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Abstract—The work aims at recognizing words from a 
continuous speech. To achieve this, cepstrum analysis of the 
speech signal is carried out. The speech signal is processed and 
the features are extracted using cepstrum analysis. The extracted 
features are given as inputs for the hidden Markov model 
(HMM) followed by training radial basis function (RBF). During 
the testing process, the words are separated and compared in the 
database. If a word matches then subsequent action is carried 
out. If the word is not present, then it is added to the database.  
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I. INTRODUCTION 
Automatic speech recognizing capability reduces drastically 
when noise is present [1]. To mitigate the effect of noise on 
recognition, noisy speech is typically preprocessed by speech 
enhancement algorithms, such as spectral subtraction based 
systems [2]. If samples of the corrupting noise source are 
available a priori, a model for the noise can additionally be 
trained and noisy speech may be jointly decoded based on the 
models of speech and noise [3]. However, in many realistic 
applications, the performance of the above approaches to 
robust speech recognition is inadequate. A missing data 
approach to robust speech recognition has been proposed [4]. 
This method distinguishes between reliable and unreliable 
data in the spectral or time-frequency (T-F) domain. When 
speech is contaminated by additive noise, some T-F regions 
will contain predominantly speech energy (reliable) and the 
rest are dominated by noise energy. The missing data method 
treats the latter T-F units as missing or unreliable during 
recognition. The performance of the missing data recognizer 
is significantly better than the performance of a system using 

spectral subtraction for speech enhancement followed by 
recognition of enhanced speech. 

The missing data recognizer requires a binary T-F mask 
that provides information about which T-F regions, of the 
noisy speech signal, are reliable and which are unreliable. 
Previous studies have shown that the missing data recognizer 
performs exceedingly well when this mask is known a priori 
[5]. Attempts to estimate such a binary mask through front-
end preprocessing using speech separation techniques have 
been only partly successful. Spectral subtraction is frequently 
used to generate such binary masks in missing data studies 
[6]. Noise is assumed to be long-term stationary and its 
spectrum estimated from frames that do not contain speech 
(silent frames containing background noise). The noise 
spectrum is then used to estimate the signal to noise ratio 
(SNR) in each T-F unit. If the SNR in a T-F unit exceeds a 
threshold, it is labeled reliable; it is labeled unreliable 
otherwise. In the presence of non-stationary interference 
sources, however, the use of spectral subtraction results in a 
poor estimate of the mask. Methods that primarily utilize the 
harmonicity of voiced speech have also been proposed to 
estimate the mask for missing data applications [7, 8, 9]. 
Hence, they are unable to effectively deal with unvoiced 
speech. Additionally, accurate estimation of pitch is difficult, 
if not impossible, when SNR is low. Under these conditions, 
estimation of the binary mask corresponding to voiced speech 
may not be reliable too. Thus, the estimation of the binary T-F 
mask remains a challenging problem.  
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Figure 1.  SCHEMATIC DIAGRAM  

The human auditory system exhibits a remarkable ability 
to segregate a target speech source from various interference. 
According to Bregman [10], this is accomplished via a 
process termed auditory scene analysis (ASA). ASA involves 
two types of organization, primitive and schema-driven. 
Primitive ASA is based on bottom-up cues such as pitch, and 
spatial location of a sound source. Schema-based ASA is 
based on top-down use of stored knowledge about auditory 
inputs, e.g. speech patterns, to supplement primitive analysis. 
In this paper, a cepstrum analysis method is proposed for 
feature extraction of the speech signal. 

II. CEPSTRUM ANALYSIS 
It is convenient to assume that the signal consists of a 

discrete time sequence, so that the spectrum consists of a z 
transform evaluated on the unit circle. Let us consider a 
speech example, with X referring to the spectrum of the 
observed speech signal, E to the excitation component (for 
instance, the glottal pulse train), and V to the vocal tract 
shaping of the excitation spectrum. We begin with a 
multiplicative model of the two spectra (the excitation and the 
vocal tract). Thus, the spectral magnitude of the speech signal 
can be written as 

|X()| = |E()|   |V()|         (1) 

Taking the logarithm of above equation yields 

log|X()|= log |E()|  + log |V()|.       (2) 

Particularly for voiced sounds, it can be observed that the 
E term corresponds to an event that is relatively extended in 
time (e.g., a pulse train with pulses every 10 ms), and thus it 
yields a spectrum that should be characterized by a relatively 
rapidly varying function; in comparison, because of the 

relatively short impulse response of the vocal tract, the V term 
varies more slowly with function. With the use of this 
knowledge, the left-hand side of equation(2) can be separated 
into the two right-hand-side components by a kind of a filter 
that separates the log spectral components that vary slowly 
with function(the so called high-time components) from those 
that vary slowly with function (the low-time components). 
Such an operation would essentially be performing 
deconvolution. 

Equation (2) has transformed the multiplicative formula 
(1) into a linear operation and thus can be subjected to linear 
operations such as filtering. Since the variable is frequency 
rather than time, notations must be changed. Thus, rather than 
filtering (for time), filter (for frequency); instead of a 
frequency response, use quefrency response; and the DFT (or 
z transform or Fourier transform) of the log |X()| is called the 
cepstrum. The cepstrum is computed by taking the inverse z 
transform of equation 2 on the unit circle, yielding 

where :  c(n) is called the nth cepstral coefficient. 

III. HIDDEN MARKOV MODEL 
In speech recognition, the basic idea is to find the most 

likely string of words given some acoustic input, or: arg max 
P(w / y) 

 where w is a string of words 

 y is the set of acoustic vectors that comes from the 
cepstrum output.  

The acoustics are observations, and the words are 
sequences. Words are made of ordered sequences of 
phonemes: /h/ is followed by /e/ and then by /l/ in the word 
\hello". Each phoneme can in turn be considered as a 
particular random process (possibly Gaussian). This structure 
can be adequately modeled by a left-right HMM, where each 
state correspond to a phone. In \real world" speech 
recognition, the phonemes themselves are often modeled as 
left-right HMM's rather than plain Gaussian densities (e.g. to 
model separately the attack, then the stable part of the 
phoneme and finally the \end" of it). Words are then 
represented by large HMM's made of concatenations of 
smaller phonetic HMM's.  

In speech recognition, it is useful to associate an \optimal" 
sequence of states to a sequence of observations, given the 
parameters of a model. For instance, in the case of speech 
recognition, knowing which frames of features \belong" to 
which state allows to locate the word boundaries across time. 
This is called the alignment of acoustic feature sequences. A 
“reasonable" optimality criterion consists in choosing the state 
sequence (or path) that brings a maximum likelihood with 
respect to a given model. This sequence can be determined 
recursively via the Viterbi algorithm. 

This algorithm makes use of two variables: a) δt(i) is the 
highest likelihood along a single path among all the paths 
ending in state i at time t : b) a variable ψt(i) which allows to 
keep track of the “best path" ending in state i at time t :. The 
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idea of the Viterbi algorithm is to find the most probable path 
for each intermediate and terminating state in the trellis Only 
this most likely path 'survives' [11]. 

IV. RADIAL BASIS FUNCTION (RBF) 
RBF is a supervised ANN which works based on the 

distance concept. The distance is found between a pattern and 
each centre. The centre is also one of the patterns predefined. 
The square of the distance is a node in the hidden layer. An 
exponential function is used as an activation function which 
will be the output of the particular node. The number of nodes 
in the hidden layer is based on the number of centres decided 
in an implementation [12]. 

A. EXPERIMENTAL SETUP 
The wave files were collected using a microphone samples 

at 8khz. Ten different words collected are presented in. The 
words (Table 1) are the speech uttered by both men and 
woman. 

TABLE I.  WORDS AND THEIR SPEECH WAVES 

S.No Words Sound waves 
1 Fourier 

2 Transform 

3 Filtering 

4 Deblurring 

5 Enhancing 

6 Coloring 

7 Compression 

8 Fanbeem 

9 Dilation 

10 Erosion 

 

B. IMPLEMENTATION 
The following steps are adapted to train and test the words 

given in Table 1.  

Cepstral coefficients 

1) Acquire wave file. 
2) Remove zeros which does not give any information. 
3) Apply linear predictive analysis. 
4) Apply fast fourier transform. 
5) Apply log for the output in step 4. 
6) Apply inverse fast fourier transform. 
7) Apply levinson Durban equation. 
8) Repeat step 3 to step 7 for every 10 samples of the 

data acquired from wave files average all values to finally 
get only 10 values. 

9) Repeat step 8 for the data collected from the other 10 
words. Hence after averaging there will be 10 patterns with 
each pattern having 10 values.  

10) Repeat step 9 for other words. 

C. HMM training 
Build each HMM by using cepstral feature vectors to 

produce cluster sets (Clusterer), initializing the model with 
appropriate values based on the cluster set (Initializer) and 
then improving the model parameters to best represent the 
original data (Trainer). Once an HMM for each word is 
obtained, make use of the model in applications: from training 
data so as to test the model’s accuracy by (Tester). During the 
process of HMM training the viterbi algorithm uses 
Initialization, Recursion, Termination and backtracking 

D. Radial basis function 
Each HMM model of a word is associated with a target 

value. Similarly we have 10 HMM model and hence ten target 
values. For each value, 

1) Decide number of centres 
2) Find the distance between a pattern and a centre and 

hence for all centres. The number of centres is based on the 
number of nodes in the hidden layer 

3) Apply exponential (-x) activation and hence RBF is 
obtained.  

4) Add a bias of ‘1’ to the RBF and hence obtain an RBF 
matrix (10 X 4). The value 10 represents 10 words and 4 
represents (3 RBF and bias ‘1’). 

5) Find the inverse of the RBF matrix and process with 
the target values to obtain the final weight. 

V. RESULTS AND DISCUSSIONS 
The speech was processed by cepstrum method to obtain 

feature vectors. The feature vectors were given for HMM 
formulation.  

Downloaded from www.VTUplanet.com



1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Words 

ou
pu

t o
f R

B
F

 Rbf target
Rbf output
Error

 

Figure 2.  Output RBF for all the 
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Figure 3.  Effect of number of centres in recognizing the words 

The output of HMM was given as input for RBF network. 
Target values were fixed to train the RBF. The training was 
carried out with different number of centres (Figure 2). When 
8 centres were used, the percentage of word recognition 
resulted in 80%. The output of RBF is given in Fig. 1. 

VI. CONCLUSIONS 
In this research work, 10 words have been considered. 

Cepstrum analysis has been used to extract features of vectors 
and HMM model was developed for all the ten words. Target 
values were fixed for all the 10 words and trained with RBF. 
When the speech was tested with HMM model and RBF, the 
proposed approach gives 80% performance. That is only 8 
words were recognized. As a future work, the number of 
centres have to be changed to find out improvement in the 
performance of the speech recognition. 
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