
Formalization of Virtual Enterprise using CPL
(Case: Electronic Marketplace)

Anoop Kumar Srivastava
Department of Computer Science & Engineering

Radha Govind Engineering College
Anuyogipuram, Garh Road, Meerut-250 004 (U.P.), INDIA

Email: anoop kumar srivastava@yahoo.com

Abstract—In this paper, we present formalization of Virtual
Enterprise with an example of Electronic Marketplace using
Concurrent Programming Language (CPL) and provide a multi
autonomous agent based framework. Our agent based architec-
ture leads to flexible design of a spectrum of virtual enterprises
by distributing computation and by providing a unified inter-
face to data and programs. Autonomous agents are intelligent
enough and provide autonomy, simplicity of communication,
computation, and a well developed semantics. The steps of design
and implementation are discussed. The structure of Electronic
Marketplace, the agent model, an ontology, interaction pattern
between agents and the formalization of Electronic Marketplace
in CPL is given. We have developed mechanisms for coordination
between agents using a language, which we call Virtual Enterprise
Modeling Language (VEML). VEML is a dialect of Java and
includes Knowledge Query and Manipulation Language (KQML)
primitives. We have implemented a multi autonomous agent
based system, which we call VE System. VE System provides
application programmers with potential to globally develop dif-
ferent kinds of VEs based on their requirements and applications.
We demonstrate efficacy of our system by discussing its salient
features.

I. INTRODUCTION

With advances taking place in information, transporta-
tion, networking and communication technology, compa-
nies/factories are being organized as a network of units, each
unit corresponding to a well defined objective in a classical
set up such as production plant, storage plant, transportation
hub, customer relation etc. without the necessity of either
locating all the units at the same physical location of the
plant or owning all the units by the management of the
primary plant establishment. This leads to the description of
an Extended Enterprise where all resources such as stock,
space and production capacity of all the enterprises are added
together. Such a real-life model has come to be referred to
as Virtual Enterprises [1]. A Virtual Enterprise (VE) is an
enterprise which has no resource of its own but consists of
shared and coordinated activities which utilizes the resources
of participating enterprises.

The Virtual Enterprise presents many challenges and op-
portunities for Artificial Intelligence (AI) technology. Adding
together the resources of all the participating enterprises of
VE stresses technology for information retrieval, networking,
communication, coordination, decision making and so on.
Satisfying diverse user needs calls for advanced interfaces,

user modeling and other emerging techniques. Between users
and VE is a gulf filled with a large and evolving network
of services that must be selectively arranged to accomplish a
particular task.

We argue that a fundamental role for AI in Virtual Enterprise
is to perform the underlying monitoring, management, and
allocation of services and resources that bring together
users and information. While user interfaces and retrieval
technologies are important, it is obvious that such technologies
will undergo ongoing and dramatic change, which in turn
can lead to the restructuring of “how things are done” in VE.
In a very real sense, therefore, the underlying architecture of
VE must continually search through a growing, shifting, and
complex space of content and capabilities for combinations
that best serve needs arising at a given moment. This paper
aims to satisfy these criteria with an architecture based
on distributed software agents. The agents in this system
represent specialized information-processing functions, with
additional abilities to reason about their effectiveness and
requirements, communicate with other agents, negotiate
about terms and resources, and perform other generic agent
functions. We call them autonomous agents because we assign
these modules autonomy of action (they choose what services
to perform for whom with what resources under what terms),
under the general constraints imposed by their situations and
their relations with other agents [7,8,12]. Typical Virtual
Enterprise tasks require teaming among numerous specialized
agents. Our description so far has been generic, because the
scope of what constitutes an “information processing task”
relevant to the Virtual Enterprise is broad. To make our
conception more concrete, the types of agents that we have
built for electronic commerce include:

• User interface agents: To manage the presentation of
information and input from the user.

• Information service provider agents: To perform spe-
cific services such as search on databases.

• Facilitator agents: To support the location of relevant
agents and mediation among them.

To realize this vision, first, we have given the structure
of Electronic-Marketplace, next we have provided the agent
model, designed an ontology and given interaction pattern

Downloaded from www.VTUplanet.com

Admin
Text Box
978-1-4244-4711-4/09/$25.00 ©2009 IEEE

Admin
Text Box
IAMA 2009

between agents. The notion of VE is discussed through for-
malization of Electronic-Marketplace. To demonstrate the vi-
ability of the proposed coordination schemes, a programming
language is designed and developed, which is called Virtual
Enterprise Modeling Language (VEML) and it’s run-time
architecture to construct the descriptions mutually understood
by VE agents [9,10,11]. Knowledge Query and Manipulation
Language (KQML) [2,3,4,5,6] which is based on speech act
categories for describing protocols and agent communication
strategies is used. In particular, we have been able to identify a
number of speech acts (and appropriate semantics) that cover
a broad range of information services. In addition, we have
used speech acts to cover negotiation: the process by which
a set of agents come to terms on provision of information
services and allocation of resources to the various service
activities. The Autonomous Agent Based Virtual Enterprise
System which we call VE System has been implemented in
VEML. The VE System provides application programmers
with potential to globally develop different kinds of VEs based
on their requirements and applications. The ultimate goal of
VE System is to effectively turn the various participating
enterprises into a unified, dependable, secure and distributed
computing infrastructure of VE.

This paper is organized as follows. Section 2 deals with
design. Section 3 describes the implementation. Section 4
discusses salient features. Section 5 presents conclusion.

II. DESIGN

The design of Electonic-Marketplace is done and structure
of E-Marketplace, agent model, an ontology, interaction pat-
tern between agents is provided.

A. An Electronic Marketplace
An Electronic-Marketplace or Digital-Marketplace is a vir-

tual marketplace where buying and selling is done over a
communication network. An E-Marketplace comprises entities
like buyers, sellers, facilitators and products. The buyers and
sellers buy and sell products respectively. Buyers look for
information which they are interested in and sellers look for
potential buyers who would buy their products. Many a times
both the parties spend a lot of time in searching for information
about each other. In such a situation a facilitator can act as an
intermediary to provide the required information and thereby
can ease the process of searching for information. The role of
facilitator can be more sophisticated in the sense that it can
mediate between buyer and a seller to settle a business deal
through a process of negotiation. A number of E-Marketplaces
are available ranging from music CDs to automobiles. E-
Marketplace dramatically reduces transaction costs and on the
other hand can enhance satisfaction of both buyer and seller. E-
Marketplace affects the consumer purchase process. It provides
a mechanism for reducing the search costs (money, time and
effort expended to gather product price, quality and feature
information) for consumers. The combination of more infor-
mation, electronic links and channels will give the buyers more
choices, resulting in a shift of bargaining power to the buyers.

The product price, search costs, marketing (advertising) costs,
overhead costs, inventory costs and production costs are lower.
Security is a critical issue in Electronic-Commerce. Consumers
demand secure systems if they are to use EC payment.

B. Structure of an Electronic-Marketplace
The structure of E-Marketplace is given below:

E Marketplace
Agents

Buying agents
Registration

Direct Buying
Query
Advertise
Negotiate

Indirect Buying
Query
Advertise
Negotiate

Deregistration
Selling agents

Registration
Direct Selling

Query
Advertise
Negotiate

Indirect Selling
Query
Advertise
Negotiate

Deregistration
Facilitators

Interaction Buying agents
Registration
Query
Advertise
Deregistration

Interaction Selling agents
Registration
Query
Advertise
Deregistration

Interaction Facilitators
Query
Advertise

C. Agent Model

A three tier architecture model of Electronic Marketplace
(E-Marketplace) [7] is presented consisting of buyers, sellers
and facilitators. They interact with each other through their
software counterparts called as buying agents, selling agents
and facilitators. The facilitators provide various services to
buying and selling agents. They are also called software
agents or intelligent agents or simply agents. In short software
agents are the artifacts which are intended to perform on
behalf of their human counterparts. They carry out the tasks
without human intervention. Figure 1. represents model of an
agent mediated E-Marketplace.

Downloaded from www.VTUplanet.com

f−agent f−agent

s−agent

s−agent
s−agent

s−agent

 Selling

Buying Facilitator

b−agent

b−agent
b−agent

b−agent

7
6 1 3 8

9
5
4
2

Fig. 1. A model of an agent mediated E-Marketplace

D. Electronic Marketplace Ontology
This is a name which signifies the shared assumptions that

the programs have about the knowledge they are using. It is a
keyword shared among programs to keep other programs with
the same topic from answering.

In the construction of Electronic Marketplace Ontology we
followed whenever possible the methodology for developing
ontologies outlined by [Uschold et al., 1995b]. This method-
ology includes the following steps: identify purpose, build
the ontology (capture, code, integrate existing ontologies),
evaluation and documentation.
E MARKETPLACE: is a set of inter-related UNITS which
are totally committed to some common PURPOSE (Buy-
ing/Selling).
UNIT: is an entity for MANAGING the ACTIVITIES to achieve
one or more PURPOSE. A UNIT may be a buying process,
selling process and a facilitator.
BUYING AGENT: is an entity for performing the activities
to ACHIEVE the PURPOSE of buying.
SELLING AGENT: is an entity for performing the activities
to ACHIEVE the PURPOSE of selling.
FACILITATOR: is an entity for facilitating the activities to
ACHIEVE the PURPOSE of buying and selling.
PRODUCT: is the item which is purchased or sold in the
E MARKETPLACE.
BUY REQUEST: is a statement defining a buying agent’s
needs in terms of PRODUCT, QUANTITY and TIME LIMIT.
SELL REQUEST: is a statement defining a selling agent’s
needs in terms of PRODUCT, QUANTITY and TIME LIMIT.
AGENT: is an entity for performing the activities to ACHIEVE
the PURPOSE of buying, selling and facilitating.
REGISTRATION: is a process by which a buying
agent or selling agent gets entitled to participate in the

E MARKETPLACE.
DEREGISTRATION: is a process by which a buying agent
or selling agent are released from the E MARKETPLACE.
TIME LIMIT: is the period during which the products are
due to be purchased or sold.
QUERY: is a process of buying agent and selling agent asking
for information about PRODUCT, PRICE and TIME LIMIT.
NEGOTIATION: is a method by which buying and selling
agents will make deal.
ADVERTISE: is a method by which buying and selling agents
will make each other aware about their products.
BROADCAST: is a method by which facilitator will send the
message to all the buying or selling agents.
DIRECT BUYING/DIRECT SELLING: is a method by
which buying and selling agents will negotiate with each other
directly i.e. without facilitator.
INDIRECT BUYING/INDIRECT SELLING: is a method
by which buying and selling agents will negotiate with each
other through the facilitator.

E. Inter Agent Communication using Performatives
Table I shows communication pattern between agents.

TABLE I
INTERACTION SUMMARY BETWEEN BA, SA and FA

Source Destination Message Message Content Performative
SA FA 1 register selling agent with product and parameters register
BA FA 2 register buying agent with product and parameters register
SA FA 3 advertise selling product with parameters advertise
BA FA 4 query buying product ask-if
FA BA 5 reply from FA with list of selling agents reply
BA SA 6 negotiate price with selling agents ask-all
SA BA 7 negotiate price with buying agent ask-one
BA FA 8 deregister buying agent deregister
SA FA 9 deregister selling agent deregister

BA represents Buying Agent, SA represents Selling Agent and
FA represents Facilitator Agent. These agents communicate
through a message called performative. In that the message is

Downloaded from www.VTUplanet.com

intended to perform some action by virtue of being sent. List
of reserved performatives used between sender and receiver
are e.g. register, advertise, broadcast, ask-if, ask-one, ask-all,
reply and unregister etc.

III. FORMALIZATION OF ELECTRONIC-MARKETPLACE

In this section we present formalization of Electronic
Marketplace using Concurrent Programming Language (CPL)
[13]. The techniques described show how to synchronize the
execution of the processes and how to communicate data
among them. The language uses the concurrent programming
tools called processes and monitors. There are three concurrent
processes running in E-Marketplace e.g. buying, selling and
facilitator. Buying, selling, and facilitator interact with
each other. “reception” is a data structure shared by three
concurrent processes. All the processes need to know that
they can send and receive data through it. This kind of system
component is called a monitor. A monitor can synchronize
concurrent processes and transmit data between them.

A. E-Marketplace

program E Marketplace;
type

reception1 = monitor;

reception2 = monitor;

buyingprocess = process(b f receptionist,
b s receptionist:

reception1; b b receptionist: reception2);

sellingprocess = process(s f receptionist,
b s receptionist:

reception1; b b receptionist: reception2);

facilitatorprocess = process(b f receptionist,

s f receptionist: reception1);

var
b f receptionist, s f receptionist,

b s receptionist:reception1;

b b receptionist : reception2;

Buying: buyingprocess;

Selling: sellingprocess;

Facilitator: facilitatorprocess;

begin
init b f receptionist,

s f receptionist,

b s receptionist,

b b receptionist,

Buying(b f receptionist,
b s receptionist,

b b receptionist),

Selling(s f receptionist,
b s receptionist,

b b receptionist),

Facilitator(b f receptionist,
s f receptionist);

end
We have defined reception as a monitor. There are two

monitor procedures, send and receive. Processes can not
operate on shared data. They can only call monitor procedures
that have access to the shared data.

B. Selling agent
Registration

type sellingprocess = process(s f receptionist,

b s receptionist:
reception1; b b receptionist:

reception2);
var selling agent, selling product: array [1..32

] of char:
no of buying agent: integer;

procedure register selling agent(selling agent,
selling product);

begin
s f receptionist.send(selling agent,

selling product);
s f receptionist.receive(acknowledgement);

end

register selling agent(selling agent, selling product):
The selling agent sends register request to facilitator with agent
name and product name. The facilitator receives the request
and registers selling agent with selling product and then
updates its database. The facilitator sends acknowledgement
to the selling agent. The selling agent can follow two types
of selling methods e.g. direct selling and indirect selling.

procedure query selling product(selling product);
begin

b b receptionist.read(selling product);
end
procedure advertise selling product(selling product);
begin

b b receptionist.write(selling agent,
selling product);

end
procedure negotiate selling(no of buying agent);
var selling price: integer;

acknowledgement: array [1..32] of char;
begin

agent count = 0;
repeat
b s receptionist.send(selling price);
b s receptionist.receive(buying price);
agent count = agent count + 1;
until agent count = no of buying agent;
b s receptionist.send(selling price);
b s receptionist.receive(acknowledgement);

end

Direct Selling: In direct selling the selling agents are open
to buying agents. The selling agents do not interact with the
buying agents through facilitator. The selling agents follow
three procedures.

query selling product(selling product): The selling
agent queries about the product by reading from billboard.
The selling agent will read the agents buying the selling
product from the billboard with the help of billboard
receptionist. This will help in negotiating the price with the
list of buying agents.

advertise selling product(selling product): The selling
agent advertises the selling product by writing the name of
the product on billboard.

negotiate selling(no of buying agent): The selling agent
negotiates the price with all the shortlisted buying agents one
by one. It sends the selling price to individual buying agent

Downloaded from www.VTUplanet.com

and receives the buying price from buying agent. This will be
repeated till all the selected no. of buying agents are contacted.
Finally, the price will be mutually agreed by the buying and
selling agent and deal will be made. The final price is received
by buying agent and the buying agent sends acknowledgement
to the selling agent.

Indirect Selling: In indirect selling the selling agents are
anonymous to buying agents. The selling agents interact with
the buying agents through facilitator. The selling agents follow
three procedures.

query selling product(selling product): The selling
agent sends query about product to facilitator. The facilitator
sees its database and finds out the list of buying agents for
the product and sends the list to selling agent.

advertise selling product(selling product): The selling
agent sends the request of advertisement to facilitator. The
facilitator will send the request to all the buying agents.

negotiate selling(no of buying agent): The selling agent
negotiates with all the short listed buying agents one by one. It
sends selling price to the individual buying agent and receives
the buying price from buying agent. This is repeated till all
the selected no. of buying agents are contacted. Finally, the
price is mutually agreed by the buying and selling agent and
deal is made. The final price is received by the buying agent
and the buying agent sends the acknowledgement to selling
agent.

procedure query selling product(selling product);
begin

s f receptionist.send(selling product);
s f receptionist.receive(agentlist);

end
procedure advertise selling product(selling product);
begin

s f receptionist.send(selling agent,
selling product);

end
procedure negotiate selling(no of buying agent);
var selling price: integer;

acknowledgement: array [1..32] of char;
begin

agent count = 0;
repeat
b s receptionist.send(selling price);
b s receptionist.receive(buying price);
agent count = agent count + 1;
until agent count = no of buying agent;
b s receptionist.send(selling price);
b s receptionist.receive(acknowledgement);

end
Deregistration

procedure deregister selling agent(selling agent,
selling product);

begin
s f receptionist.send(selling agent,

selling product);
s f receptionist.receive(acknowledgement);

end
cycle

selling agent = àmit;́ selling product =
c̀amera;́

register selling agent(selling agent,
selling product);

query selling product(selling product);
advertise selling product(selling product);
no of buying agent = n;
negotiate selling(no of buying agent);
deregister selling agent(selling agent,

selling product);
end

deregister selling agent(selling agent, selling product):
The selling agent sends the deregister request to facilitator with
the agent name and product name. The facilitator deregisters
the selling agent with the product and then send acknowledge-
ment to the selling agent.

C. Buying agent
Registration

type buyingprocess = process(b f receptionist,

b s receptionist:
reception1; b b receptionist:

reception2);
var buying agent, buying product: array [1..32]

of char:
no of selling agent: integer;

procedure register buying agent(buying agent,
buying product);

begin
b f receptionist.send(buying agent,

buying product);
b f receptionist.receive(acknowledge-

ment);
end

register buying agent(buying agent, buying product):
The buying agent sends register request to facilitator with
agent name and product name. The facilitator receives the re-
quest and registers buying agent with buying product and then
updates its database. The facilitator sends acknowledgement to
the buying agent. The buying agent can follow two types of
buying methods e.g. direct buying and indirect buying.

procedure query buying product(buying product);
begin

b b receptionist.read(buying product
);

end
procedure advertise buying product(buying product);
begin

b b receptionist.write(buying agent,
buying product);

end
procedure negotiate buying(no of selling agent);
var buying price: integer;

acknowledgement: array [1..32] of char;
begin

agent count = 0;
repeat
b s receptionist.send(buying price

);
b s receptionist.receive(

selling price);
agent count = agent count + 1;
until agent count =

no of selling agent;

Downloaded from www.VTUplanet.com

b s receptionist.send(buying price
);

b s receptionist.receive(
acknowledgement);

end

Direct Selling: In direct selling the selling agents are open
to buying agents. The selling agents do not interact with the
buying agents through facilitator. The selling agents follow
three procedures.

query buying product(buying product): The buying
agent queries about the product by reading from billboard. The
buying agent will read the agents selling the buying product
from the billboard with the help of billboard receptionist.
This will help in negotiating the price with the list of selling
agents.

advertise buying product(buying product): The buying
agent advertises the buying product by writing the name of
the product on billboard.

negotiate buying(no of selling agent): The buying agent
negotiates the price with all the shortlisted selling agents one
by one. It sends the buying price to individual selling agent
and receives the selling price from selling agent. This will be
repeated till all the selected no. of selling agents are contacted.
Finally, the price will be mutually agreed by the buying and
selling agent and deal will be made. The final price is received
by selling agent and the buying agent sends acknowledgement
to the selling agent.

Indirect Selling: In indirect selling the selling agents
are anonymous to buying agents. The selling agents interact
with the buying agents through facilitator. The selling agents
follow three procedures.

query buying product(buying product): The buying
agent sends query about product to facilitator. The facilitator
sees its database and finds out the list of selling agents for
the product and sends the list to selling agent.

advertise buying product(buying product): The selling
agent sends the request of advertisement to facilitator. The
facilitator will send the request to all the buying agents.

negotiate buying(no of selling agent): The buying agent
negotiates with all the short listed selling agents one by one. It
sends buying price to the individual selling agent and receives
the selling price from selling agent. This is repeated till all the
selected no. of selling agents are contacted. Finally, the price
is mutually agreed by the buying and selling agent and deal
is made. The final price is received by the buying agent and
the buying agent sends the acknowledgement to selling agent.

procedure query buying product(buying product);
begin

b f receptionist.send(selling product);
b f receptionist.receive(agentlist

);
end
procedure advertise buying product(buying product);
begin

s f receptionist.send(buying agent,
buying product);

end
procedure negotiate buying(no of selling agent);
var buying price: integer;

acknowledgement: array [1..32] of char;
begin

agent count = 0;
repeat
b s receptionist.send(buying price

);
b s receptionist.receive(selling price);

agent count = agent count + 1;
until agent count =

no of selling agent;
b s receptionist.send(buying price

);
b s receptionist.receive(

acknowledgement);
end
Deregistration

procedure deregister buying agent(buying agent,
buying product);

begin
b f receptionist.send(buying agent,

buying product);
b f receptionist.receive(

acknowledgement);
end
cycle

buying agent = àmit;́ buying product = c̀amera;́
register buying agent(buying agent,

buying product);
query buying product(buying product

);
advertise buying product(

buying product);
no of selling agent = n;
negotiate buying(no of selling agent

);
deregister buying agent(buying agent,

buying product);
end

deregister selling agent(selling agent, selling product):
The selling agent sends the deregister request to facilitator
with the agent name and product name. The facilitator
deregisters the selling agent with the product and then send
acknowledgement to the selling agent.

D. Facilitator
The facilitator receives the register request from buying/selling
agent. It registers the buying/selling agent and sends the
acknowledgement as registered to the respective buying/selling
agent and then update its database.

Registration
type facilitatorprocess = process(b f receptionist,

s f receptionist: reception1
);

var buying agent, selling agent, buying product,
selling product: array [1..32] of char;

procedure register buying agent(buying agent,
buying product);

var acknowledgement: array [1..32] of char;
begin

Downloaded from www.VTUplanet.com

b f receptionist.receive(buying agent,
buying product);

register(buying agent, buying product);
acknowledgement = r̀egistered;́
b f receptionist.send(acknowledgement);
update(buying agent, buying product);

end
procedure register selling agent(selling agent,

selling product);
var acknowledgement: array [1..32] of char;
begin

s f receptionist.receive(selling agent,
selling product);

register(selling agent, selling product);
acknowledgement = r̀egistered;́
s f receptionist.send(acknowledgement);
update(selling agent, selling product);

end

query buying product(buying product);
query selling product(selling product): The facilitator
receives query request fron buying/selling agent about
their product. It sees its database and acquire the list of
buying/selling agents and sends it to buying/selling agent
respectively.

Query-product

procedure query buying product(buying product);
var agentlist: array [1..512] of char;
begin

b f receptionist.receive(buying product);
acquire(buying product);
agentlist = list of selling agents;
b f receptionist.send(agentlist);

end
procedure query selling product(selling product);
var agentlist: array [1..512] of char;
begin

s f receptionist.receive(selling product);
acquire(selling product);
agentlist = list of buying agents;
s f receptionist.send(agentlist);

end

procedure advertise buying product(buying product);
begin

b f receptionist.receive(buying product);
s f receptionist.send(buying product);

end
procedure advertise selling product(selling product);
begin

s f receptionist.receive(selling product);
b f receptionist.send(selling product);

end

Advertise-product:
advertise buying product(buying product);

advertise selling product(selling product): The facilitator
receives the request of advertisement from buying/selling
agent about their product. It accordingly sends the request to
all the buying/selling agents respectively.

Deregistration

procedure deregister buying agent(buying agent, buy-
ing product);

var acknowledgement: array [1..32] of char;
begin

b f receptionist.receive(buying agent,
buying product);

deregister(buying agent, buying product);
acknowledgement = d̀eregistered;́
b f receptionist.send(acknowledgement);
update(buying agent, buying product);

end
procedure deregister selling agent(selling agent, sell-

ing product);
var acknowledgement: array [1..32] of char;
begin

s f receptionist.receive(selling agent,
selling product);

deregister(selling agent, selling product);
acknowledgement = d̀eregistered;́
s f receptionist.send(acknowledgement);
update(selling agent, selling product);

end

deregister buying agent(buying agent, buy-
ing product); deregister selling agent(selling agent,
selling product): The facilitator receives the deregister
request from buying/selling agent. It deregisters the
buying/selling agent and sends the acknowledgement as
deregistered to respective buying/selling agent and then
updates its database.

cycle
/* For buying agent */

buying agent = ànoop;́ buying product =
c̀amera;́

register buying agent(buying agent,
buying product);

query buying product(buying product);
advertise buying product(buying product);
deregister buying agent(buying agent,

buying product);
/* For selling agent */

selling agent = àmit;́ selling product =
c̀amera;́

register selling agent(selling agent,
selling product);

query selling product(selling product);
advertise selling product(selling product);
deregister selling agent(selling agent,

selling product);
end

type reception1 = monitor;
var receptionboard: board; sender agent,

receiver agent: queue;
message: string;

procedure send;
begin

receptionboard.write(message);
continue(receiver agent);

end
procedure receive;
begin

receptionboard.read(message);
continue(sender agent);

end
begin

init receptionboard;
end

Downloaded from www.VTUplanet.com

type reception2 = monitor;
var billboard: board; message: string;
procedure read;
begin

billboard.request;
billboard.read(message);
billboard.release;

end
procedure write;
begin

billboard.request;
billboard.write(message);
billboard.release;

end
begin

init billboard;
end

IV. IMPLEMENTATION

To test the validity of what has been described, a VE System
is implemented, which demonstrates electronic commerce. We
have designed a language called Virtual Enterprise Modeling
Language (VEML) and its methods. The application programs
are written in VEML which get preprocessed into Java pro-
grams by our VEML compiler. Java program uses agent library
and get eventually compiled into Java byte code, for execution
atop any Java Virtual Machine (JVM).

A. Virtual Enterprise Modeling Language (VEML)
VEML is a dialect of the Java programming language

directly enabling software agent oriented programming and
development of VE [15]. VEML includes KQML primitives.
KQML is a language and an associated protocol to support
the high level communication between autonomous agents.
KQML is an abstraction, a collection of primitives plus the
assumption of a simple model for inter-agent communication.
There is no such thing as an implementation of KQML in
the sense that KQML is not a compiled language. VEML
is a compiled language. The VEML grammar includes Java
grammar with additional keywords and statements.

VEML is a tool to build software applications that dynam-
ically interact and communicate with their immediate envi-
ronment (user, local resources and computer system) and/or
the world, in an autonomous (or semi-autonomous), task ori-
ented fashion. VEML simplifies programming on the Internet
by providing synchronous and asynchronous communication
among agents with the help of message passing. Universal
naming is possible in VEML. VEML supports communication
among multiple inter generating computations/nodes [14]. It is
a language for programs to use to communicate attitudes about
information, such as querying, stating, achieving, believing,
requiring, subscribing and offering.

B. Architecture
Figure 3. shows the architecture of VE System, which com-

prises the following components: (a) Front-end: a GUI handles
all of the user interactions. The front end is implemented in
VEML. Front end is a screen shot of VE showing the form,
which user has to fill for different purposes. (b) Back-end:

a virtual enterprise engine where the agents actually “live”
and interact with one another. The back end is implemented
in VEML and KQML. The back-end implements a request
response service: a client sends a request to the back-end, the
back-end services that request. The front-end and back-end
communicates with one other via TCP/IP sockets.

To test the validity of what has been described, we have
designed and implemented a VE System (An Automated Multi
Intelligent Based System) which demonstrates the example
of Electronic-Marketplace. The distinguished features are as
follows:

• This is an automated multi intelligent agent based system.
• This system automates the process of buying and selling

goods. The users can create autonomous agents to buy
and sell goods on their behalf.

• The agents will automatically negotiate and make the best
possible deal on user’s behalf.

• The buying/selling agents are pro-active. They try to
buy/sell themselves by going into the marketplace con-
tacting buying/selling agents and negotiating with them
to find the best deal.

• This system eliminates human-human contact.
• The agents can be run parallel.
• The following parameters are supported by the system

for Electronic-Marketplace:
– Desired period to sell the item by: People usually

have a deadline by which they want to sell some-
thing.

– Desired price: This is the price the user would like
to sell their good for.

– Lowest acceptable price: This is the lowest price the
user will sell their good for.

– Highest acceptable price: This is the highest price
the user will buy the good for.

– Desired physical region: This is the region selected
by the user for the item to be delivered by seller.

– Decay function of price (Linear, Quadratic and Cu-
bic): The user has some control over the agent’s
negotiation “strategy”. The user can specify the
“decay” function the agent uses to lower the asking
price over its given time frame. The user has three
choices: linear, quadratic and cubic.

V. SALIENT FEATURES

The salient features of VE System are as follows:
1) Naming, Security, and Direct Connection: Agents can

have any number of logical names that don’t contain the
hostname. There is no way for an agent to “overhear”
a conversation between two other agents. This provides
security. Agents can establish direct connections with
each other for bulk data transfer.

2) Third Party Creation of Agents: We have used
protocols and semantics for defining more extensible
agent communications. “This protocol is open to allow
third-party agents (with their own unique strategies)

Downloaded from www.VTUplanet.com

Database

FRONT−END BACK−END

Veml Server

Visualization
Engine

Enterprise
 Virtual

Fig. 2. Architecture of Virtual Enterprise System

to participate in the agent coordination”. We envision
developers creating sophisticated commerce agents that
require a non-trivial amount of resources to complete
it’s market analysis. Such agents could potentially be
run more efficiently on a user’s local machine and com-
municate/negotiate with other agents via open protocol.
Agents can be developed in any language e.g. C, Lisp,
Prolog, Java and VEML. This system supports protocol
like TCP/IP, SMTP, and FTP.

3) Routers: The router in this system provides an easy-
to-use link between application and network viz. (1)
Routers are a content independent message routers, (2)
All routers are identical, just an executing copy of the
same program, (3) A router handles all messages going
to and from it’s associated agent i.e. each agent has it’s
own separate router process. Thus it is not necessary to
make extensive changes in the program’s internal organ-
isation to allow it to asynchronously receive messages
from a variety of independent sources, (4) The router
provides this service for the agent and provides the
agent with a single contact point for the communication
with the rest of the network, (5) It provides both client
and server functions for the application and can manage
multiple simultaneous connections with other agents, (6)
Routers relies solely on its performatives and arguments,
(7) A router directs a message to a particular Internet
address as specified by the message, (8) When an
application exits, the router sends another message to
the facilitator, removing the application from the Facil-
itator’s database, and (9) Routers can be implemented
with varying degree of sophistication although they can
guarantee to deliver all messages.

4) Facilitator: The facilitator agent of this system performs
following useful services: (1) Maintain a registry of
service names, (2) Forward message to named services,
(3) Routes messages based on the content, (4) Provides

matchmaking between information providers and clients,
(5) Provides mediation and translation services, (6) This
is a simple software agent which maintains the database
of active agents, (7) This provides the registry of agent
names and addresses, (8) It is used by all the agents
as they arise to register their names and addresses and
to subsequently locate other agents to which messages
are to be sent, and (9) It accepts register and unregister
performatives to maintain it’s database and responds to
ask-one and ask-all etc.

5) Scalability: When an agent is created, it acquires a
Java thread. So, depending on the number of agents
created, it acquires that many number of threads. These
threads are software programs. Each thread defines a
separate path for execution. Multi tasking threads require
less overhead than multi tasking processes. Processes
are heavyweight tasks that require their own separate
address spaces. Interprocess communication is expensive
and limited. Context switching from one process to
another is also costly. Threads on the other hand are
lightweight. They share the same address space and
cooperatively they share the same heavyweight process.
Interthread communication is inexpensive and context
switching from one thread to the next is low cost.

6) Performance and Efficiency: The system performance
guarantees to agents so that the agents can meet real
time constraints. The parameters of argument are time
to complete the process, cost factor, bandwidth require-
ment and transfer of code. This system is a single
unified framework with message passing in which wide
range of distributed applications can be implemented
efficiently and easily. This system uses a network service
by remotely invoking its operations. The results are
transmitted back over the network to the sending agent
which processes them depending on the result.

Downloaded from www.VTUplanet.com

VI. CONCLUSION

This paper presents formalization of Virtual Enterprise using
with an example of Electronic Marketplace using CPL. We
have provided structure, an ontology, agent model, interaction
pattern between agents and formalization. We have devel-
oped an agent oriented virtual enterprise modeling language
(VEML) and have provided the methods used for working
of the agents. Finally, the architecture and salient features
of VE system are provided. Here our focus is in supporting
the best communication, co-ordination and problem solving
mechanism available with minimum programming effort on
the developer’s side. Hence this architecture can be directly
applied in practice.

This paper also presents an application of AI to the imple-
mentation of Virtual Enterprise which is a multi autonomous
agent based system. As all the facts surrounding software
agents recommends, Virtual Enterprises are just one area for
a new generation of automated information services. AI has a
large role to play in improving the generality, robustness and
overall competence of these services. We believe that the field
of AI has an equally important role to play in architectural
infrastructure (in concert with other technologies, of course).
In a Virtual Enterprise, our typical problem is an abundance
of available information and information services. Efficiently
bringing together the right agents with the right resources for
the right tasks is the measure of the VE’s effectiveness.

ACKNOWLEDGEMENT

I would like to acknowledge Mr. Yogesh Tyagi, Chairman,
Shree Krishna Shiksha Prasar Samiti for providing all kinds of
support to carry out this research work and being a constant
source of inspiration.

REFERENCES

[1] Luis M. Camarinha and Hamideh Afsarmanesh, Virtual Enterprise Mod-
eling and Support Infrastructures: Applying Multi-agent Systems Ap-
proaches, In M.Luck et al., editor, ACAI 2001, LNAI 2086, pages 335-
364, Springer-Verlag, 2001.

[2] Tim Finin, Don McKay and Rich Fritzson, An Overview of KQML:
A Knowledge Query and Manipulation Language, Technical report,
Department of Computer Science, University of Maryland, Baltimore
County, March 1992.

[3] Lockheed Martin C2 Integration Systems, 590, Lancaster Ave., Frazer,
PA 19355-1808. Software User’s Manual for KQML, August 1997.

[4] Software Design Document for KQML. Technical report, Unisys Corpo-
ration, 70 East Swedesford Road, Paoli, PA 19301, March 1995.

[5] James Mayfield, Yannis Labrou, and Tim Finin, Desiderata for Agent
Communication Language, In proceedings of the 1995 AAAI Spring
Symposium on Information Gathering in Distributed Environments, March
1995.

[6] Tim Finin, Rich Fritzson, Don McKay and Robin McEntire, KQML-An
Information and Knowledge Exchange Protocol, In Knowledge Building
and Knowledge Sharing, Ohmsa and IOS Press, 1994.

[7] Jeffrey M. Bradshaw, An Introduction to Software Agents, In J M
Bradshaw, editor, Software Agents, MIT Press, 1996.

[8] M. Shaw, R. Blanning, T. Strader and A. Whinston, editors, Handbook
on Electronic Commerce, chapter1. Springer Verlag, 2000.

[9] A K Srivastava, Intelligent Agent Based Virtual Enterprise System, In
Poster proceedings of 24th SGAI AI 2004, Queens’ College, Cambridge,
U.K. 13-15 Dec.2004.

[10] A K Srivastava, Simulation of a Multi Intelligent Agent Based System,
Proceedings of 8th International Conference on Computer Modelling and
Simulation UKSim 2005, April 2005,St. John’s College, Oxford, UK.

[11] A K Srivastava, Simulation of Virtual Enterprises: A Multi Intelligent
Agent Based System, International Journal of Simulation System, Science
and Technology (IJSSST), Vol. 7, Oct. 2005.

[12] A K Srivastava, An Application of Artificial Intelligence to the Imple-
mentation of Virtual Automobile Manufacturing Enterprise, In Proceed-
ings of 25th SGAI AI 2005, Peterhouse College, Cambridge, U.K., Dec.
12-14 2005.

[13] P. Brinch Hansen, The Programming Language Concurrent Pascal, IEEE
Transaction on Software Engineering 1, 2 (June 1975), 199-207.

[14] Katia P. Sycara, Multiagent Systems, AI Magazine, pages 79-92, AAAI
Publication 1998.

[15] A K Srivastava, VEML: A Language for Developing Multi Agent
Systems, In A K Srivastava, editor ICSC 2008, pages 281-294i, Narosa
Publication 2008.

Downloaded from www.VTUplanet.com

