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Abstract—In this paper, we present an empirical comparison 
of some Differential Evolution (DE) variants to solve high 
dimensional optimization problems. The aim is to identify the 
behavior and scalability of DE variants.  Most studies on DE 
are obtained using low-dimensional problems (smaller than 
100) , which are relatively small for many real-world problems. 
We have chosen four problems grouped by feature: unimodal 
and separable, unimodal and nonseparable, multimodal and 
separable, and   multimodal and nonseparable. Fourteen 
variants were implemented and tested on four benchmark 
problems for dimensions of 30, 100, 500 and 1000.  The value 
for the parameter CR is decided based on a bootstrap test 
conducted for 30 dimensions, and the same CR value is 
adopted for the dimensions 100, 500 and 1000 also. The 
analysis is done based on the results obtained for 100 runs, for 
each Variant-Function-Dimension combination. 

 

Keywords - Differential Evolution, High Dimensional 
Function Optimization 

I.     INTRODUCTION 
Evolutionary algorithms (EA) have been widely used to 

solve optimization problems. Differential Evolution [1] is an 
EA proposed to solve optimization problems, mainly to 
continuous search spaces. The DE algorithm, a stochastic 
population-based search method, has been successfully 
applied to many global optimization problems [2].  As 
traditional EAs, several optimization problems have been 
successfully solved by using DE [3]. It shows superior 
performance in both widely used benchmark functions and 
real-world application [4]. DE shares similarities with 
traditional EAs. As in other EAs, two main processes that 
derive the evolution are the perturbation process (crossover 
and mutation) which ensures the exploration of the search 
space and the selection process which ensures the 
exploitation properties of the algorithm. Both perturbation 
and the selection process are simpler than those used in 
other evolutionary algorithms. In the case of DE, the 

perturbation of a population element is done by 
probabilistically replacing it with an offspring obtained by 
adding to a randomly selected element a perturbation 
proportional with the difference between other two 
randomly selected elements. The selection is done by one to 
one competition between the parent and its offspring. 

There are three strategy parameters in DE, the 
population size NP, the crossover rate CR and the scaling 
factor F. Many works have been done to study the suitable 
setting of these control parameters [5, 6]. The CR parameter 
controls the influence of the parent in the generation of the 
offspring. The F parameter scales the influence of the set of 
pairs of solutions selected to calculate the mutation value 

DE performs the perturbation based on the distribution 
of the solutions in the current population. In this way, search 
directions and possible step sizes depend on the location of 
the individuals selected to calculate the mutation values. 

Based on different strategies followed for perturbation, 
there are various DE variants are exists, they differ in the 
way how the solution is generated. Besides the suitable 
setting of control parameters, another important factor when 
using DE is the selection of the variant. The most popular 
variant of DE is DE/rand/1/bin. There is a nomenclature 
scheme developed to reference different DE variants.  In 
DE/rand/1/bin, “DE” means Differential Evolution, the 
word “rand” indicates that the individuals selected to 
compute the mutation values are chosen at random, “1” is 
the number of pairs of individuals chosen and finally “bin” 
means that a binomial crossover is used. 

The algorithm for DE/rand/1/bin is presented in the  
“Fig. 1” 
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1. Begin 
2.   G=0 
3.   Create random initial population Xi,G for every i,  i =1.....NP 
4.   Evaluate  f(Xi,G)   for every i, i=1.....NP 
5.   For G = 1 to MAXGEN Do 
6. For i = 1 to NP Do 
7.♦   select randomly r1 ≠ r2 ≠ r3 
8. ♦   jrand=randint (1,D) 
9. ♦   For j=1 to D Do 
10. ♦        If(randj[0,1)<CR or j=jrand) Then 
11. ♦           Ui,j,G+1=Xr3.j.G+F(Xr1.j.g-Xr2.j.G) 
12. ♦        Else 
13. ♦         Ui,j,G+1=Xi,j,G 
14. ♦        End If 
15. ♦    End For 
16.    If  f(Ui,G+1 ) ≤ f(Xi,G) Then 
17.                   Xi,G+1 = Ui,G+1 
18.    Else 
19.                    Xi,G +1= Xi,G 
20.      End If 
21. End For 
22.          G=G+1 
23.      End For 
24. End 

Figure 1: “DE/rand/1/bin” algorithm, steps pointed out with ♦ will change 
from variant to variant.  

 
II. RELATED WORK 

However most of the experimental results on DE are 
obtained using low-dimensional problems, the reported 
studies on the scalability of DE derivative algorithms are 
scarce. In contrast. Other evolutionary algorithms such as 
evolutionary programming (EP), have been tested on high-
dimensional problems, up to 1000 dimension [7]. 

 
Cooperative co-evolution architecture was firstly 

proposed by Potter for genetic algorithm, called CCGA [8], 
and had been successfully applied to other evolutionary 
algorithms [7, 9, and 10]. In the context of DE, the 
cooperative co-evolution has also been introduced, and it 
was proposed as CCDE [11]. However, CCDE only 
extended the problem domain up to 100 dimensions, which 
are relatively small for many real-world problems. 

 
Zhenyu Yang, Ke Tang and Xin Yao, proposed two new 

DE variants named DECC-I and DECC-II for high 
dimensional optimization, up to 1000 dimension [12]. These 
two algorithms are based on a cooperative coevolution 
framework. 

 

III.      DESIGN OF EXPERIMENT AND RESULTS 
We selected four variants DE/rand/1/bin, 

DE/rand/1/exp, DE/best/1/bin and DE/best/1/exp with one 
pair of individual for mutation. The “rand” variants select 
all the individuals to compute mutation at random and the 

“best” variants use the best solution in the population 
besides the random ones 

We selected the following four variants with two pair of 
individuals DE/rand/2/bin, DE/rand/2/exp, DE/best/2/bin 
and DE/best/2/exp.  Also, we selected the following six 
variants DE/current-to-rand/1/bin, DE/current-to-
best/1/exp, DE/current-to-best/1/bin, DE/current-to-
best/1/exp, DE/rand-to-best/1/bin and DE/rand-to-
best/1/exp. 

We have chosen four test functions [13] grouped by the 
feature   f01-Schwefel's problem 2.21(unimodal and 
separable), f02-Schwefel's Problem 1.2(unimodal and 
nonseparable), f03-Generalized Rastrigin's 
Function(multimodal and separable)  and  f04-Ackely's 
Function(multimodal and nonseparable). The details of the 
functions are presented in the Appendix. All the functions 
have its optimum value at zero. 

The experimental design consists on testing the, above 
mentioned, fourteen variants on the four problems, 
mentioned earlier, with different dimensions (D = 30, 100, 
500 and 1000).  

We fixed the population size (NP) as 100, a large 
population affects the ability of the approach to find the 
correct search direction , so we fixed a moderate population 
size in all the experiments. We fixed the maximum number 
of function evaluations as proportional to the dimension, 
which is equal to  D * 5000. We also fixed the stopping 
criteria as an error values of 1 x 10 -12  . The algorithms 
either will stop at maximum function evaluation or if the 
tolerance error is reached. 

Based on [14], we decided a range for the parameter F as 
[0.3, 0.9], this value is generated anew at each generation. 
The same F value is assigned to K, which is used for 
mutation. 

The CR parameter is tuned for each Variant-Function 
combination. 11 different values for the “CR” parameter 
were tested {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
1.0} for each Variant-Function combination with dimension 
D=30. We conducted 50 independent runs for each 
combination of Variant-Function-CR value. Based on the 
obtained result a bootstrap test was conducted for each 
combination in order to determine the confidence interval 
for the mean objective function value. The “CR” value 
corresponding to the best confidence interval was chosen to 
be used in our experiment and the CR value chosen in 
dimension 30 is adopted for D=100, 500 and 1000 also. The 
variants along with the CR values for each function are 
presented in Table I. 
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We initialized the population with uniform random 
initialization with in the search space and 100 independent 
runs were performed for each Variant-Function-Dimension 
combination. We recorded, mean objective function value 
(MOV) for 100 runs. 

For easier analysis the results were grouped by 
dimension and by function. In Table II we present the mean 
objective function value obtained for the function f01, f02, 
f03 and f04. The values with bold and underline are the least 
objective function value obtained for each Function-
Variant-Dimension combination. In Table III the overall 
performance analysis of the variants is presented.  It 
presents, for each Function-Dimension combination the best 
mean objective function values and the corresponding 
variants. The least mean objective function value for each 
Function-Variant-Dimension combination is marked with 
bold and underlines style. 

TABLE    I 

“CR” VALUE FOR EACH PAIR OF VARIANT-FUNCTION 

No Variant f01 f02 f03 f04 

V1 DE/rand/1/bin 0.9 0.9 0.1 0.9 

V2 DE/rand/1/exp 0.1 0.1 0.1 0.1 

V3 DE/best/1/bin 0.8 0.3 0.1 0.1 

V4 DE/best/1/exp 0 0.1 0.1 0.2 

V5 DE/rand/2/bin 0.9 0.9 0.1 0.3 

V6 DE/rand/2/exp 0 0.1 0.1 0.1 

V7 DE/best/2/bin 0.1 0.8 0.1 0.1 

V8 DE/best/2/exp 0.1 0.1 0.1 0.1 

V9 DE/current-to-rand/1/bin 0.3 0.9 0.1 0.1 

V10 DE/current-to-rand/1/exp 0 0 0.1 0.1 

V11 DE/current-to-best/1/bin 0.2 0.9 0.1 0.1 

V12 DE/current-to-best/1/exp 0 0 0.1 0.1 

V13 DE/rand-to-best/1/bin 0.9 0.9 0.9 0.3 

V14 DE/rand-to-best/1/exp 0.1 0.1 0.1 0.1 

 

   IV.  DISCUSSION 

A. f01 : Unimodal Separable(Schwefel's   problem 2.23)    
   In dimension 30 for function f01, comparatively the 

best results were provided by the variants rand-to-best/1/bin 
and rand/1/bin, they both reached the near optimum value 
with the average objective function value of 0.78 and 0.91 
respectively. The poorest performance was provided by the 
variants current-to-rand/1/exp and current-to-best/1/exp 
with the average objective function value of 55.74 and 55.75 
respectively.  

In dimension 100,500 and 1000, the results show that it 
was not solved by any variant. In dimension 100, 
comparatively the best results were provided by the variants 
best/2/bin and rand/1/bin, with the average objective 
function value of 30.11 and 30.12 respectively. The poorest 
performances were provided by the variants current-to-
rand/1/exp and rand/2/exp with the average objective 
function value of 94.5 and 94.49 respectively.  

In dimension 500, comparatively the best results were 
provided by the variants best/1/exp and best/1/bin with the 
average objective function value of 41.84 and 64.15 
respectively. The poorest performance was provided by 
rand/2/bin with the average objective function values of 
98.63. 

In dimension 1000, comparatively the best results were 
provided by the variant best/1/exp with the average 
objective function value of 42.79. The poorest performance 
was provided by rand-to-best/1/bin with the average 
objective function value of 98.85. This result suggests that 
variants with “best” selection scheme giving good 
performance than other variants. 

The obtained results showed that variants with binomial 
recombination type and “best” selection scheme are most 
competitive in reaching the global optimum.  
 

B. f02: Unimodal NonSeparable(Schwefel's  Problem 1.2) 
The result for the function f02 in dimension 30 shows 

that the best results were provided by the variants best/2/bin 
and best/2/exp, they both reached the global optimum of 0. 
The poorest performances were provided by the variant 
current-to-best/1/bin and current-to-rand/1/bin with the 
average objective function value of 13749.3124 and 
13937.6965 respectively  

In dimension 100, 500 and 1000 the result shows that it 
was not solved by any variant.  In dimension 100, 
comparatively the best results were provided by the variant 
best/2/bin with the average objective function value of 
2248.4262. The poorest performance was provided by 
current-to-best/1/bin and current-to-rand/1/bin with the
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    TABLE    II 

 THE MEAN OBJECTIVE FUNCTION VALUES OBTAINED FOR THE FUNCTION  f01, f02, f03 AND f04  IN 100 RUNS 

Function – f01     Function – f02    

Variant D = 30 D = 100 D = 500 D = 1000   Variant D = 30 D = 100 D = 500 D = 1000 

1 0.91 30.12 98.53 98.78   1 0.55 7061.26 378461.24 1302355.44 

2 17.82 90.95 98.33 98.72   2 5.71 239074.44 15216875.17 14342315.34 

3 28.72 50.09 64.15 64.62   3 0.78 10464.86 854930.98 3191306.42 

4 25.96 34.71 41.84 42.79  4 364.74 144233.48 14870737.35 79492389.71 

5 3.34 94.47 98.63 98.8   5 1073.51 218155.96 6632782.433 19785758.6 

6 7.13 94.49 98.52 98.78   6 1049.47 311891.24 15328136.09 68431518 

7 2.6 30.11 88.26 89.65   7 0 2248.43 391863.94 1558474.6 

8 9.09 89.61 98.3 98.67   8 0 209909.29 15183598.61 71901345.6 

9 18.83 81.3 98.55 98.77   9 13937.69 667057.83 16347074.17 63430502.4 

10 55.74 94.5 98.5 98.82   10 1262.38 440334.78 8048956.17 28044382.29 

11 17.05 72.85 98.45 98.82   11 13749.31 657134.55 15664122.22 62995994.8 

12 55.75 30.17 98.57 98.84   12 1259.26 442178.83 7985850.685 28555998.2 

13 0.78 91.35 98.46 98.85   13 0.54 6853.78 388102.09 1167663.23 
14 17.98 91.35 98.34 98.62   14 5.54 246681.38 15443684.83 71024066 

Function – f03      Function – f04    

Variant D = 30 D = 100 D = 500 D = 1000   Variant D = 30 D = 100 D = 500 D = 1000 

1 0 1579.21 3782.37 17700.42   1 -0.09 1.93 9.05 12.73 

2 97.63 599.03 7836.49 9146.19   2 0.0028 19.56 20.90 21.03 

3 3.40 1575.65 607.87 17733.15   3 3.5209 3.47 2.06 2.65 

4 47.40 834.01 7721.86 10808.09   4 7.3916 20.19 20.98 21.06 

5 16.39 1580.49 4448.48 17729.09   5 -0.09 0.02 16.88 20.89 

6 161.05 769.45 7947.06 17741.79   6 4.0393 20.02 20.94 21.04 

7 0.62 1587.85 3920.91 17702.71   7 -0.09 -0.03 1.76 1.52 
8 120.97 677.78 7943.69 9785.23   8 0.427 19.33 20.93 21.04 

9 63.66 1586.25 7096.76 17679.43   9 1.5784 4.20 20.72 21.00 

10 249.82 1504.33 8343.67 17707.06   10 15.6541 20.41 21.01 21.08 

11 64.89 1586.12 7065.75 17714.14   11 1.6877 4.25 20.71 20.99 

12 245.38 1503.50 8338.84 17734.21   12 15.4411 20.41 21.01 21.08 

13 0 1583.53 3785.98 17681.53   13 -0.09 0.48 4.54 10.23 

14 100.97 595.62 7843.83 9107.64   14 0.0008 19.54 20.89 21.03 
 

average objective function value of 657134.5514 and  
667057.8295 respectively.  

In dimension 500, comparatively the best results were 
provided by rand/1/bin with the average objective function 
values of 378461.23, the poorest performance were 
provided by current-to-best/1/bin and current-to-rand/1/bin 
with the average objective function value of 15664122.22 
and 16347074.17 respectively.  

 

 

In dimension 1000, comparatively the best results were 
provided by the variant rand-to-best/1/bin with the average 
objective function values 1167663.237. The poorest 
performance was provided by the variant best/1/exp with the 
average objective function value of 79492389.71 

The obtained result showed that the variants with 
binomial recombination type and randomness in selection 
scheme provide competitive results. 
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    TABLE    III 

                  BEST MEAN OBJECTIVE FUNCTION VALUES AND THE CORRESPONDING VARIANTS  

    FOR EACH FUNCTION-DIMENSION COMBINATION 

Function  

D=30 D=100 D=500 D=1000 

Best MOV Given By Best MOV Given By Best MOV Given By Best MOV Given By 

f01 0.78 V13 30.11 V7 41.84 V4 42.79 V4 
f02 0 V7,V8 2248.4262 V7 378461.238 V1 1167663.24 V13 
f03 0 V1,V13 595.6227 V14 607.8667 V3 9107.6366 V14 
f04 0 V14,V2 0.0219 V5 1.7549 V7 1.522 V7 

 

C. f03: Multimodal Separable (Generalized Rastrigin's 
Function) 

 
The result for the function f03 in dimension 30 shows 

that the best results were provided by the variant rand-to-
best/1/bin and rand/1/bin, they both reached the global 
optimum of 0. The poorest performance was provided by 
the variant current-to-rand/1/exp with the average objective 
function value of 249.8184. 

 
 In dimension 100, 500 and 1000 the result shows that it 

was not solved by any variants. In dimension 100, 
comparatively the best results were provided by the variant 
rand-to-best/1/exp with the average objective function value 
of 595.6227, and the poorest performance was given by the 
variant best/2/bin with the average objective function value 
of 1587.8524. 

 
In dimension 500, comparatively the best results were 

provided by the variant best/1/bin with the average objective 
function value of 607.8667. The poorest performances were 
provided by the variant current-to-best/1/exp and current-to-
rand/1/exp with the average objective function values of 
8338.8363 and 8343.671 respectively. 

 
In dimension 1000, comparatively the best results were 

provided by the variant rand-to-best/1/exp with the average 
objective function values of 9107.6366. The poorest 
performance was given by the variant rand/2/exp with the 
average objective function   value of 17741.7968.  

 

The obtained result showed that variants with binomial 
recombination provide better performance than other 
variants.  

D. f04 : Multimodal Nonseparable(Ackely's Function) 
The result for the function f04 in dimension 30 shows 

that the best results were provided by the variants rand-to-
best/1/exp and rand/1/exp they both reached the global 
optimum of 0. The poorest performance was provided by 
the variant current-to-rand/1/exp with the average objective 
function values of 15.6541 respectively. 

In dimension 100, 500 and 1000, the result shows that it 
was not solve by any variants In dimension 100, 
comparatively the best results were provided by the variants 
best/2/bin and rand/2/bin, these variants reached near the 
global optimum with the average objective function values 
of -0.03 and 0.0219 respectively. The poorest performance 
was provided by the variants current-to-rand/1/exp and 
current-to-best/1/exp with the average objective function 
values of 20.4166 and 20.4179 respectively. 

In dimension 500, comparatively the best results were 
provided by the variant best/2/bin with the average objective 
function values of 1.7549.  The poorest performances were 
provided by the variants current-to-best/1/exp and current-
to-rand/1/exp with the average objective function values of 
21.0113 and 21.0083 respectively. 

In dimension 1000, comparatively the best results were 
provided by the variant best/2/bin with the average objective 
function values of 1.522. The poorest performances were 
provided by the variants current-to-rand/1/exp and current-
to-best/1/exp with the average objective function values of 
21.0844 and 21.0848 respectively.  

The obtained result showed that the variants with 
binomial recombination type and randomness in selection 
are most competitive. 

V.      REMARKS 
Based on the overall results, which combines the 

observation made on Table II and Table III, we highlight the 
following points. 

The variant best/2/bin provides competitive results in all 
dimensions. The variants rand-to-best/1/bin and rand-to-
best/1/exp are also quite well in all the dimensions. The 
poorest performance in all these function was provided by 
the variant current-to-rand/1/bin. 

It is observed from the result that the variants with 
binomial recombination type are, comparatively, giving 
good performance than variants with exponential 
recombination type. And the variants with “best” selection 
scheme also more suitable..  
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VI.       CONCLUSION 

In this paper, we presented an empirical comparison of 
some DE variants to solve global optimization problems for 
various dimensions. Fourteen different variants were 
implemented and tested on 4 benchmark problems. 
Regardless of the characteristics and dimension the 
relatively better results seem to have been provided by the 
variants with binomial crossover and “best” selection 
scheme. Despite the fact that almost all the 14 variants did 
not scale up well to high dimension , it is worth noticing 
that the parameter CR was tuned for dimension 30 only and 
the same was adopted for high dimensional cases. 
Moreover, we feel that the scalability of DE variants can be 
analyzed further by testing the variants with more number of 
benchmark functions, which will give better insight. 
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APPENDIX- A 

A .Test Functions 
 The details of the 4 test functions used in this paper 
are the following [13]. 
 

• f01  - Schwefel’s Problem 2.21 
 

 

 

 
 

• f02 – Schwefel’s Problem 1.2 
 

   

 

 
 

• f03 – Generalized Restraint’s Function 
 

 
 

 

 
 

• f04 – Ackley’s Function  
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