
Evaluation of Software Architectures using
Multicriteria Fuzzy Decision Making Technique

 G. Zayaraz S. Vijayalakshmi V. Vijayalakshmi
 Dept of Computer Sci. Engg. Dept. of Info. Tech. Dept. of Elec & Comm. Engg.

Pondicherry Engg. College Christ College of Engg. & Technology Pondicherry Engg. College
Puducherry– 605 014, India Puducherry– 605 010, India Puducherry– 605 014, India

 gzayaraz@pec.edu sviji7195@yahoo.com vvijizai@pec.edu

Abstract- Software architectures is a critical aspect in the design
and development of software. Architecture of software is a
collection of design decisions that are expensive to change. A
correct architecture has the largest single impact on cost and
quality of the product. Though architecting constitutes 10% of
the product development cycle, it determines 90% of the
product development costs. Given the impact that software
architecture has on a project’s success, the need to choose the
right architecture assumes significance. Organizations often
need to choose software architecture for future development
from several competing candidate architectures. In this paper,
a new architecture selection method based on multicriteria
fuzzy decision making technique has been developed and
validated using a suitable case study.

Keywords - Quality attributes; Software architecture; Decision
making; Fuzzy Decision Making.

I. INTRODUCTION
Software architectures are abstract design artifacts of the

software system to be developed. They are usually
constructed from the functional and nonfunctional
requirements of the software system. Choice of which
alternative architecture to go with is a crucial part in any
software development as this choice affects the quality of
final software product. Conventional qualitative architecture
evaluation techniques discussed and quantitative selection
techniques in [1] have been analyzed to identify their
limitations. In order to overcome the limitations and
challenges, a quantitative evaluation method based on
multicriteria fuzzy decision making is proposed. The
existing evaluation method provides the rationale for
architecture selection process by measuring the conformance
to requirements of each candidate architecture.

Architecture reflects the functional and nonfunctional
requirements of a software system. Architectures are the
only artifact available at the early stages of the software
development. Architectures both newly developed and
reused have to be rigorously evaluated for its conformance to
requirements, as it directly affects the quality of final
software product. Choice on architecture alternatives is made
on the basis of stakeholders’ expectations and preferences.
Stakeholders are responsible for making crucial design

decisions. Requirements of stakeholders are discrete and
preferences may also vary. The selected architecture may
undergo small changes (architectural degeneration) in later
phases of the software life cycle which leads to repetition of
the entire evaluation. Thus, the process of architecture
evaluation is a complex task.

Quantitative evaluation technique used for selection of
architecture has to be systematic and based on statistical
methods. It also has to provide a mechanism for verifying
the structural changes in architectural for conformance with
requirements. In this research work, an attempt has been
made to propose a quantitative evaluation method based on
multicriteria fuzzy decision making technique which selects
an architectural based on the requirements of stakeholders.

II.DESCRIPTION OF THE MULTICRITERIA FUZZY
DECISION MAKING

In multicriteria decision problems, the architectures are
evaluated according to a number of quality attributes. Each
quality attribute induces a particular ordering of the
architecture and what is needed is a procedure to construct an
overall preference ranking. The basic information involved
in multicriteria decision making problem can be expressed by
the matrix [2].

 Cn...C2C1

R =

Xm
.

X2
X1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mnmm

n

n

aaa

aaa
aaa

...
.

...

...

21

22221

11211

 (1)

where X = (X1, X2,…, Xm) is finite set of architecture
and C=(C1, C2,…, Cn) is the set of quality attributes. Each
entry in the matrix are assumed to be real numbers [0 1],
expressing the degree to which architectures Xi satisfies the
quality attributes Cj. Thus R can be viewed as a matrix
representation of a fuzzy relation on X × C.

If it happens that, instead of R, an architecture matrix
R’= [aij’], whose entries are arbitrary real numbers, then
R’= [aij’] can be converted to the desired matrix R by the
formula.

978-1-4244-4711-4/09/$25.00 ©2009 IEEE IAMA 2009

Downloaded from www.VTUplanet.com

aij =

m
ij

m
ij

m
ijij

Ni
a

Ni
a

Ni
aa

∈
−

∈

∈
−

'min'xam

'min'
 (2)

for all i ∈ Nm and j ∈ Nm.

The common approach in multicriteria decision problem
is to convert them into single criterion decision problems.
For this need to find a global quality attribute

ri=h(ai1, ai2,…. ain)

that for each Xi ∈ X is an adequate aggregate of values
ai1, ai2,…, ain to which the individual quality attributes C1,
C2,…, Cn are satisfied.

The most commonly employed aggregating operator is
the preference coefficient average

rj =

∑

∑

=

=
n

j
j

n

j
ijj

w

aw

1

1 (3)

where w1, w2,…,wn are preference coefficients that
indicate the relative importance of quality attributes C1,
C2,…,Cn.

When the quality attributes are split in to two groups
‘benefit’ and ‘cost’, the elements of the matrix R′ can be
normalized [3] using the formulae

rij= []
k

a
a

kj

ij

max
 for the benefit quality attributes Cj

rij =
ij

kj

a
k

a]min[
 for the cost quality attributes Cj

and thus we get the normalized matrix R=(rij)m x n.

Based on the normalized decision matrix R, the overall
aggregate preference value of the architecture Xi can be
expressed by the additive preference coefficient averaging
operator as

zi (w) = ∑
=

n

j
jijwr

1
 ; i = 1,2,…,m (4)

The greater the overall attribute value zi (w), the better is
the corresponding architecture Xi will be. Even though the
quality attributes are split into two groups unlike the MCDA
methods, the total preference of all the quality attributes
should add up to 1 instead preference coefficients of benefit
quality attributes and cost quality attributes being separately
adding to 1.

III.CASE STUDY
A case study of real-time stock monitoring system [4] is

taken and evaluated using the proposed quantitative
evaluation method. The main objective of case study is to
validate the proposed evaluation method. Input to the
evaluation method is set of candidate architectures and its
quality characteristics measured. Expected outputs are total
satisfaction value for each candidate architecture.
Architectures with highest total satisfaction value is selected
for further phases of the software development life cycle.

The primary goal of real-time stock monitoring system is
to capture, analyze and broadcast stock events information in
real-time. It is a soft real-time system where some of the
events may miss their deadline without affecting the whole
system behavior. The system is a real-time data provider for
monitoring stocks of small and medium size stock exchanges
for brokers and independent investors. An antenna (feed
server), external to the system, provides the data (feed) to the
data server. A feed contains the relevant information of a
stock exchange transaction. Feeds are supposed to be
reliable and available.

The clients, namely the brokers are distributed in different
geographical locations and subscribed to the data server.
When a change on the feed to which a client has subscribed
occurs, the feed is broadcasted to him/her by the data server,
according to a strict time delay. The time delay will depend
on the network structure used to send the information to the
clients. The type of service offered depends on this delay.
Internet facilities through commercial browsers are required
for the system. The publisher/subscriber stores the client
subscriptions, the actual values in the client subscription DB
and the data server respectively. Three different architectural
solutions are available for real-time stock monitoring system
namely publisher/subscriber pattern, repository pattern and
broadcast pattern.

A. Inputs for Evaluation
Inputs to the evaluation method are set of candidate

architectures along with their quality characteristics
measured. There are three candidate architectures considered
namely publisher/subscriber pattern (A), repository pattern
(B) and broadcast pattern (C).

Publisher/Subscriber Pattern (A)
In this type of candidate architecture, clients register their

interest for stocks with the subscriber. The subscriber
records the details of the clients in the database. A change in
stock prices causes the publisher to notify these changes to
the interested clients. Publisher/Subscriber pattern is shown
in Figure 1.

Downloaded from www.VTUplanet.com

Client invoices DB

Data Server

DB

Antenna
Response to client

Request from client/acknowledgement

Send
Feeds

Store
Response

Request

Browsers Clients

Feed
Receiver

Feed
Receiver

Subscriber

Publisher

DB

Antenna

Send
Feeds

Subscription

Send changed
values

Browsers

Send
changed values

Store

Data Server

Clients

Client Subscriptions
DB

Feed
Receiver

Client Subscriptions DB

DB

S

Data
Server

Antenna

Send Feeds

Send changed
Values Browsers Clients

Figure 1. Publisher/Subscriber Pattern (A)
Repository Pattern (B)

In this type of candidate architecture, clients request the
server for data about the stocks. Requests by clients may or
may not be done periodically. Usage of proper queuing
mechanism helps to avoid conflicts among requesting clients.
A repository pattern is shown in Figure 2.

Figure 2: Repository Pattern (B)

Broadcast Pattern (C)
In this type of candidate architecture, a change in stock

prices causes the server to broadcast these changes to their
clients. Communication between clients and server is
unidirectional. Broadcast pattern is shown in Figure 3.

Figure 3: Broadcast Pattern(C)

B. Quality Attributes
The real-time stock monitoring system is identified with

eight quality attributes [5] namely response time, learnability,
maintainability, recoverability, reusability, cost, development
time and team size. Architecture evaluation is carried out for
these quality attributes for conformance with stakeholders’
requirements. Measured values of candidate architectures are
listed in Table I.

Response Time
Response time is defined as the time required for

completing a transaction. It is the sum of processing time,
queuing time and data transfer time. It is measured in
milliseconds (ms). In the case of repository pattern, the
response time is high. This is due to the usage of queuing
mechanism to handle simultaneous request from the clients.
Moreover, each time to access information about stocks from
the server, clients make a request to the server and in turn
they receive acknowledgement. The requested data is sent by
the server to the clients and it turns the server received
acknowledgement from the clients. However, in the case of
subscriber pattern data is sent to all clients periodically
provided the interested clients register themselves once with
the server.

Learnability
Learnability is defined as the time required by the user to

understand the software and work with it. This includes the
training period given for the users. It is measured in hours
(hrs).

Maintainability
Maintainability is defined as the time taken to make

successful modifications in the architecture. It is measured in
hours (hrs). Maintainability mainly depends on the number
of components and their interactions required for achieving
the functionalities of the system. The subscriber/publisher
has the highest number of components.

Recoverability
Recoverability is defined as the time taken to recover

from failure state to working state. It is measured in seconds
(secs). In repository structure, when the client side fails and
recovers it can quickly reestablish the current status by

Downloaded from www.VTUplanet.com

requesting the server. However, in other two structures
clients have to wait for the next periodic information.

Reusability
Reusability is defined as the number of components and

connectors that can be reused. It is measured in number
(nos).

Cost
It is the cost associated with developing the software

product. It is measured in rupees (rs). The cost for
repository system is low because it is built by using the
existing components.

Development Time
This is the measure of time taken to build the software

system. Its unit of measurement is weeks (wks). Since the
repository pattern reuses existing components, its
development time is less.

Team Size
It is defined as the number of technical persons required

to build the project. Its unit of measurement in numbers
(nos).

TABLE I. MEASURED VALUES

C. Multicriteria Fuzzy Decision Making
The multicriteria fuzzy decision making technique is

applied to this problem and analyzed under multicriteria
fuzzy decision making technique.

Data
W1 W2 W3 W4 W5 W6 W7 W8

0.1 0.05 0.2 0.15 0.1 0.2 0.15 0.05

C
B
A

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

205652001312
3010410255820
60208202001510

The normalized matrix is

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

11
3
211

5
1

8
3

10
6

2
1

2
11

2
1

200
25111

3
1

4
1

2
1

4
11

5
1

8
5

2
1

Z1 = 1.012.0
5
105.0

8
51.0

2
1

×+×+×+×

 05.0
3
115.0

4
12.0

2
11.0

4
1

×+×+×+×+

 = 0.3975

Z2 = 1.0
200
252.0105.011.01 ×+×+×+×

 05.0
2
115.0

2
12.011.0

2
1

×+×+×+×+

 = 0.712

Z3 = 1.012.0
5
105.0

8
31.0

10
6

×+×+×+×

 05.0115.012.0
3
21.01 ×+×+×+×+

 = 0.6505

From the values of Zi, the ranking of the architectures is
B > C > A.

It is to be observed that the proposed multi criteria fuzzy
decision making method gives the result consistent. but the
computation involved is simpler than the other methods.

IV.CONCLUSION
Thus a simple and efficient architecture selection method

based on multicriteria fuzzy decision making technique has
been developed and validated using the stock monitoring
system case study. The proposed method can handle the
uncertainty and vagueness in stakeholders’ requirements.

REFERENCES
[1] G. Zayaraz and Dr. P. Thambidurai, “Quantitative Model for the

Evaluation of Software Architectures”, Journal of Software Quality
Professional, American Society for Quality, Vol.9, no.3, pp. 28-40,
June 2007.

[2] J. George, Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic Theory and
Applications, Prentice-Hall, pp. 399-401, 1997.

[3] Zeshui Xu, “Multiple-Attribute Group Decision Making with Different
Formats of Preference Information on Attributes”, IEEE Transaction
on Systems, Man, and Cybernetics-Part B:Cybernetics, Vol.37, No.6,
December 2007.

A
rc

hi
te

ct
ur

e

R
es

po
ns

e
tim

e
(m

s)

M
ai

nt
ai

na
bi

lit
y

(s
ec

)

L
ea

rn
ab

ili
ty

 (h
rs

)

R
eu

sa
bi

lit
y

(n
os

)

R
ec

ov
er

ab
ili

ty
 (s

ec
s)

C
os

t (
R

s i
n

La
cs

)

T
ea

m
 si

ze
 (n

os
)

D
ev

el
op

m
en

t

T
im

e
(w

ks
)

A 10 200 5 1 20 8 20 60

B 20 25 8 5 10 4 10 30

C 12 200 3 1 5 6 5 20

W1 W2 W3 W4 W5 W6 W7 W8

0.1 0.05 0.2 0.15 0.1 0.2 0.15 0.05

Downloaded from www.VTUplanet.com

[4] F. Losavio, L. Chirinos, N. Levy and A. Ramdane, “Quality
Characteristics of Software Architecture”, Journal of Object
Technology, Vol. 2, no.2, pp. 133-150, March 2003.

[5] M. Stahlberg, C. Wohlin, L. Lundberg and M. Mattsson, “A Method
for understanding Quality Attributes in Software Architecture
Structures”, Proceedings of the 14th International Conference on
Software Engineering and Knowledge Engineering, pp. 819-826, July
2002.

Downloaded from www.VTUplanet.com

