
generality, a decision tree with just pure leaves, the decision 
tree predicts class c for that instance. We analyze two 
scenarios: first, just one CAR matches the instance, and 
second, more than one CAR matches. When just one CAR 
matches, it is the same as the decision tree rule, since the set 
of CARs subsumes the set of decision rules. In this case, the 
associative classifier and the decision tree make the same 
prediction. When more than one CAR matches an instance, the 
prediction may be either the same class (say c) as the 
matching decision rule or another class. If the associative 
classifier predicts c then the two approaches are equivalent 
.In case a class other than c is predicted, by definition, the 
best matching CAR provides a better information gain than 
the decision rule, and thus, according to the information gain 
principle, the CAR will make a better prediction 
 
Theorem 2 states that the additional CARs of the associative 
classifier that are not in the decision tree, cannot degrade CAR 
is only used if it is better than all decision rules (according to 
the information gain principle).However, eager associative 
classifiers generate a large number of CARs, most of which 
are useless during classification. For instance, from the set of 
13 CARs showed in Figure 4, only 3 match the test instance 
(the remaining 10 
CARs are useless). Next, we present a lazy classifier and 
compare it to the eager version described in this section. 
 
VII  LAZY ASSOCIATIVE CLASSIFIER 
 
Unlike the eager associative classifier that extracts a set of 
ranked CARs from the training data, the lazy associative 
classifier induces CARs specific to each test instance. The 
lazy approach projects the training data, D, only on those 
features in the test instance, A. From this projected training 
data, DA, the CARs are induced and ranked, and the best CAR 
is used. From the set of all training instances, 

D, only the instances sharing at least one feature with the test 
instance A are used to form DA. Then, a rule-set ClAis 
generated from DA. Since DA contains only features inA, all 
CARs generated from DA must match A. The lazy associative 
classifier is presented in Figure 5. 
 

 
     Figure 5. Lazy Associative Classifier 
 
Now we demonstrate that the lazy associative classifier 
produces better results than its eager counterpart. Given a test 
instance A, and a set of CARs C, we denote by CA those 
CARs {X →c} in C where X ⊆ A. 
Theorem 3 Let A be the set of features in a given test 
instance.Let Ce A be the set of CARs obtained from the eager  
associative classifier induced by A, and Cl A be the set of 
CARs obtained from the lazy associative classifier induced by 
A. For a given minsup, we have C

e
A ⊆  C

l
A 

 
Proof 3 By definition, both CeA and ClA are composed of 
CARs {X →c} in which X →A, that is, all CARs contain only 
features in A. Also the training instances matching A (i.e., the 
projected training data) are a subset of the set of 
 

 
 
All training instances (i.e., DA ⊆ D). Thus, for a given minsup, 
if a rule {X →c} is frequent in D, and then it must also be 
frequent in DA. Since C

l
A is generated from DA and  C

e
A is 

generated from D (and DA ⊆  D), C
e
A ⊆  C

l
A. 

The next example illustrates Theorem 3. Figure 6 shows the 
training data given in Figure 1 (i.e., D), projected by the 
features in the test instance (i.e., A) showed in the last row in 
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Figure 6. The projected training data (i.e., DA) is composed of 
the 5 instances showed in the figure. Suppose minsup is set to 
40%. In this case, the set of CARs, Ce, 
found by the eager classifier is composed of the two CARs: 
 
1. {windy=false and humidity=normal!play=yes} 
2. {windy=false and temperature=cool!play=yes} 
 
None of the two CARs matches the test instance, and thus, 
C

e
A =Ǿ;. On the other hand, the projected training data has 

less instances (DA ⊆  D), and therefore, CARs not frequent in 
D may be frequent in DA. This is because a frequent CAR 
must occur at least 4 times in D (since|D|=10), but only 2 
times in DA (since |DA|=5). The lazy classifier found two 
CARs in DA: 
1. {outlook=overcast! play=yes} 
2. {temperature=hot! Play=yes} 
These lazy CARs not only predict the correct class, but also 
are simpler than the eager CARs. Next we discuss how the 
lazy CARs perform when compared to the eager CARs 
Theorem 4 Lazy CARs perform no worse than eager CARs, 
according to the information gain principle. 
Proof 4 Theorem 3 showed that, for a given minsup C

e
A ⊆  

C
l
A. Let Re be the best rule in CeA (according to the 

information gain principle), and let Rl be the best rule in ClA. 
Two 
scenarios have to be considered when determining a class for 
the test instance A. In the first scenario, Rl is identical to Re ; 
in this case the same class is predicted by both eager and lazy 
classifiers. In the second scenario, Rl is better than Re, and 
thus Rl must provide a better prediction. _ 
 
Theorem 4 states that the CARs added by the lazy classifier do 
not degrade the classification accuracy. This is because an 
additional lazy CAR is only used if it is better than all eager 
CARs (according to the information gain principle). 
Intuitively, lazy classifiers perform better than eager 
classifiers because of two characteristics: 
 
• Missing CARs: Eager classifiers search for CARs in a large 
search space, which is induced by all features of the training 
data. While this strategy generates a large rule-set, CARs that 
are important to some specific test instances may be missed 
(this is particularly true for skewed/unbalanced distributions). 
Lazy classifiers, on the other hand, are context-sensitive and 
focus the search for CARs in a much smaller search space, 
which is induced by the features of the test instance. 
• Highly Disjunctive Spaces: Eager classifiers generate CARs 
before the test instance is even known. In this case, the 
difficulty for the classifier is in anticipating all the different 
directions in which it should attempt to generalize its training 
examples (i.e., what CARs must be generated). For this 
reason, eager classifiers often combine small disjuncts in order 
to generate more general 
Predictions (more general CARs should be applicable to more 
test instances). This can reduce classification performance in 

highly disjunctive spaces, where single disjuncts may be 
important to classify specific instances. Lazy classifiers, on 
the other hand, generalize their training examples exactly as 
needed to cover the test instance. Thus, lazy classifiers are 
often most appropriate when the search space is complex, and 
there are myriad ways to generalize a case. 
 

VIII  EXPERIMENTAL EVALUATION  
 

In this section we show the experimental results for 
the evaluation of the proposed classifiers in terms of 
classification effectiveness and computational performance. 
Our evaluation is based on a comparison against C4.5 [1] and 
Lazy DT [1] decision tree classifiers. We also compare our 
Numbers to some results from other associative classifiers, 
such as CPAR [2], CMAR [1] and HARMONY [1], and to 
some results from rule induction classifiers, such as RISE [2], 
RIPPER [3], and SLIPPER [3]. We used 26 datasets from the 
UCI Machine Learning Repository to compare  
 

IX  EAGER AND LAZY ASSOCIATIVE CLASSIFIERS 
 

We continue our analysis by comparing the 
effectiveness of eager (EAC) and lazy classifiers (LAC). Table 
1 shows their corresponding error rates. For very small 
datasets eager and lazy classifiers perform similarly, since the 
CARs that  were generated by both classifiers were essentially 
the same for the parameters used. For instance, the result 
obtained with labor and zoo datasets were exactly the same. 
Also, we can observe that lazy classifiers perform better when 
the dataset is sparse (i.e., auto, pima, diabetes, german, and 
wine datasets). The error reduction in these datasets range 
from 13.9% to 52.7%. This result is expected, since the small 
disjuncts problem is more likely to happen in sparse datasets. 
Further, we can also notice that 
the lazy classifiers always outperform the corresponding eager 
ones, except for the ionosphere dataset. We believe that, for 
this dataset, the lazy classifiers have over fitted the data. 

 
9.1 Rule Induction and Associative Classifiers 

We also compared the proposed eager and lazy associative 
classifiers against RISE, RIPPER and SLIPPER, using results 
reported in [3,2,1]. Table 2 shows the relative performance for 
each classifier (i.e., the accuracy of one classifier divided by 
the accuracy of the other classifier), when compared to eager 
associative classifiers. Each number in this table indicates how 
many times EAC is superior than the corresponding adversary 
RISE, RIPPER or SLIPPER (in terms of accuracy). The 
SLIPPER algorithm won in 6 of the 26 datasets (and lost in 1), 
showing to be most competitive rule induction classifier. The 
RIPPER classifier won in 4 datasets and the RISE classifier 
won in only one dataset. 
Table 2 also shows the relative performance of rule induction 
classifiers when compared to the lazy associative classifiers. 
RISE and RIPPER lost in almost all datasets, and SLIPPER 
was the most competitive one. Compared toLAC (inf. gain), 
SLIPPER won in one dataset (and matched 
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X CONCLUSIONS AND FUTURE WORK 
 

Decision tree classifiers perform a greedy search 
which may discard relevant information. Based on this 
observation we present an assessment of associative 
classification. The generated CARs are ranked based on their 
information gain, so that we can compare the performance of 
decision trees and associative classifiers. We present evidence 
regarding the superiority of associative classifiers. However, it 
is well known that no classifier can outperform others in all 
settings [2], and thus there may be certain specific situations 
Where decision trees outperform associative classifiers.We 
also propose improvements to associative classification by 
introducing a novel lazy classifier. The lazy classifier searches 
a larger hypothesis space than the corresponding eager 

classifier, because it uses many different local models to form 
its implicit global approximation to the target function. Eager 
classifiers commit at training time to a single global 
approximation. An important feature of the proposed lazy 
classifier is its ability to deal with the small disjuncts problem. 
Based on this observation, we present evidence showing that a 
lazy associative classifier outperforms the corresponding eager 
one. Our claims were con- firmed by empirical comparisons to 
C4.5 and LazyDT decision tree classifier, using datasets from 
the UCI data repository. We also compared the proposed  
Classifiers against other three associative classifiers and three 
rule induction Classifiers and outperformed them in most of 
the cases. So far, our classifiers use only the best CAR for 
sake of classification. In the future we will combine simple 
and complex CARs in order to enhance classification. Finally, 
we will explore more realistic application scenarios. 
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