
Application of Radial Basis Function for
Concurrency Control in CAD with KBMS

1P.Raviram
Research Scholar, Dept of Computer Science Engg.

Vinayaka Missions University
Salem, Tamilnadu – 636 308, INDIA

E:mail: ravirampedu@gmail.com
Tel: 00-91-9843968884

2Umarani S D
Research Scholar, Dept of Elec. & Comm. Engg

Government College of Engineering,
Salem – 636011, Tamilnadu, INDIA
Email id : umaraviram@gmail.com

Mobile : 00-91-9843688818.

3R.S.D.Wahidabanu
Professor and Head, Dept of Elec. & Comm. Engg

Government College of Engineering, Salem - 636 011, INDIA
Tel: 00-91-9443008886. E:mail: rsdwb@yahoo.com

Abstract—Manufacturing database stores large amounts
of interrelated data. Each designer accessing an entity
tries to modify the design parameters meeting the
requirements of different customers. Sister concerns of the
same group of company will be modifying the data as per
design requirements. When information is updated with
new modification by different group of designers, what is
the order in which modification of the data has to be
allowed. When simultaneous access of the information is
done, sufficient care has to be taken to maintain
consistency of data. In this research work, we have
proposed an artificial neural network (ANN) method for
managing the locks assigned to objects and the
corresponding transactions are stored in a data structure.
The main purpose of using the ANN is that it will require
less memory in storing the lock assignment information
for objects. We have attempted to use Radial Basis
Function (RBF) neural network for storing and managing
lock information when multi users are working on
computer Aided Design (CAD) database with screw as a
main object. The memory requirements of the proposed
method is minimal in processing locks during transaction.

Keywords-transaction locks; Radial Basis Function;
knowledge management; Concurrency Control

I. INTRODUCTION
Knowledge management in advanced database has

been considered as an interesting research area in the
recent past. Researchers concentrate on the integration
of active and real-time database systems. New problems
are evolved in concurrency control (CC) [1-4, 12-15] of
real-time database systems. Conventional CC protocols
are more concerned about the serializability but real-
time database systems also focus on transaction
deadlines.

Transaction is a series of actions, which accesses and

changes contents of database. It is a basic unit of work
on the database. Transaction transforms database from
one consistent state to another. During this process,
consistency may be violated [5-6]. The process of

managing simultaneous operations on the database
without having them interfere with one another is called
concurrency. It prevents interference when two or more
users are accessing database simultaneously. Even
though two transactions may be correct in themselves,
interleaving of operations may produce an incorrect
result. Important problems caused by concurrency are
lost update, inconsistent analysis and uncommitted
dependency.

Incorrect updates are prevented by using locks
allotted during transactions. A transaction must claim a
shared (read) or exclusive (write) lock on a data item
before read or write. Lock prevents another transaction
from modifying item or even reading it, in the case of a
write lock. Rules of locking are, if transaction has
shared lock on item, can read but not update item, and if
transaction has exclusive lock on item, can both read
and update item, Reads cannot conflict, so more than
one transaction can hold shared locks simultaneously on
same item, Exclusive lock gives transaction exclusive
access to that item.

II. PROBLEM DEFINITION
One of the shortcomings of traditional general

purpose database management system (DBMS) is the
inability to provide consistency in the database when long
transactions are involved. The transaction with undefined
time limit will not be able to identify if there is any
violation of database consistency during the time of
commitment, then it indicates a wastage of huge amount of
time and resources. The activities of many users working
on shared objects is not serializable. Existing two phase
locking and optimistic transactions will result in deadlock
in case of long transaction (LT). Two phase locking forces
to lock resources for long time even after they have
finished using them. Other transactions that need to access
the same resources are blocked. The problem in optimistic
mechanism with timestamping is it causes repeated
rollback of transactions when the rate of conflicts
increases significantly. We are using a RBF to manage the
locks allotted to objects and locks are claimed

978-1-4244-4711-4/09/$25.00 ©2009 IEEE IAMA 2009

Downloaded from www.VTUplanet.com

appropriately to be allotted for other objects during
subsequent transactions.

Figure 1. Screw

 Inbuilt library functions for the screw (Figure
1) are available in standard CAD [7-11]. We assume
initially the drawing of the screw is available in the
central database. Subsequently due to customer
requirements at different locations, the designer accesses
the screw in the central database and modifies different
features of the screw. During the process of
modifications of different features, consistency of the
data has to be maintained. In such case the following
sequences of locking objects have to be done whenever
a particular user access a specific feature of the screw.
Each feature is treated as an object. The features are
identified with numbers and corresponding feature
names. In this explanation, O1 refers to object / feature
marked as 1.

 In general, the following sequences are formed
when creating screw. Eventhough library files are
available for screw drawing, customized drawing screw
file is discussed. The major parameters involved in
creating the screw are diameter (outer diameter / inner
diameter), depth (hole) / length (extension or extrusion
or projection) and chamfering (slanting). The various
constraints that have to be imposed during modifications
of features by many users on this screw are

During chamfering both length and diameter have to
be write locked at the first transaction T1.

During diameter modification, chamfering has to be
locked

During length or depth modification, diameter has to
be locked.

This screw has two major entities.

1) Features 1-2-10-11-12 (set 1)
2) 3-4 (set 2)
3) 3-5-6-7-8-9(set 3).

Set 1, set 2 and set 3 can be made into individual
drawing part files (part file 1 part file 2 and part file 3)
and combined into one assembly file (containing the part
files 1, 2 and 3 are intact). When the users are
accessing individual part files , then transactions in part
file 1 need not worry about the type of transactions in
part files 2, 3 and vice versa. However, when the part

files 1, 2 and 3 are combined into a single assembly file,
then inconsistency in the shape and dimension of the set
1, set 2 and set 3, during matching should not occur.
Hence, provisions can be made in controlling the
dimensions and shapes with upper and lower limits
confirming to standards. At any part of time when a
subsequent user is trying to access locked features, he
can modify the features on his system and store as an
additional modified copy of the features with
timestamping and version names (allotted by the user /
allotted by the system).

III. RADIAL BASIS FUNCTION (RBF)
An artificial neural network is an abstract simulation

of a real nervous system that contains a collection of
neuron units, communicating with each other via axon
connections. Such a model bears a strong resemblance
to axons and dendrites in a nervous system. Due to this
self-organizing and adaptive nature, the model offers
potentially a new parallel processing paradigm. This
model could be more robust and user-friendly than the
traditional approaches. ANN can be viewed as
computing elements, simulating the structure and
function of the biological neural network. These
networks are expected to solve the problems, in a
manner which is different from conventional mapping.
Neural networks are used to mimic the operational
details of the human brain in a computer. Neural
networks are made of artificial ‘neurons’, which are
actually simplified versions of the natural neurons that
occur in the human brain. It is hoped, that it would be
possible to replicate some of the desirable features of the
human brain by constructing networks that consist of a
large number of neurons. A neural architecture
comprises massively parallel adaptive elements with
interconnection networks, which are structured
hierarchically.

RBFs can be represented by a network structure, as
any approximation based neural networks. Figure 1
shows the network representation of a Multi-Input
Multi-Output RBF. The input layer distributes each
element of the input vector to all the hidden nodes. Each
node in the hidden layer contains one of the RBF's
centres and applies the basis function φ to the euclidean
distance between the input vector and its centre. Each
node in the hidden layer produces a scalar value, based
upon the centre it contains.

The outputs of the hidden layer nodes are passed to
the output layer via weighted connections. Each
connection between the hidden and output layers is
weighted with the relevant coefficient. The node in the
output layer sums its inputs to produce the network
output. If an output of many dimensions is required,
then several output nodes are needed, one for each
output dimension. Several sets of coefficients will also
be required, one set for the connections to each output
node. The number of centres will however be
unaffected. The training and testing procedure of RBF is
given in Table1.

Downloaded from www.VTUplanet.com

TABLE I. RBF ALGORITHM

 (a) Training RBF
Step 1: Apply Radial Basis Function.
 No. of Input = 2
 No. of Patterns = 1
 No. of Centre = 3
 Calculate RBF as
 RBF = exp (-X)
 Calculate Matrix as
 G = RBF
 A = GT * G
 Calculate
 B = A-1
 Calculate
 E = B * GT
Step 2: Calculate the Final Weight.
 F = E * D
Step 3: Store the Final Weights in a File.

(b) Testing RBF
Step 1:. Read the Input
Step 2: Read the final weights
Step 2 Calculate.
 Numerals = F * E
Step 3: Check the output with the templates for the type of lock

IV. PROPOSED INTELLIGENT LOCKING
STRATEGY

 Let us assume that there are two users editing the
screw. User1 edits O1 and hence O2 and O12 will be
locked sequentially (Table 2). Immediately user2 wants
to edit O2 and hence O1, O12, O10, O11 will be locked
in sequence. However, already O12 is locked by the
user1 and hence user2 cannot lock O12 once again
during editing of O2. The user2 has to wait until user1
has released O1. However, user2 or any other user can
try to access O10. Even now during subtransaction of
O2 and O11, other user cannot complete locking as O2
is already locked by user1. Any other user can access
O3 or O4 and not both. Similarly, any one group G6 /
G7 / G8 can be accessed and edited and not more than
one among G6 / G7 / G8.

TABLE II. SHAPE AND DIMENSION CONSISTENCY MANAGEMENT

Group First feature Remaining feature
to be locked

G1 1 2 , 12
G2 5 6,7,8 ,9
G3 2 1, 10, 11, 12
G4 10 2,11
G5 3 4
G6 4 3
G7 6 5,8
G8 8 5,9,7

V. IMPLEMENTATION
The variables used for training the ANN about locks

assigned to different objects are transaction id, object id,
lock mode (Table 3).

Transaction id represents the client or any other
intermediate transactions

Object id represents the entire feature or an entity in
the file

Mode represents type of lock assigned to an object.

exclusive (X) mode. Data item can be both read as
well as written.

shared (S) mode. Data item can only be read..

intention-shared (IS): indicates explicit locking at a
lower level of the tree but only with shared locks.

intention-exclusive (IX): indicates explicit locking at
a lower level with exclusive or shared locks

shared and intention-exclusive (SIX): the subtree
rooted by that node is locked explicitly in shared mode
and explicit locking is being done at a lower level with
exclusive-mode locks.

An intention locks allow a higher level node to be
locked in S or X mode without having to check all
descendent nodes.

In Table3, column 1 represents the lock type.
column 2 represents the value to be used in the input
layer of the ANN in module 1. Column 3 gives binary
representation of Lock type to be used in the output
layer of module 1. The values are used as target outputs
in the module during lock release on a data item.

This work uses four modules of algorithms which
work using RBF given in Table 1. The modules given in
Table 4 gives their usage for learning and finding the
lock states. OML(Object, Mode, Lock) and OL (Object,
Lock)

Downloaded from www.VTUplanet.com

TABLE III. BINARY REPRESENTATION OF LOCK TYPE

Lock type

(input layer
representation

numerical value).

Binary
representation in
target layer of the

RBF
Object Not
locked

0 000

S 1 001
X 2 010
IS 3 011
IX 4 100

TABLE IV. MODULES USED FOR LEARNING THE LOCK STATUS OF
AN OBJECT

Module Name Training /
Testing

RBF Topology

1 OML Training
(Figure 2)

2{Transaction number
and object id} x {no.
of nodes in hidden
layer} x 3{Lock value}

2 OML Testing
(Figure 3)

2{ Transaction number
and object id } x (no.
of nodes in hidden
layer) x 3(Lock value)

3 OL Training
(Figure 4)

1{object id} x 2 {no.
of nodes in hidden
layer} x 3{lock value}

4 OL Testing
(Figure 5)

1{object id} x 2 {no.
of nodes in hidden
layer} x 3{lock value}

In the fourth column of this table, 3 values are given in the order, no. of nodes in the
input layer, no. of nodes in the hidden layer which can be anything and no. of nodes in

the output layer which is 3 (fixed)

OML training (Figure 2)

Figure 2. OML training

OML testing (Figure 3)

Figure 3. OML testing

OL training (Figure 4)

Figure 4. OL training

OL testing (Figure 5)

Figure 5. OL testing

VI. RESULTS AND DISCUSSIONS
Initially, user 1 and user 2 have opened the same

screw file from the common database. The following
steps shows sequence of execution.

Step 1:For the first time, a pattern is generated as
soon as a user accesses the object. The pattern generated
is given in Table 5. Find distance between input pattern
and the centres. The centres are predefined based on the
object information automatically. The centre is nothing
but one of the patterns generated. T1 edits O1 with write
mode. Table 5 shows pattern formed for the OML
training.

TABLE V. FIRST TIME PATTERN USED FOR TRAINING OML RBF

Object
number

Input pattern Target output
pattern

O1 [1 1] [0 1 0]

Similarly based on the patterns generated, the

following pattern is developed for the OL training

Downloaded from www.VTUplanet.com

(Table 6). The patterns given in Table 5 and Table 6 are
the same but for the number of inputs.

TABLE VI. FIRST PATTERN USED FOR TRAINING OL RBF

Object
number

Input pattern Target output
pattern

O1 [1] [0 1 0]

OML and OL are trained separately.

Step 2: The transaction manager locks objects

mentioned in the third column of Table 2. Now, repeat
step 1 with the patterns given in Table 7.

TABLE VII. ADDITIONAL PATTERNS USED FOR TRAINING OML
RBF

Object
number

Input pattern Target output
pattern

O1 [1 1] [0 1 0]
O2 [2 1] [0 1 0]
O12 [12 1] [0 1 0]

Similarly train OL module with the patterns given in

Table 8. The patterns in Table 7 and 8 are same but for
the number of inputs.

TABLE VIII. ADDITIONAL PATTERNS USED FOR TRAINING OL
RBF

Object
number

Input pattern Target output
pattern

O1 [1] [0 1 0]
O2 [2] [0 1 0]
O12 [12] [0 1 0]

Step 3: A new transaction T2 accesse O5. A pattern

is formed to verify if lock has been assigned to O5 and
its associated objects O12. Only when the locks are not
assigned to O5 and O12 then T2 is allowed.

The following input patterns are presented to the OL
testing module to find if the output [0 0 0] is obtained in
the output layer. During OL testing, the final weights
obtained during OL training will be used. Otherwise, it
means that lock has been assigned to either O5 or O12
or both. In such case, transaction is denied for T2. Else
the following patterns in Table 9 is presented in step 1

TABLE IX. ADDITIONAL PATTERNS USED FOR TRAINING OML
RBF

Object
number

Input pattern Target output
pattern

O1 [1 1] [0 1 0]
O2 [2 1] [0 1 0]
O12 [12 1] [0 1 0]
O5 [5 2] [0 1 0]

Step 4: To know the type of lock value assigned to

an object and for a transaction, OML testing is used.
OML testing uses the final weights created by OML
training

 The proposed RBF for lock state learning and
lock state finding have been implemented using Matlab
7. Module 1 and Module 3 are trained using distance
measure.

VII. CONCLUSION
 An approach has been attempted to implement

RBF in concurrency control to maintain consistency in
the CAD database. A screw has been considered that
contains 12 objects. The 12 objects have categorized
into 8 groups. The transaction behavior and concurrency
control by the two users on the 12 objects have been
controlled using RBF network. We have found less
memory required for storing lock information about the
objects. The computational complexity is very minimal.

REFERENCES
[1] Pei-Jyun Leu and Bharat Bhargava, “Clarification of Two Phase

Locking in Concurrent Transaction Processing,” IEEE
Transactions on Software Engineering, Vol. 13, No 1, January
(1988).

[2] A. A. Akintola, G. A. Aderounmu, A.U. Osakwe and M.O.
Adigun, “Performance Modeling of an Enhanced Optimistic
Locking Architecture for Concurrency Control in a Distributed
Database System,” In: Journal of Research and Practice in
Information Technology, 37 (4): 365-380, (2005).

[3] K. Vidyasankar, “A Non-Two-Phase Locking Protocol for
Global Concurrency Control in Distributed Heterogeneous
Database Systems,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 3, No. 2, June (1991).

[4] Abraham Silberschatz, “A Case for Non-Two-Phase Locking
Protocols that Ensure Atomicity, IEEE Transactions On
Software Engineering,” Vol. SE-9, No. 4, July (1983).

[5] C. Mohan, Donald Fussell, Zvi M. Kedem and Abraham
Silberschatz, “Lock Conversion in Non-Two-Phase Locking
Protocols,” IEEE Transactions On Software Engineering, Vol.
SE-11, No. 1, January (1985).

[6] Bharat Bhargava, “Concurrency Control in Database Systems,”
IEEE Transactions On Knowledge And Data Engineering, Vol.
11, NO. 1, Proceedings of DETC’00: January / February (1999).

[7] Raymond C. W. Sung, Jonathan R. Corney, and Doug E. R.
Clark, “Octree Based Recognition Of Assembly Features,”
Proceedings of DETC’00:, Baltimore, Maryland September 10-
13, (2000).

[8] M. L. Brodie, B. Blanstein, U. Dayal, F. Manola and A.
Rosenthal, “CAD/CAM Database Management,” IEEE
Database Engineering, 7 (2): 12-20, (1984).

[9] Alexandtos Biliris and Huibin Zhao, “Design Versions in a
Distributed CAD Environment,” IEEE, pp:354-359, (1989).

[10] M. A. Ketabchi and V. Berzins, “Modeling and Managing CAD
Databases,” IEEE Computer, pp: 93-102, (1987).

[11] Hamideh Afsarmanesh and David Knapp, “An Extensible
Object-Oriented Approach to Databases for VLSI / CAD,”
Proceedings of VLDB, Stockholm, pp 13-24,(1985).

[12] Min Li, J.Y.H. Fuh, Y.F. Zhang and Shuming Gao, “Adaptive
Granular Concurrency Control for Replicated Collaborative
Feature Modeling,” 978 -1-4244-1651-6/08/ © IEEE(2008).

[13] Xue WANG, tie-min MA, YAN yan, qiu-yu ZHANG, yong
LIU, “The research of Conflict-detection algorithm of
concurrency control Based on Rough Set,” International
Conference on Computer Science and Information Technology,
978-0-7695-3308-7/08 © 2008 IEEE (2008).

[14] Zongtao Zhao1, Jun Wei, Li Lin, and Xiaoning Ding1, “A
Concurrency Control Mechanism for Composite Service
Supporting User-Defined Relaxed Atomicity,” Annual IEEE
International Computer Software and Applications Conference,
0730-3157/08 © IEEE(2008)

Downloaded from www.VTUplanet.com

[15] Martin Kot, “Modeling Real-Time Database Concurrency
Control Protocol Two-Phase-Locking in Uppaal,” Proceedings
of the International Multiconference on Computer Science and
Information Technology pp. 673–678, 978-83-60810-14-9/08
IEEE (2008).

Downloaded from www.VTUplanet.com

