

 Abstract— Graphical authors face a plethora of challenges in
authoring images collaboratively. Their tasks involve work by
different authors at each and every stage of the design process.
Some of the challenges [1] in such a collaborative environment
are time and space, awareness, communication, intellectual
property, simultaneity and locking, protection, workflow,
security and platform independence. This paper aims at
providing a design environment, which is platform independent
and collaborative through Layer masking based on Canny’s edge
detection algorithm.

Index Terms—Collaborative, Common User Access Area,
Convolution Mask, Edge Detection, Graphics, Logical User Area
Mapper.

I. INTRODUCTION
EAL world application involves synchronization of
several tasks and Co-Authoring on any single entity say

an image or a document etc. In this paper we will give the
design of an architecture neutral collaborative drawing
environment, which uses the browser as a drawing canvas.
This kind of collaborative design environment helps authors to
create their own designs or simultaneously edit their work
with the help of other authors.

In order to collaboratively author an image it would be
easier to divide the image into stochastic units and allocate
them to multiple users. But it would be more meaningful to
divide the image logically than our traditional way of random
piecing. For example in scenery with mountain and a
background; instead of dividing it into stochastic units it
would be more meaningful to divide the scenery into two
pieces, mountain and the background. This logical division
can prevent the usage of different colour combinations for the
same unit by different authors. For example a part of blue sky
in a stochastic unit may be painted using B value 60 by one
author and 61 by another author. Such a logical division can
be achieved using edge detection techniques.

II. RELATED WORK
Cliki [2] is a collaborative drawing tool based on the same
principle as the Wiki web. In this anyone can access a Cliki-

based drawing and edit them inside their Web browser.
GRACE (GRAphics Collaborative Editing) is a project aimed
at supporting real-time, synchronous collaborative drawing
over the Internet [3]. Their approach is to replicate the shared
document at each user's site so that editing is done on the local
copy, and then propagated to the remote copies. Moksha [4] is
a prototype collaborative system. It incorporates sound to help
promote awareness of actions that may be happening outside
of the user's visual focus. The Global Information Systems
Group at the University of Zurich is developing the Universal
Information Platform, a distributed information management
system. One of the applications being built for the UIP is a
collaborative graphical editor [5]. In addition to the basic
operations offered by other collaborative drawing tools their
editor offers grouping and ungrouping operations.
OPEN_Studio [6] is a Web-based drawing environment that
allows groups to work on and share drawings. It uses a Java
applet to let users define a color (by controlling the amount of
red, green, and blue), select a texture and brush size. The
Poietic Generator [7] is a device where many users
collaboratively author the image at the same time. The
working of Poietic Generator is simple. An image is first
divided into many stochastic squares. Each user controls only
one square of the entire image at any point of time and the
other squares are locked from the user. The only way for the
user to swap squares was to disconnect and reconnect. This
idea has the following drawbacks

• As the image is divided randomly into stochastic square
units, nebulous outcome results.

• A single entity say may be divided among two squares
and two users may give different colors to the same
entity.

In this paper we provide a lucid way to collaboratively author
an image. We detect all the edges in an image and divide the
image into meaningful entities and allocate them to users
instead of just randomly dividing them. Such a design
environment is free from the drawbacks stated above.

III. CHOOSING AN EFFICIENT EDGE DETECTION ALGORITHM
Edge detection refers to the process of identifying and
locating sharp discontinuities in an image. The discontinuities
are abrupt changes in pixel intensity which characterize
boundaries of objects in a scene. Classical methods of edge
detection involve convolving the image with an operator (a 2-

Ramakrishnan D, Shiyam P and Raghuveera T
 College Of Engineering Guindy,

Anna University, Chennai

Design of Platform Independent, Collaborative
Graphical Environment Using Edge Detection

R

978-1-4244-4711-4/09/$25.00 ©2009 IEEE IAMA 2009

Downloaded from www.VTUplanet.com

D filter), which is constructed to be sensitive to large
gradients in the image while returning values of zero in
uniform regions. There are an extremely large number of edge
detection operators available, each designed to be sensitive to
certain types of edges. Variables involved in the selection of
an edge detection operator include edge orientation, noise
environment and edge structure.

• The most apparent aim is to have low error rate.

• It is important that edges occurring in images should not

be missed and that there be no responses to non-edges.

• The next criterion is that the edge points be well
localized, that is the distance between the edge pixels as
found by the detector and the actual edge is to be at a
minimum so that logical divisions are intelligible.

• The above mentioned criteria were not substantial enough
to completely eliminate the possibility of multiple
responses to an edge. Therefore it necessitates having
only one response to a single edge.

Some of the popular edge detection techniques are Sobel,
Prewitt, Canny and Roberts. Gradient-based algorithms such
as the Prewitt filter have a major drawback of being very
sensitive to noise. The size of the kernel filter and coefficients
are fixed and cannot be adapted to a given image. An adaptive
edge-detection algorithm is necessary to provide a robust
solution. Such an algorithm should be adaptable to the varying
noise levels of the images to help distinguish valid image
contents from visual artifacts introduced by noise. One such
algorithm is Canny’s Edge detection algorithm. Even though
Canny’s edge detection algorithm is computationally more
expensive compared to Sobel, Prewitt and Robert’s operator it
performs better than all these operators under almost all
scenarios.

In order to implement the Canny’s edge detector algorithm
[8], a series of steps must be followed. The first step is to filter
out any noise in the original image. Once a suitable mask has
been calculated, the Gaussian smoothing can be performed
using standard convolution methods. A convolution mask is
usually much smaller than the actual image. As a result, the
mask is slid over the image, manipulating a square of pixels at
a time. The larger the width of the Gaussian mask, the lower is
the detector's sensitivity to noise. After smoothing the image
and eliminating the noise, the next step is to find the edge
strength by taking the gradient of the image. The Sobel
operator performs a 2-D spatial gradient measurement on an
image. Then, the approximate absolute gradient magnitude
(edge strength) at each point can be found. The Sobel operator
uses a pair of 3x3 convolution masks, one estimating the
gradient in the x-direction (columns) and the other estimating
the gradient in the y-direction (rows) which are shown below

 Fig.1. Convolution Mask

The magnitude, or edge strength, of the gradient is then
approximated using the formula:

 |G| = |Gx| + |Gy|

The direction of the edge is computed using the gradient in the
x and y directions.

 θ = tan-1 (Gy / Gx)

Once the edge direction is known, the next step is to relate the
edge direction to a direction that can be traced in an image.

After the edge directions are known, non-maximum
suppression now has to be applied. Non-maximum
suppression is used to trace along the edge in the edge
direction and suppress any pixel value (sets it equal to 0) that
is not considered to be an edge. We modify this part of
Canny’s algorithm to assign our own id for the logical units as
explained in the next section. Finally, hysteresis is used as a
means of eliminating streaking.

IV. WORKING SCENARIO
Our design architecture is shown in Fig.7. We explain our
environment’s working with the scenery shown in Fig.2, the
image to be edited collaboratively. We first convert the RGB
image to a gray scale image as shown in Fig.3. We then store
the image into a two dimensional array. Each element in the
array corresponds to a pixel in the image.

 Fig.2. Image to be edited.

 Fig.3. Image after graying.

This two dimensional array is the instance to Canny’s
algorithm and the edges are detected. For example the
instance (based on K values in CMYK) to Canny’s algorithm
for the image shown in Fig.3 is shown in Fig.4.

Downloaded from www.VTUplanet.com

 31 31 31 31 31 31 31 31
 31 31 31 31 31 31 31 31
 31 31 31 31 31 31 31 31
 31 31 86 86 31 31 31 31
 31 86 86 86 86 31 31 31

 86 86 86 86 86 86 31 31
 86 86 86 86 86 86 86 86
 86 86 86 86 86 86 86 86

 Fig.4. Image Instance to Canny’s Algorithm for the image in

Fig.3

This array in Fig.4 contains values where 86 corresponds to
mountain and 31 correspond to the sky. When this array is
passed to our system, the image is split into two logical units
i.e. mountain forms one logical unit and sky forms another
logical unit. These logical units are replicated layers of the
original image.

In order to identify which layer a pixel corresponds to we use
a mutex table. A mutex table is a table, whose size is as same
as that of the original image. This table gives information
about which logical unit a specific pixel correspond to. We
name it mutex table because when one user accesses one
logical unit, that unit will be masked from other users. In the
example shown in Fig.2 let the mountain regions correspond
to logical unit1 and the blue sky correspond to logical unit2.
Let their ids be 1 and 2 respectively. The generated Mutex
table is shown in Fig.5.

2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 1 1 2 2 2 2
2 1 1 1 1 2 2 2
1 1 1 1 1 1 2 2
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

 Fig.5. Mutex Table

V. LAYER MASKING
Layer Masking is a process in which the output is a logical
unit that the other users cannot access until the working user
releases it. The logical units thus produced are

 Fig.6. Replicated layers after logical splitting

These layers are then placed in a Common User Access Area
(CUAA). Let CUAA be present at the image server as shown
in Fig.7. We assume that no two users access the same logical
unit simultaneously. As and when the authors pick their
logical image units they acquire a lock over theirs from others
i.e. the image is masked from other authors. Current working
authors and their corresponding logical unit ids are stored in
Logical User Area Mapper (LUAM) table.

VI. PLATFORM INDEPENDENCE
Proprietary collaborative authoring software is limited to the
platforms on which it is being developed. On the other hand,
network based collaborative drawing tools lets users work on
different platforms. In particular web-based collaborative
environment can be promoted as an architecturally neutral
environment by using a “standard” web browser as the clients
drawing canvas, although browser capabilities varies
significantly. Our design environment uses the java capability,
so that the system is platform independent, sufficiently
flexible and user friendly with a good graphical user interface.

VII. ARCHITECTURAL DESIGN

 Fig.7. Design Architecture

The architecture proposed here is easy to implement. The
advantages of using browser as drawing canvas are

• Good Graphical User Interface to the end users through

use of good GUI web design techniques at the browser.

• Technology adaptation i.e. the design environment can be

improvised just by changing the web technology
involved.

Such a design environment also produces software that is just
a download and use form and avoids installations.

The design of Logical User Area Mapper, Common User
Access Area and Mutex Table should be done carefully. These
three entities form the heart of our design environment. The
existing software can be modified to elevate its performance
just by adding these units into it.

Downloaded from www.VTUplanet.com

VIII. EXAMPLE SCENARIO
Let us assume the two authors are located at different
geographic locations. Let author A uses logical unit 1 i.e. sky
part of the image and the author B uses logical unit 2 i.e.
mountain part of the image shown in Fig.2. The contents of
LUAM will be

 User Current
 Unit

 Next
Requested
 Unit

 A 1 *
 B 2 *

 Fig.8. LUAM table

Now if author A wants to access the logical unit from CUAA,
LUAM will be checked now. It finds that the requested unit is
allocated to author B. So it provides author A with two
options, either wait for author B to complete and release the
unit by setting the request in the next requested unit of LUAM
or work on some other logical unit available in the CUAA.

After the completion of editing by all the authors i.e. if the
current unit column is free the layers are merged together to
produce a final copy of the image. The authors can access the
final image from the image server.

IX. FURTHER EVALUATIONS

The design environment proposed in this paper needs to be
evaluated. This can be done by adding the LUAM, CUAA and
Mutex Table functionalities to the traditional collaborative
image editing tools. This helps in attaining a lucid, logical
division of images rather than stochastic division of the
images. We intend to modify any of the open source
collaborative image editing tools by adding LUAM, CUAA
and Mutex Table to test our proposed architecture through
simulation. We would then be able to quantify the lucidity and
efficiency of our proposed architecture.

X. CONCLUSION AND FUTURE WORK
In this paper, we have presented the application of image
processing in collaborative world. We have designed a
collaborative drawing environment that can be leveraged to
obtain performance gains over existing architectures. It
extends traditional collaborative environments. We have
illustrated the graphical environment with an edge detection
algorithm. We strongly feel that edge detection techniques be
introduced in such environments. However, further work
needs to be done if two authors simultaneously access a
logical image unit from Common User Access Area. An
independent work done at CEG, Anna University by our team
has derived a software architecture for collaborative graphical
design environment.

REFERENCES

[1] Andy Adler, John C. Nash, Sylvie Noël, “Challenges in
Collaborative Authoring Software”.
[2] D. Gordon, Cliki, (2004, Mar.) [Online],
http://www.mcs.vuw.ac.nz/
~donald/?Cliki
[3] Sun and D. Chen, “Consistency maintenance in real-time
collaborative graphics editing systems“. ACM Trans.
Computer-Human Interaction, Vol. 9, pp. 1-41. 2002.
[4] R. Ramloll and J. Mariani, “Do localised auditory cues in
group drawing environments matter?”, Proc. ICAD'98,
Glasgow, UK, 1998.
[5] C.-L. Ignat and M.C. Norrie, “Grouping/ungrouping in
graphical collaborative editing systems”, Proc. 5th
International Workshop on Collaborative Editing Systems,
Helsinki, Finland, 2003.
[6] OPEN_Studio, (2004, Mar) [Online].
http://draw.artcontext.net
[7] Poietic Generator [Online] http://poietic-
generator.net/wikini/wakka.php?wiki=Welcome
[8] J. F. Canny, “A computational approach to edge
detection”, IEEE Trans. Pattern Analysis and Machine
Intelligence, pages 679-698, 1986.

Downloaded from www.VTUplanet.com

