
Publisher-Subscriber: An Agent System for
Notification of Versions in OODBs

K. Palanivel

Computer Centre
Pondicherry University

Puducherry – 605014, India
kpalani.cce@pondiuni.edu.in

V. Amouda
Department of Banking Technology

Pondicherry University
Puducherry – 605014, India

vmouda.dbt@pondiuni.edu.in

S. Kuppuswami
Department of Computer Science

Pondicherry University
Puducherry – 605014, India

skswami.cse@pondiuni.edu.in

Abstract: In object-oriented databases, the conceptual

structure may not be constant and may vary due to variety of
reasons like correcting mistakes, adding/removing features,
updating database, etc. Class versioning is one the evolution
strategy that addresses the above issues. However, class
versioning may be yields some unexpected results to the database
clients. The easiest method is to just set a cache to expire
periodically depending on the types of data. This solution is
approximation and tends to either refresh too often so that the
data is unnecessarily sent over the network or not often enough
so that the data becomes stale. Query notification is the solution
to avoid frequent access to the database and hence proposed to
design agent system for monitoring class versioning. Agent
Technology has generated lots of excitement in recent years
because of its promise as a new paradigm for conceptualizing,
designing and implementing software systems. Software agents
coordinate the application that run on databases and allows
performing the sequence of events like flushing cache, database
operations, monitoring, etc. This agent system consists of a
publisher agent, subscriber agents and a database update agent.
These agents monitor the database for any change that would
change data the data in the query or its structure. When it
detects such a change, the publisher agent generates a change
notification message and subscriber agent subscribes the
notification message. To implement this system, a database
application was developed with two versions and applied the
database change notifications. To promote more reusability and
scalability, a publisher-subscriber pattern was integrated with
this application.

Keywords: OODBS, Class Versioning, Instance Adaptation,
Aspect-oriented Programming, Database Change Notifications

I. INTRODUCTION
Object-oriented databases (OODBs) evolved from a need

to support object-oriented programming. OODBs allow for the
storage of complex data structures that cannot be easily stored
using conventional database technology and support all the
persistence necessary when working with object-oriented
languages. OODBs contain active object servers that support
not only the distribution of data but also the distribution of
work [14]. The conceptual structure of an object-oriented
database may not remain constant and may vary to a large
extent. The need for these variations (evolution) arises due to a
variety of reasons like correcting mistakes in the database
design, adding new features during incremental design or
changes in the structure of the real world artifacts modeled in

the database. This anomalous behavior can arise as a
consequence of evolution.

Class versioning is one of the various evolution strategies
employed to address the above issues. A new version of a
class is created upon any modification. When an object is
accessed using another type version (or a common type
interface) it is either converted or made to exhibit a
compatible interface [15]. This is termed instance adaptation.
A new flexible instance adaptation approach introduced using
update/backdate aspects with selective lazy conversion [28].
This makes it possible to make cost-effective changes to the
instance adaptation strategy. Class versioning problems may
also yield unexpected results which the agent technology may
not be able to repudiate. The new class versioning may be
yields some unexpected results to the database clients. When a
new version is introduced, it is notified by the designers/
developers of the database applications [27]. Here, the simple
method is introducing caching mechanism. Caching is the
retention of data, usually in the application, to minimize
network traffic flow and/or disk access. The caching
mechanism tends to either refresh too often so that the data is
unnecessarily sent over the network or not often enough so
that the data becomes stale. Query notification is the solution
to avoid frequent access to the database.

Recently, software agents coordinate the application that
run on databases and allowing that database to perform the
sequence of events, like flushing cache, database operations,
monitoring, etc. Agent technology has for a long time been the
domain of databases. Agents carry out information processes
whereas databases supply information to processes. Agent
communities seem a natural model for loosely coupled
distributed systems, while database technology sees more and
more of its mission in the support of highly distributed
information systems [3]. In databases, version management is
one of the problems and this can be solved using software
agents. The main goal is to manage, change and organize class
version sets in a distributed environment.

Hence, it is proposed to design an agent system for
monitoring versions using database change notifications
features. This agent system consists of publisher agent,
subscriber agent and database update agent. The publisher
agent generates and publishes notification messages. The

978-1-4244-4711-4/09/$25.00 ©2009 IEEE
IAMA 2009

Downloaded from www.VTUplanet.com

subscriber agent subscribes the messages that have been
published by the publisher agent. The database agent monitors
the database and sends the notification messages. The
communication between these agents should be asynchronous.
Hence, it is proposed to use publish-subscribe model for
performing asynchronous communication between agents in
distributed environments [9].

Publish-subscribe systems suggest that they are highly
scalable and are efficient means of communication in large
distributed database systems [1]. Ppublisher/subscriber system
is more flexible in distributed environment. While developing
database application in distributed environment, it encounters
a situation where many entities are interested in occurrence of
a particular event. This system introduces a strong coupling
between the publisher and subscriber of this event change
notification. Thus whenever a new entity needs the
information, code for the publisher of the information also
needs to be modified to accommodate the new request. The
Publish-Subscribe pattern [31] solves the tight coupling
problem. Here the coupling is removed by the publisher of
information supporting a generic interface for subscribers.

The proposed system is called publisher-subscriber agent
system. The main function of this agent system is to monitor
different versions of the database introduced by the
developer/designer. It is a layered architecture and consists of
subscriber layer, agent service layer, application layer and
storage layer. All subscriber or client agents are exists in the
subscriber layer. The agent service layer starts/stops the
services like event notification, monitor, logger and timer. The
application layer includes various modules as prescribed in
section 4 and finally the storage layer stores databases. In
order to re-use the designed system, we consider modularity,
generality, and flexibility. Currently, this system contains an
integrated OODBs and a user-interface capability.

This paper is organized as follows: Chapter 2 introduces
the concepts of OODBS and class versioning in OODBS; the
relationships between the agents and databases; and the
technology publish-subscribe model deployed for distributed
environment. Chapter 3 describes the concepts of database
change notifications and the solutions of database change
notifications. Chapter 4 explains in details of the architecture
and the integration of publisher-subscriber pattern and finally
concludes the paper.

II. BACKGROUND
Object-oriented databases (OODBs) allow objects that are

manipulated by programs to be stored reliably so that they can
be used again later and shared with other programs. The
database acts as an extension of an object-oriented
programming language such as Java, allowing programs
access to long-lived objects in a manner analogous to how
they manipulate ordinary objects whose lifetime is determined
by that of the program. The two different approaches [24] to
modifying the conceptual structure of an object database,
broadly categorized in, are schema evolution and class
versioning. In the schema evolution approach [12], the
database has one logical schema to which modifications of
class definitions are applied. Instances are converted (eagerly
or lazily, but once and forever) to conform to the latest

schema. In the class versioning approach, multiple versions of
a schema or class can coexist [2]. Instance adaptation
approach was used in many object oriented database systems
like ENCORE, ADVANCE [13] and CLOSQL[25]. These
database systems address the problems of schema evolution.

A. Class Versioning

In OODBs, the classes can be versioned, and the set of
versions of one class is called the version set of the class. In
addition to a version set for each class, there is also a version
set interface for the class. As new versions of the class are
created, the version set interface is extended to add extra
attributes [4]. This object versioning is extended to the
versioning of class definitions. These systems adopt exception
handling to cope with mismatches between the version of the
object expected by the query and the actual version of an
instance. The exception handlers service the query with values
appropriate to the version of the class demanded by the query.
Also, a simple schema change such as –change the name of an
attribute– could in reality mean - replace an attribute with a
new attribute with a new name, which means something
different to the old attribute, but is loosely related to it in some
way [12].

Versioning problem can be solved using aspect-oriented
programming techniques [19]. This technique for the
separation of crosscutting, customizable features such as
instance adaptation (simulated or physical conversion of
objects in accordance with schema changes), versioning, links
among persistent entities, change propagation and referential
integrity semantics. The aspect-oriented approach has been
employed to provide cost-effective, localized changes during
both schema evolution and customization in the object
database evolution system [14]. Here, the actual version to
which a particular instance belongs at any one time is
irrelevant as far as the end user is concerned because any
query will automatically convert the instance to the version
implied in the query. The version to which instances are
converted will normally be the current (latest) version of the
class. The class version used is determined by the queries
attempting to extract the instances from the system.

Many database applications cache the information to avoid
accessing the database on every request. Refreshing the cache
too frequently will needlessly burden the backend databases.
Refreshing infrequently can lead to application errors due to
data inconsistency between the cache and truth stored in the
database [22]. Database change notifications [17] allow a
cache client to subscribe to changes in a query result set and
receive notification when any underlying change in the
database would alter results of the query the cache has
subscribed to. With database change notifications, the client
cache can avoid periodic refresh and can react quickly to
change that invalidate the cache [22].

B. Database Change Notifications

One of the most useful ways to improve the performance
of widely distributed, loosely coupled applications is to cache
data. By caching rarely changing and easily refreshed data at a
service provider or consumer that is remote from the source
database, messages can be lighter weight and use less

Downloaded from www.VTUplanet.com

bandwidth [22]. Such a system needs a way to refresh data
when data changes at the source. There are plenty of ways to
do this. Probably the easiest method from a programming
perspective is to just set a cache to expire periodically,
anywhere from a few minutes to a few weeks, depending on
the type of data. But such schemes are approximations, and
tend to either refresh too often so that data is unnecessarily
sent over the network or not often enough so that the data
becomes stale.

In many situations, the most efficient method is to simply
notify the keeper of each cache that the data has changed, and
either push the data out from the source database or pull it
from the service program. A service program can use its own
logic and choose to ignore the notification, for example, if it
determines that the data doesn’t need to be refreshed or if the
refresh can be deferred to off-peak hours. The general
workflow for a query notification is presented in figure 1.

Subscribers register their interest in specific events with
the application server. Upon receiving a notification (message)
from a publisher, the application server forwards the
notification to the relevant client subscribers by comparing the
message content with the list of subscriptions it holds. It
provides the flexibility to operate in a dynamic environment
and is independent of the need to configure information
relating to the subscriber of a notification [6]. The notification
itself is encapsulated within an object and contains a list of
key value pairs. A publisher expresses its interest with a
subscription element, which is built with a special subscription
language containing simple logical expressions [36]

C. Agents and Databases

Developing database applications using autonomous
agents have a highly distributed database. However, for the
purpose of studying the effects of agents on database
technology, abstract agents to just that, local databases and the
challenge is how the abstraction from the agent properties is
reflected in their databases. A multi-agent system presents us
with a distributed database that has distinctive characteristics
[4].

A multi-agent system comprised of multiple autonomous
agents/components needs to have certain characteristics like
each agent has incomplete capabilities to solve a problem;
there is no global system control; data is decentralized; and
computation is asynchronous. That is, combining multiple
agents in a framework presents a useful software engineering
paradigm where problem-solving components are described as

individual agents pursuing high-level goals. A multi-agent
system can be considered as a loosely coupled network of
problem solver entities that work together to find answers to
problems that are beyond the individual capabilities or
knowledge of each entity [10].

In multi-agent systems, the communication between agents
should be more powerful because they share similar data
without having prior knowledge of each other. A pure, fast,
scalable, lightweight and publish-subscribe model [23]with a
rich and expressive language for message subscription is
useful for disseminating large numbers of short notifications
efficiently between agents in a large-scale multi-agent system
[5]. The fundamental principles of the general publish-
subscribe model and its use for agents’ remains, however, the
same for other middleware, and so use the name. This
architecture is similar to client-server architecture, where
server is responsible for managing client connections and
transferring messages between publishers and subscribers
[21].The architecture of publisher-subscriber model using
agents is shown in figure2.

It is proposed to integrate existing OODBS with database
change notifications, in order to provide scalable change
notification within the global environment [30]. This
integration will allow client applications to go beyond the
traditional lookup/update scheme, where passive queries are
issued over past and present data. In this model, local DBMSs
advertise details of changes to data that they are willing to
notify to clients, and publish events through publish-subscribe
system when such changes occur. Clients can subscribe to one
or more of these change events, or specify restrictions to them
by providing attribute based filters. In consequence, they are
informed in a timely manner when particular state changes
occur in some database. The publish-subscribe communication
model used in our integrated architecture allows database
notifications [5] to be disseminated without requiring clients
to know the location of the information sources involved.

III. PUBLISHER-SUBSCRIBER AGENT SYSTEM

A versioning management system is described for use in
connection with a database management system to facilitate
versioning of classes, the system including a class and a
version control module. The version management is
configured to, in response to a user query related to the classes
and related to a version, generate an augmented query for
processing by the data base management system, the

Publisher
Agent
(DB

Server)

Database
Event

Publication

(Events)

Associations/
Rules

Subscriptions/
Messages

Subscriber Agent
(Client)

Register Subscribe

Figure 2: Functionality of Publish-Subscribe Model

DB

Client

Browser

Database Server

Database Update
Agent

Figure 1: Workflow of Database Change Notification for Versioning

DB Ver. 1

DB Ver. 2

DB Ver. n

Downloaded from www.VTUplanet.com

augmented query relating to the user query and the version
control information.

Designing a publisher-subscriber agent system for version
management using the publisher/subscriber [7] requires
mapping the abstractions of that model like publisher,
subscriber, message, etc. Now, the problem consists of
making sure that a message is sent to all potential subscribers,
i.e., each subscriber has a chance to get all messages it is
interested in. The message may be as a multicast message or
send a broadcast message. This problem is tackled by
maintaining a replicated subscription registry at the publishers,
i.e., each publisher knows to which subscribers it has to send a
message. All subscribers register at the channel object. Thus,
the channel object acts as interface between the publishers and
the subscribers.

Publishers and subscribers are internally represented as
agents. There is a distinction between an agent and a client.
The attributes of a client include the physical process where
the client programs run, the node name, and the client
application logic. There could be several clients acting on
behalf of a single agent. Also, the same client, if authorized,
can act on behalf of multiple agents. A database server
behaves as a publisher agent and advertises its service to other
agents. Other agents may subscribe to the service and receive
notification of events published by the publisher agent [8].

The Student Database System with n tier-architecture [14]
shown in figure 3 is broken up into separate logical layers
namely subscriber layer, agent service layer, application layer
and storage layer. Each layer with a well defined set of
functions and interfaces. The subscriber agent exists in the
subscriber layer. The subscriber registers/unregisters with
application server. The agent service layer offers event
notification, monitor, logger and timer services [29]. Event
notification is a publisher-subscriber kind event type based
notification service. Event notification is built on top of event
notification system service [11]. Monitor provides polling
mechanism to monitor registered resources periodically.
Logger provides the application a mechanism for selectively
logging to certain activities or events and Timer provides time
based notification services.

The application layer consists of version manager,
persistence object manager, user manager, event manager and
query manager. The version manager allows the administrator
to view information about the different database version and
permits the administrator to upgrade to the latest version from
the interface. The persistence object manager deals with
database objects. This includes compiled versions, modules,
types, schemata, arbitrary texts, graphic screens, diagnostic
information, system messages, etc. All such objects are stored
on equal rights and are accessible by standard mechanisms.
The user manager allows creating different types of users and
maintaining them. The clients/users create a new registration
or unregistration for the web site. It replicates all the actions
that a new user would go through at the front-end of the web
site when registering for an account with limited access
controls.

The event manager assists the database user in
establishing, relating, and managing an unlimited number of

events, clients, and activities in a manner which facilitates
communication with clients, and the distribution of
communications and activity. The query manager is a
database program that can be used to access data from a
relational database. It organizes data sets from multiple studies
into a consistent and standardized structure, thereby improving
data delivery and ease of interpretation for coastal resource
managers. Clients can sort and examine data in a variety of
ways by selecting from a menu of preprogrammed queries that
evaluate individual contaminants, contaminant groups,
comparisons to common toxicological benchmarks, user-
defined ranges, and many other filters. These queries sort and
analyzed the data to produce summary output table. Various
functions of this architecture include
registration/unregistration, association; attach/detach
subscriber, and rules.

A registration is a persistent entity that exists on all nodes.
If a subscriber down, then the registration continues to exist
and will be notified when the table change. The register()
method creates a new database change registration in the
database server with the given options. It returns a
registration() object which can then be used to associate a
statement with this registration. It also opens a subscriber
socket that will be used by the database to send notifications.
After, explicitly unregister a registration to delete it from the
server and release the resources in the driver. Unregister a
registration using a connection different from one that was
used for creating it. To unregister a registration, the
Unregister() method should be defined. After creating a
registration or mapped to an existing registration, associate a
query with it. Like creating a registration, associating a query

Subscriber 1
Register ()
Unregsiter ()

Subscriber 2
Register ()
Unregsiter ()

Subscriber n
Register ()
Unregsiter ()

Agent Service Layer (Start or Stop)

Event Notification Logger Monitor Timer

Application Server Layer

Event Object Query User
Manager Manager Manager Manager

Database Server Layer (Publisher)

Cache
DB Update Agent

Monitor ()

Storage

Database Ver. 1 Database Ver.2

Figure 3: Architecture of Publisher-Subscriber Agent System

Downloaded from www.VTUplanet.com

with a registration is a one-time process and is done outside of
the currently used registration. The query will be associated
even if the local transaction is rolled back. Associate a query
with registration using the set() method and this method takes
database change notification object as parameter.
Attach/Detach Subscriber - to receive database change
notifications, attach a subscriber to the registration. When a
database change event occurs, the database server notifies the
driver. The event contains the object id of the database object
that has changed and the type of operation that cause the
change. Depending on the registration options, the event may
contain row-level detail information. The subscriber code then
uses the event to make decision within it the data cache. Now,
attach a subscriber to registration using AddSubscriber()
method.

IV. INTEGRATING WITH PUBLISHER-SUBSCRIBER
PATTERN

The publisher-subscriber pattern is applied to notify event
handlers or subscribers when some interesting object or
publisher changes state. The publisher-subscriber pattern[21]
is used for situations in which many clients have to listen for
information published by one or more servers. A publisher
cannot distinguish between the subscribers which are listening
on it; it therefore sends the information to all subscribers. A
Publisher is an entity that creates NotificationMessages, based
upon Situation(s) that it is capable of detecting and translating
into NotificationMessage artifacts. It does not need to be a
Web service. A Subscriber is an entity that acts as a service
requestor, sending the subscribe request message to a
NotificationPublisherr. A NotificationMessage is an artifact of
a Situation containing information about that Situation that
some entity wishes to communicate to other entities.

The motivation behind to use design pattern [18] is
constructing and maintaining objects to associate changes in
the remote objects with cached objects. If data or database in a
remote data source changes, database change notifications are
used to trigger a dynamic rebuild of associated objects. The
updation or change includes storing new version of object or
database in the cache or deleting an object from the cache.
This publisher-subscriber pattern is parameterized in figure 4.

The Subscriber class is an abstract base class may specify
subscriptions on a queue using a rule. Subscribers are durable
and are stored in a catalog. Database Event Publication is the
database event class represents a significant source for
publishing information. It detects and publishes events and
allows active delivery of information to end-users in an event-
driven manner. Registration is the process of associated
delivery information by a given client, acting on behalf of an
agent. There is an important distinction between the
subscription and registration related to the agent/client
separation. Subscription indicates an interest in a particular
queue by an agent. It does not specify where and how delivery
must occur. Publishing a Message is a publisher which
publishes messages to queues by using the appropriate
queuing interfaces. The interfaces may depend on which
model the queue is implemented on. Event is an abstract base
class to generally represent an event. Its source field stores a
reference to the object that fired the concrete Event. That is

usually a concrete Publisher, but could also be another event
source connected to the concrete Publisher. Publisher is an
abstract base class that frees concrete Publisher objects from
having to maintain the infrastructure for event notification.
Subscriber is a subclass that allows registering its interest in
database events. Whenever the database events generate an
event, it will push the event to subscriber.

Implementation using publisher-subscribe pattern that
addresses the problems of binding subscribers to publishers, of
routing and filtering of messages, as well as reliability,
efficiency and latency of message delivery. The advantages of
using this pattern are lowered coupling, improved security,
improved testability and high degree of scalability [24]. The
benefits of publish-subscribe notification for web services are
detailed in [32]. Also, the benefits of the publish-subscribe
pattern are agents can be varied and reused independently
without interfering with their respective subscribers or
publishers; state changes in one agent can trigger state changes
in other agents without knowing how many agents need to be
changed and agents can notify other agents without knowing
about the other agents, and avoid tight coupling.

V. CONCLUSION
In distributed environment, database change notification is

one of the features of structure query language. Using this
feature, the client knows immediately if any changes made in
the database. This paper provided a solution for class
versioning in OODBs using database change notification.
Existing evolution approaches in OODBs are committed to a
particular instance adaptation strategy and the flexibility is
achieved by encapsulating the instance adaptation code
through cross-cutting concerns and update/backdate aspects.
Here, software agents are deployed for monitoring and
notifying the evolution of class versions. This agent system
uses publish/subscribe model that improve robustness and
flexibility in distributed environment. This model provides the
agents are built to proactively report their context to the event
system. Also, a publisher-subscriber design pattern is

Publisher
<<Publish>>

ReadData ()
WriteData ()

DataBaseEvents
<<EventManagerr>>

Push (event)
Pull (event)

Figure 4: Structure of Publisher/Subscriber Pattern

Registration
<<Subscribe>>

 Create ()
 Exit ()

Association
<<Subscribe>>

Set ()
Reset ()

Subscriber
<<Subscribe>>

AddSubscriber ()
RemSubscriber ()

ConcretePublisher
<<Publish>>

Publish ()
Notify ()
SendMessage ()

Subscriber
<<Subscribe>>

Subscribe ()
Register ()
Receive Message ()

Downloaded from www.VTUplanet.com

integrated with this application that promotes more reusability
and ease maintenance.

This paper demonstrated the applicability of the ideas by
developing an agent system with publishes-subscribe
mechanism, and integration of a design pattern with agents
system. This system was designed and implemented using
agent-oriented architecture and partially with services. To
provide better flexibility and more reusability, we may use
service-oriented architecture. However, the challenge is to
support more sophisticated standing queries and to provide
better optimization techniques that handle the vast number of
queries and vast data volumes.

REFERENCES
[1]. Berthold Reinwald Hamid Pirahesh Tobias Mayr Jussi and Feng Tian,

Myllymaki, Implementing A Scalable XML Publish/Subscribe System
Using Relational Database Systems, IBM Almaden Research Center 650
Harry Road, San Jose, CA, 95120.

[2]. Zui Li and Zahir Tari, Class Versioning for the Scheme Evolution,
Department of Computer Science ,Royal Melbourne Institute of
Technology, Australia.

[3]. Moira Noira and Mario Magnannelli, Databases for Agents and Agents
for Databases, Institute of Information Systems, Swiss Federal Institute
of Technology, Switzerland.

[4]. Hasan Davulcu, Zoé Lacroix, Kaushal Parekh I. V. Ramakrishnan,
Nikeeta Julasana, Exploiting Agent and Database Technologies for
Biological Data Collection, State University of New York, Stony Brook.

[5]. Amir Padovitz, Arkady Zaslavsky, Seng Wai Loke and Milovan Tosic,
Agent Communication Using Publish-Subscribe Genre: Architecture,
Mobility, Scalability and Applications, Annals of Mathematics,
Computing & Teleinformatics, Vol. 1, No. 2, 2004, PP 35-50 35.

[6]. Badrish Chandramouli Junyi Xie Jun Yang, On the Database/Network
Interface in Large-scale Publish/Subscribe Systems, Department of
Computer Science, Duke University, Durham, NC 27708, USA.

[7]. Pablo R. Fillottrani, The multi-agent system architecture in SEWASIE,
Faculty of Computer Science, Free University of Bozen/Bolzano,
JCS&T Vol. 5 No. 4 December 2005.

[8]. Fabio Melo, Ricardo Choren, Renato Cerqueira, Carlos J. P. de Lucena,
Marcelo Blois, An Agent Deployment Model Based on Components,
Faculdade de Informática, PUCRS, Rio Grande do Sul, Brasil, PUC-
RioInf.MCC 37/03 October, 2003.

[9]. Roy Danial, Anciax Didier, Monterio Thibaud, Ozuzi Lautifa, An Agent
Deployment Model Based on Components, University de Metz, France.

[10]. Katia P. Sycara, Multiagent, Systems, AI magazine Volume 19, No.2
Intelligent Agents Summer 1998.

[11]. Ozgur Koray Sahingoz And Nadia Erdogan, Agvent: Agent Events, Air
Force Academy, Computer Engineering Department, Istanbul, Turkey.

[12]. Simon Monk and Ian Sommerville. Schema Evolution in OODBs
Using Class Versioning, SIGMOD RECORD, Vol. 22, No. 3, 1993.

[13]. Bjrrnerstedt, A. and S. Britts, AVANCE: An Object Management
System, Proceedings of OOPSLA'88, pp.206-221. 1988. Skarra, A. H.
and S. B. Zdonik, “The Management of Changing Types in an Object-
Oriented Database” Proceedings of OOPSLA'86, pp.483-495. 1986.

[14]. Eduardo Casais, “Managing Class Evolution in Object-
Oriented Systems”, Object Oriented Software Composition, O.
Nierstrasz and D. Tsichritzis (Eds.), Prentice Hall, 1995.

[15]. Skarra, A. H. and S. B. Zdonik, The Management of Changing Types
in an Object-Oriented Database, Proceedings of OOPSLA'86,
pp.483-495. 1986.

[16]. Willy Farrell, “Introducing the Java Message Service”, IBM, June 2004.
[17]. Don Kiely, “How SQL Server 2005 Enables Service-Oriented Database

Architectures”, SQL Server Technical Article, November 2005.
[18]. Erich Gamma, Richard Helm, Ralph Johnson and John

Vlissides, “Design patterns Elements of Reusable Object-Oriented
Software”, Pearson Education, Inc., 2002.

[19]. G. Kiczales, J. Lamping, A. Mendhekar, C. Lopes, J. Loingtier and
J. Irwin., Aspect-Oriented Programming, Proceedings of
European Conference on Object-Oriented Programming Finland.
Springer-Verlag, 1997.

[20]. Brain Rush, Event Management/Logging with Publisher-
Subscriber Pattern, Article, Developer ASP Network, 2008.

[21]. Carlos O”Ryan, Emprical Evolutions of Design Patterns for Publisher-
Subscriber Distributed Systems, Ph.D. Dessertation, University of
California, Sprint 2002.

[22]. Cesar Galindo Legaria, Torsten Grabs, Christian Kleinerman, Florian
Waas, Database Change Notifications: Primitives for Efficient Database
Query Result Caching, Proceedings of the 31st international conference
on Very large data bases, PP:1275 - 1278, 2005.

[23]. Berthold Reinwald Hamid Pirahesh Tobias Mayr Jussi Myllymaki,
Implementing A Scalable XML Publish/Subscribe System Using
Relational Database Systems, IBM Almaden Research Center , 650
Harry Road, San Jose, CA, 95120.

[24]. M. Dmitriev, Safe Class and Data Evolution in Large and Long-
Lived Java Applications, Technical Report TR-2001-98, Sun
Microsystems, 2001.

[25]. S. Monk, ”The CLOSQL Query Language”, Computing Dept.
Lancaster University, Lancaster Technical Report No.SE-91-15

[26]. Oracle® Database Application Developer's Guide – “Fundamentals,
Developing Applications with Database Change Notification”, 10g
Release 2 (10.2).

[27]. Ratnakant, Flexible Instance Adaptation for Object-Oriented
Databases, M.Tech. Theses Report, Department of Computer
Science, Pondicherry University, Puducherry, India, June 2006.

[28]. S.Kuppuswami, K. Palanivel, V. Amouda,, Applying Aspect-Oriented
Programming for Instance Adaptation in Object-Oriented Databases,
International Conference of Advanced Computing and Communications
(ADCOM), Indian Institute of Technology, Guhati, Inidia, Dec, 2007.

[29]. Steve Graham, Peter Niblett, Publish-Subscribe Notification for Web
services, Copyright Akamai Technologies, Computer Associates
International, Inc., and The University of Chicago 2004.

[30]. Vargas, L.; Bacon, J.; Moody, K., “Integrating databases with
publish/subscribe”, Distributed Computing Systems Workshops, 2005.
25th IEEE International Conference on Volume, Issue, 6-10 2005
Page(s): 392 – 397.

[31]. Neil Loughran, Awais Rashid, Ruzanna Chitchyan, “A domain Analysis
of Key Concerns – Known and New Candidates”, AOSD Europe, eu
Network of Excellence, Feb 2006.

Downloaded from www.VTUplanet.com

