
Automatically Detecting and Tracking
Inconsistencies in Software Design Models

Alexander Egyed, Member, IEEE

Abstract—Software models typically contain many inconsistencies and consistency checkers help engineers find them. Even if

engineers are willing to tolerate inconsistencies, they are better off knowing about their existence to avoid follow-on errors and

unnecessary rework. However, current approaches do not detect or track inconsistencies fast enough. This paper presents an

automated approach for detecting and tracking inconsistencies in real time (while the model changes). Engineers only need to define

consistency rules—in any language—and our approach automatically identifies how model changes affect these consistency rules. It

does this by observing the behavior of consistency rules to understand how they affect the model. The approach is quick, correct,

scalable, fully automated, and easy to use as it does not require any special skills from the engineers using it. We evaluated the

approach on 34 models with model sizes of up to 162,237 model elements and 24 types of consistency rules. Our empirical evaluation

shows that our approach requires only 1.4 ms to reevaluate the consistency of the model after a change (on average); its performance

is not noticeably affected by the model size and common consistency rules but only by the number of consistency rules, at the expense

of a quite acceptable, linearly increasing memory consumption.

Index Terms—Design tools and techniques, design.

Ç

1 INTRODUCTION

LARGE design models contain thousands of model ele-
ments. Engineers easily get overwhelmed maintaining

the consistency of such design models over time. Not only is
it hard to detect new inconsistencies while the model
changes but it is also hard to keep track of known
inconsistencies. To date, many consistency checking me-
chanisms exist, but most of them are only capable of checking
the consistency of design models as a whole (in a batch
process), where all consistency rules are evaluated on the
entire model [3], [8], [37]. Unfortunately, batch consistency
checking does not scale and the checking of larger models
takes hours to complete. As a result, engineers only use such
batch consistency checkers occasionally—waiting days,
perhaps even weeks, before checking the consistency of a
model—at which time they are overwhelmed with many
inconsistencies (the worst industrial model we investigated
contained 10,466 inconsistencies). To fix these inconsisten-
cies, engineers then have to interrupt their workflow further
to reinvestigate the model changes that led to these
inconsistencies—model changes made hours, days, or even
weeks earlier. Engineers then not only have to fix the
erroneous model changes that led to the inconsistencies but
they also have to correct follow-on decisions (i.e., other
model changes) that were based on the erroneous model
elements [5]. Batch consistency checking thus cannot keep up
with the engineers, provides late feedback, and interrupts the
workflow of the engineers involved.

Instant feedback of any kind is a fundamental best
practice in the software engineering process. Today,
programmers benefit from instant compilation and inte-
grated development environments (IDEs) point out many
(if not all) syntax and semantic errors within seconds of
making them—usually in a nonintrusive manner. Although
there are several modeling tools that support the incre-
mental consistency checking of design models, they either
do not provide design feedback instantly [27] or they
require extensive manual overhead in annotating or
rewriting consistency rules [4], [31]. This is because
correctly deciding how model changes affect consistency
rules is a complex task given the very large number of
potential changes involved. Any manual overhead in
deciding this is bound to be error prone.

This paper presents an automated approach to the
incremental consistency checking of software design models.
We demonstrate that our approach keeps up with an
engineer’s rate of model changes, even on very large
industrial models with tens of thousands of model elements.
Our approach fully automatically, correctly, and efficiently
decides what consistency rules to evaluate when the model
changes. It does so by observing the behavior of consistency
rules during validation (i.e., what model elements were
accessed during the evaluation of a rule). To this end, we
developed the equivalent of a model profiler for consistency
checking. The profiling data are used to establish a
correlation between model elements and consistency rules
(and inconsistencies). Based on this correlation, we decide
when to reevaluate consistency rules and when to display
inconsistencies—allowing an engineer to quickly identify all
inconsistencies that pertain to any part of the model of
interest at any time (i.e., living with inconsistencies [2], [17]).
Our approach treats consistency rules as black boxes.
Consistency rules neither have to be written in a special
language nor do they have to be annotated in any way. This

188 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

. The author is with the Johannes Kepler University, Altenbergerstr. 69,
4040 Linz, Austria. E-mail: alexander.egyed@jku.at.

Manuscript received 14 July 2009; revised 14 Dec. 2009; accepted 28 Dec.
2009; published online 2 Mar. 2010.
Recommended for acceptance by B. Nuseibeh.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2009-07-0178.
Digital Object Identifier no. 10.1109/TSE.2010.38.

0098-5589/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Downloaded from www.VTUplanet.com

independence of the constraint language is very important
because we found that engineers are neither capable of nor
willing to use special languages and/or annotations. This is
then a particularly severe problem when engineers create
their own variations of nonstandard consistency rules, as is
often done in UML [33]. Engineers can thus define
consistency rules at will, in any constraint or modeling
language. Our approach is also integrated into the modeling
tool IBM Rational Software Modeler for ease of use and
broader applicability.

Even though our approach (or any approach) is not
guaranteed to be instant for every consistency rule (i.e.,
consistency rules could be written globally without being
able to break them down locally), this paper presents
empirical evidence that our approach is easily able to keep
up with an engineer’s rate of model changes for the
24 consistency rules we studied. These consistency rules
cover the most significant concerns of keeping sequence
diagrams consistent with class and statechart diagrams.
Our approach evaluated these rules on 34 UML design
models totaling over 280,000 model elements. Our empiri-
cal data show that the evaluation of a model after changes
averaged to less than 1.4 ms (in only 0.00011 percent of
changes was the evaluation time > 100 ms but never worse
than 2 seconds)—even on the largest industrial models we
had available. This benefit comes at the expense of a
linearly increasing memory cost to store the observed
behavior of consistency rules. Our approach can be used to
provide consistency feedback in an intrusive or nonintru-
sive manner. It may also be coupled with inconsistency
actions to resolve errors automatically [13], [15], [28].
However, space limitations preclude these discussions.

To date, our technology has been applied to UML 1.3,
UML 2.1, Matlab/Stateflow, and the Dopler product line to
demonstrate our approach’s applicability to different
modeling notations. We also implemented consistency
checkers and rules using a range of different languages—
Java, C#, J#, and Object Constraint Language (OCL) [38])—
to demonstrate our approach’s applicability to diverse
constraint languages. Indeed, we believe that our approach
supports any modeling or consistency language for as long
as it is possible to observe the constraints evaluation, as is
discussed later. An earlier version of this paper implement-
ing UML 1.3 only and evaluated on 29 design models
appeared in [12].

2 PROBLEM

The following section describes consistency rules and
outlines the problem of how to evaluate them incremen-
tally. The discussion in this paper is accompanied by a
simple model illustration.

2.1 Consistency Rules and Illustration

The illustration in Fig. 1 depicts three diagrams created
with the UML [17] modeling tool IBM Rational Software
Modeler. The given model represents an early design-time
snapshot of a video-on-demand (VOD) system [4]. The class
diagram (top) represents the structure of the VOD system: a
Display used for visualizing movies and receiving user
input, a Streamer for downloading and decoding movie

streams, and a Server for providing the movie data. In UML,
a class’s behavior can be described in the form of a

statechart diagram. We did so for the Streamer class

(middle). The behavior of the Streamer is quite trivial. It
first establishes a connection to the server and then toggles

between the waiting and streaming mode depending on

whether it receives the wait and stream commands.
The sequence diagram (bottom) describes the process of

selecting a movie and playing it. Since a sequence diagram
contains interactions among instances of classes (objects),

the illustration depicts a particular user invoking the select

method on an object, called disp, of type Display. This object
then creates a new object, called st, of type Streamer, invokes

connect and then wait. When the user invokes play, object

disp invokes stream on object st.
These UML consistency rules describe conditions that a

UML model must satisfy for it to be considered a valid

UML model. Fig. 2 lists 24 such rules covering consistency,

well-formedness, and best practice criteria among UML
class, sequence, and statechart diagrams. The first four

consistency rules are elaborated on for better understand-

ing. Note that these consistency rules apply to UML only. For the

other modeling notations, different consistency rules were needed,

which are not described here.
A consistency rule may be thought of as a condition that

evaluates a portion of a model to a truth value (true or false).

For example, consistency rule 1 states that the name of a
message must match an operation in the receiver’s class. If

this rule is evaluated on the third message in the sequence

diagram (the wait message), then the condition first
computes operations ¼ message:receiver:base:operations,
where message.receiver is the object st (this object is on the

receiving end of the message; see arrowhead), receiver.base is
the class Streamer (object st is an instance of class Streamer),

and base.operations is {stream(),wait()} (the list of operations

of the class Streamer). The condition then returns true
because the set of operation names (operations> name)

contains the message name wait.

EGYED: AUTOMATICALLY DETECTING AND TRACKING INCONSISTENCIES IN SOFTWARE DESIGN MODELS 189

Fig. 1. Simplified UML model of the VOD system.

Downloaded from www.VTUplanet.com

The model also contains inconsistencies. For example,
there is no connect() method in the Streamer class although
the disp object invokes connect on the st object (rule 1). The
disp object calls the st object even though, in the class
diagram only, a Streamer may call a Display (rule 2). Or, the
sequence of incoming messages of the st object (connect >
wait > stream) is not supported by the statechart diagram,
which expects a stream after a connect (rule 3).

It is generally true that consistency rules are stateless and
deterministic. Our approach certainly presumes this. That
is, if any rule is evaluated on the same portion of the model
twice, then it will perform the same actions (i.e., access the
same model elements in the same order) and determine the
same truth value. In the following, we define a model
element to be an instance of a metamodel element. For
example, all messages (e.g., wait) are instances of the UML
metamodel element Message.

Consistency rules are typically evaluated from the view-
point of a metamodel element to ease their design and
maintenance—the so-called context element. For example,
consistency rule 1 is expressed from the view of a UML

Message (i.e., given a message, is it consistent?). The message
is thus the context element of Rule 1. It is common practice to
define consistency rules with context elements. Even
commercial modeling tools, such as IBM Rational Software
Modeler, do so:

ConsistencyRuleConsistencyRule ¼
<Condition; ContextElement>! Bool

where ContextElement 2MetaModelElements:

Consistency rules are certainly affected by changes to their
context elements; however, it is important to understand
that consistency rules are also affected by many other model
elements not explicitly identified. The most complex

problem of incremental consistency checking is thus in

correctly finding all model elements that affect the truth

value of any given consistency rule.

2.2 Understanding Changes

Since consistency rules are conditions on a model, their truth
values change only if the model changes (or if the condition

190 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

Fig. 2. Consistency rules for UML class, sequence, and statechart diagrams. Details sketched for first three rules only. Rules 7 and 8 are classical
best practice rules (and not necessarily errors). Rules 9-25 are typical UML well-formedness rules defined in UML 1.3. Different rules apply to other
modeling languages (e.g., Dopler).

Downloaded from www.VTUplanet.com

changes, but this is explored elsewhere [20]). Instant
consistency checking thus requires understanding when,
where, and how the model changes. However, changes to
models are not simple events. Typically, a single user change
implies a sequence of model changes. For example, if an
engineer creates a message between two objects in a
sequence diagram, then this change causes the creation of a
new message (a new model element) and it modifies two
existing objects: the objects in the sequence diagram:

. New model element of type Message with ID 1.

. Modified model element of type Object [outgoing-
Messages] with ID 2.

. Modified model element of type Object [incoming-
Messages] with ID 3.

The first change notification tells about the creation of a
model element—an instance of a UML Message with an id
that uniquely identifies the model element. Since a message
was created between two existing UML Objects, these
objects are modified in that one now owns a new incoming
message and the other a new outgoing message.

It is important to note that model elements are aggrega-
tions of fields. For example, a message has a name field (of
type string) or a receiver field (a reference to the UML Object)
to describe the properties of a message and its relationship
to other model elements. In the case of the UML, the
metamodel describes them in detail. For consistency
checking, it is important to note that changes typically

modify single fields of a model element only (except for

the creation or deletion of model elements). For example,
the creation of the message only changed the outgoingMes-
sages and incomingMessages fields of both objects (not
modified were, say, the name fields of both objects):

ChangeChange ¼ <ModelElement; Field>: oldValue!newValue;
ChangeGroupChangeGroup ¼ Set of<Change>:

It is obvious that a new message must be created before it
can be added between the two objects. Yet there is no
obvious ordering on whether the message is added to the
outgoingMessages field of the object first or last. Changes are
thus grouped together to ensure well-formedness. This
distinction between changes and change groups will
become important later because the impact of a change is
in fact the impact of the entire change group and
incremental consistency checking on a model only makes
sense if an entire change group is considered.

2.3 Understanding Impact of a Change

It is intuitive to think of instant consistency checking in
terms of what happens if a model element changes [4]. For
example, we know that the message wait in the sequence
diagram is consistent with respect to rule 1 (i.e., the Streamer
class has a method with the same name). This truth is
violated if the engineer changes the name of the message,
say, from wait to suspend (i.e., the Streamer class does not
have the method suspend). A change to a message name
thus requires the reevaluation of the consistency rule 1.

However, a change to the message name is not the only
way the message wait can be made inconsistent with respect
to rule 1. For example, if the engineer renames the class

method wait into suspend, then there is no longer a method

that matches the message name. This change also invali-

dates rule 1. And there are several other changes like that.

Likewise, there are many changes that do not affect

consistency rule 1. For example, a change to the direction-

ality of the associations (arrows) between the classes will

never affect consistency rule 1. Given the many ways on

how model changes affect consistency rules (or do not affect

them), it is difficult to identify them all manually (as is

required by most mainstream design tools).
Most mainstream design tools (ArgoUML [15], IBM

Rational Software Modeler) provide mechanisms for

identifying what types of model changes account for what

types of inconsistencies (i.e., a change to a message name

may violate consistency rule 1). These approaches rely on

what we refer to as a type-based scope for incremental

consistency checking—a coarse-grained filter that im-

proves performance but does not eliminate the basic

scalability problem. Fig. 3 depicts the scalability problem

on 34 sample models. These mostly industrial models are

discussed in more detail in Section 5. However, we see

that the models we used span a wide range of model sizes,

with the largest having 162,237 model elements (and over

435,932 fields). It shows that batch consistency checking

(that evaluates all consistency rules) becomes expensive

quickly. Approaches such as ArgoUML, which use type-

based scopes, fare significantly better. Yet we see that even

such approaches do not scale well and are no longer

instant for medium-sized models. It must also be stressed

that these values are based on 24 consistency rules only.

The computational cost further increases with the increas-

ing number of consistency rules involved. The perfor-

mance of a type-based approach to consistency checking is

thus far from ideal—and certainly not instant. Considering

that the type-based scope must be computed manually,

there is also no guarantee of correctness.
Fig. 3 also shows the performance of our approach,

discussed next. We see that our approach is much faster,

without any noticeable scalability effects in terms of model

size, and does not require manual annotations for consis-

tency rules (like the manually created type-based scope).

We see that the average computational cost of a model

change is in the range of milliseconds, even for the largest

models we had available.

EGYED: AUTOMATICALLY DETECTING AND TRACKING INCONSISTENCIES IN SOFTWARE DESIGN MODELS 191

Fig. 3. Evaluation time of a model change.

Downloaded from www.VTUplanet.com

3 INSTANCE-BASED SCOPE TO CONSISTENCY

To improve on the performance of type-based consistency
checking, we work with the actual model elements—the
instances of UML metamodel elements. To support the fast,
incremental checking of design changes, our approach
identifies how changes to model elements (indeed, to their
individual fields) affect the truth values of consistency
rules. A consistency rule needs to be reevaluated if one such
model element changes. We refer to the set of model
elements that affect the truth value as the change impact

scope of a consistency rule—or scope, for short. The scope
must be complete for our approach to be correct and the
scope must be small for our approach to be efficient. We
will demonstrate that our approach produces complete and
small (albeit not minimal) scopes. The concept of a scope is
simple in principle; however, thus far nobody has been able
to compute it in advance. Without this computation, we do
not know what consistency rules to evaluate when the
model changes. Our approach circumvents this problem by
observing the runtime behavior of consistency rules during
their evaluation. To this end, we developed the equivalent
of a model profiler for consistency checking.

In the following, we first discuss the benefits of treating
every evaluation of a consistency rule as a separate
event—we speak of consistency rule instances (CRIs). Next,
we discuss the fact that the set of model elements accessed
during a CRI’s evaluation is in fact a superset of the
minimal change impact scope.

3.1 Consistency Rules and Their Instances

During evaluation, a consistency rule requires access to a
portion of the model only. Recall that the evaluation of
consistency rule 1 on message wait first accessed the
message wait, then the message’s receiver object st, next
its base class Streamer, and finally, the methods stream() and
wait() of the base class (Section 2.1). This behavior was
defined in Fig. 2. Rule 1 evaluated on message wait thus
accesses the model elements {wait, st, Streamer, stream(),
wait()}, as illustrated in Fig. 4. We will demonstrate later
that the minimal, complete change impact scope is a subset
of these accessed model elements.

Recall from Section 2.1 that a consistency rule is typically
written from the viewpoint of a context element (a type of
model element) from where its evaluation starts. For
consistency rule 1, the context element is a UML Message.
Since there are five such messages in the sequence diagram
in Fig. 4, consistency rule 1 must be evaluated five
times—once for every message. To distinguish these
evaluations, we define a CRI to represent each such
evaluation (<consistency rule, model element> pairs):

CRICRI ¼ <ConsistencyRule;Model Element>;where

ModelElement instance of ContextElement

ðConsistencyRuleÞ:

Every CRI starts its evaluation at a different instance of
the context element (e.g., at different messages in case of
consistency rule 1). Every CRI accesses different model
elements (though the set of accessed model elements may
overlap), and consequently may return different truth
values (e.g., the evaluation of message play fails, whereas
the evaluation of message wait succeeds). Not surprisingly,
each CRI is affected differently by model changes, which
is why our approach identifies the change impact scope
for each CRI separately.

For example, from above, we know that the evaluation of
consistency rule 1 on message wait (short <rule1, wait>)
accesses the model elements {wait, st, Streamer, stream(),
wait()}. Yet, the evaluation of consistency rule 1 on message
play (short <rule1, play>) requires access to {play, disp,
Display, select(), draw(), stop(), start()}. The model elements
accessed by <rule1, play> are different from the ones
accessed by <rule 1, wait> even though both evaluations are
based on the same consistency rule.

Our observation is that the evaluation of a CRI accesses
at least those model elements that are needed to determine
its truth value. Since we presume consistency rules to be
stateless and deterministic (recall Section 2.1), it follows that
solely these accessed model elements are needed to
compute their truth values. Or, on the contrary, a model
element that was not accessed during a CRI’s evaluation
cannot contribute to its truth value. If a model element
changes, then all of those CRIs have to be reevaluated that
accessed the changed model element. For example, if
method wait is renamed to a nonexisting method name
such as foo, then CRI <rule1, wait> needs to be evaluated,
whereas CRI <rule1, play> need not (because it did not
previously access the changed method name). We thus
define the scope of a CRI to be the elements accessed during
its evaluation. And if a model element changes, then only
those CRIs are affected (and must be reevaluated) that
include the changed element in their respective scopes (we
discuss this further in Section 3.3):

ScopeðCRIÞScopeðCRIÞ ¼ Set of <ModelElement; Field> pairs

accessed during Evaluation of CRI;

AffectedCRIsðChangeÞAffectedCRIsðChangeÞ ¼
fCRI 2 CRIs=CRI:ScopecontainsChangeg:

It is important to note that our change impact scopes are
in fact quite small (a fact that will be supported through
extensive empirical evidence in Section 5). It is also

192 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

Fig. 4. Scope for message Wait evaluated by consistency rule 1 (short
<Rule 1, wait>).

Downloaded from www.VTUplanet.com

important to note that consistency rules typically access a
few selected fields of model elements only and it is quite
possible that two consistency rules access some of the same
model elements, but different fields thereof (for example,
rule 1 accesses the operations of a class whereas rule 2
accesses the associations of a class—two distinct fields).
Since fields of a model element can be changed separately,
it follows that scopes should be maintained as model
element/field pairs rather than model elements—another
highly significant performance benefit. The precise list of
<model element, field> pairs accessed during the evalua-
tion of <rule 1, wait> is thus:

. Message wait [name]: value = String “wait.”

. Message wait [receiver]: value = Object st.

. Object st [base]: value = Class Streamer.

. Class Streamer [operations]: value = Set of Methods
{stream(), wait()}.

. Method stream() [name]: value = String “stream.”

. Method wait() [name]: value = String “wait.”

3.2 Scope Detection and Correctness

Our approach requires a complete change impact scope but
not necessarily a minimal scope for correctness. Any
missing model element in the scope would be problematic
because the approach would not reevaluate all CRIs
affected by changes. To the best of our knowledge, it is
not possible to compute the scope of CRIs automatically by
statically analyzing consistency rules (i.e., through formal
analysis). Some prediction models exist that evaluate the
impact of a change [25]. Some even tried to define explicit
change impact rules that complement consistency rules in
identifying when and how changes impact a model [6], [24].
Yet others simply rewrite consistency rules multiple times
to account for different kinds of changes [4]. However, all of
these approaches require extensive manual effort and are
not guaranteed to be correct.

We, on the other hand, automatically compute the scopes
of CRIs by observing their behavior through model profiling.
Profilers are used extensively on source code to observe what
code is executed when and in what order during the
execution of a software system. Our model profiler is similar
in that it observes what model elements are accessed when
and in what order during consistency checking. The infra-
structure for modeling our profiling technology is discussed
in [14]. Through the help of the model profiler, it is simple to
detect the scope for any given CRI by letting the profiler log
all <model elements, field> pairs accessed during the
evaluation of a CRI and storing the accessed model elements
in its scope thereafter. This scope is observable fully
automatically and we will demonstrate that this scope only
changes when the CRI needs to reevaluate.

Next, we investigate whether 1) the scope is complete,
2) the scope is small, and 3) how the scope is affected by
changes. The third issue is particularly important because
the change impact scope of a CRI does not stay constant
over time. We first investigate these questions for existing
CRIs. Section 3.3 then investigates how to create and
destroy CRIs in response to model changes. That is, it is
one problem to correctly reevaluate existing CRIs and it is
another problem to maintain CRIs.

3.2.1 The Scope Is Complete

The correctness of our approach requires the scope to
include at least those model elements that affect its truth
value. Fortunately, one may err in favor of having more
elements in the scope than needed, causing potentially
unnecessary evaluations (reduced performance) but not
omitting necessary ones. Our premise is that consistency
rules are stateless and deterministic (recall Section 2.1). The
same rules invoked on the same model use the exact same
model elements and result in the exact same truth values
time and time again. Thus, the scope inferred through a
rule’s evaluation is deterministic, repeatable, and includes
all model elements required to determine the truth value.

The completeness issue is obvious for simple, uncondi-
tional statements, where a consistency rule navigates a set
of model elements. For example, consistency rule 1 first
identifies all of the methods in the path message.receiver.base.
operations. There, the consistency rule accesses the set of
model elements based on a relative path (i.e., starting from
some message, access its receiver, and so on). All elements
along such paths will become part of the scope.

Profiling makes this easy because the path corresponds to
a sequence of interactions with the model. For example, the
path message.receiver.base.operations starts at a particular
message, obtains its receiver by invoking getReceiver() on
that message, which returns an object (the receiver of a
message is an object). The profiler thus records that the
receiver field of that message was accessed (note that message
and object are concrete elements: For example, for message
wait in Fig. 4, the getReceiver() returns the object st). The path
next accesses the base of that object by invoking getBase()—
which returns a class (class Streamer in case of message wait).
The profiler thus records that the base field of that object was
accessed. The path then accesses the operations of that class
by invoking getOperations()—which returns a collection of
operations. The profiler thus records that the operations field
of that class was accessed. The operations will eventually be
added to the scope because the subsequent existence check
will access the names of these operations until one is found
that matches the method name. Thus, the profiler also
records that the name field of those operations was accessed
and the name field of the message.

Consistency rules rely on path expressions for locating
model elements but they also rely on a range of first-order
logic for further processing. Fig. 5 lists common constructs
found in consistency rules [28] and it also points out that
there are many constructs where model elements are
potentially accessible but not accessed during the evalua-
tion of a consistency rule. We will see next that our
completeness property holds despite the fact that not all
model elements are captured in the scopes that are
accessible by a consistency rule.

Take, for example, the OR operator. The OR operator
requires a condition to be evaluated only until the first
subcondition is true. For example, if A is true in A or B, then
B is not evaluated. Only if A is false is B then evaluated.
Thus, if A is true in A or B, then only A is accessed and
added to the scope but B is not. It follows that B is not in
the scope and the scope thus appears incomplete. Fortu-
nately, this level of completeness is not required for our

EGYED: AUTOMATICALLY DETECTING AND TRACKING INCONSISTENCIES IN SOFTWARE DESIGN MODELS 193
Downloaded from www.VTUplanet.com

problem. We only require the scope to include those
elements that affect a consistency rule’s truth value. If A
is true in A or B, then A is the only element contributing to
the OR expression’s truth value. In other words, for as long
as A remains true in A or B, changes to B do not matter and
B is thus not required to be in the scope.

In addition to the OR constructs, Fig. 5 lists other
constructs where not all accessible model elements are
accessed (e.g., and, for all, exists quantifications, implies)
but there completeness also only requires accessed ele-
ments. The scope determined by our approach is thus
complete because it contains at least the model elements
needed for its evaluation.

3.2.2 The Scope Is Not Minimal but Small and Bounded

A minimal scope guarantees that a rule is evaluated only if
its truth value changes. Any reevaluation that does not
change a consistency rule’s truth value is unnecessary
because it recomputes what is already known. We believe
that it is infeasible to eliminate all unnecessary evaluation
without introducing manual and error-prone change
annotations. Yet, we have to be careful in limiting the
scope, i.e., bounding it to some maximum size. Our
approach has this upper bound in scope size: We already
know that a rule’s evaluation uses at most all potentially
accessible model elements. Our scope is thus bounded to
not include model elements that do not affect the truth
value of a consistency rule. We evaluated whether this
bounded scope is enough to ensure computational scal-
ability and Section 5 presents the empirical evidence that
the scope sizes, while not minimal, were small in including
21 model elements or fewer for 95 percent of all CRIs. But
most significantly, we found that the scope sizes did not
increase with model sizes. They stayed constant.

This is not to say that the engineers or tool builders have
no role in deciding on the efficiency of consistency checking.
The implementation of consistency rules very much affects
the efficiency of consistency checking, the scope sizes, and

thus the computational cost of incrementally reevaluating

the consistency of a model change. To illustrate this, consider

the two different, though equivalent, implementation

choices for consistency rule 1 in Fig. 6. The top implementa-

tion identifies all operations in the receiver’s base class and

all of its parent classes. It then retrieves the names of all of

these operations and checks whether the message name is

contained among the operation names. The second imple-

mentation retrieves the base class only and first iterates over

its methods before proceeding to the parent classes. The

difference in terms of scope is that the first implementation

accesses all names of all operations (base and parents)

whereas the second implementation searches incrementally

from base class to parent classes until it finds a suitable

method. The second implementation is computationally

more efficient to evaluate and it has a smaller scope than the

first implementation, which also causes it to be reevaluated

less often (smaller scope implies fewer reevaluations).
Since both implementations are equivalent (i.e., they

correctly implement consistency rule 1), how are we to

194 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

Fig. 6. Two behaviorally different implementations of consistency rule 1
that are equivalent in terms of their results.

Fig. 5. Accessible and accessed model elements.

Downloaded from www.VTUplanet.com

interpret their differences in scope? The answer is similar to
the discussion on the OR construct above. The first
implementation accesses model elements even though it
does not necessarily need them (i.e., if the base class has a
suitable method, then accessing the parent classes is
unnecessary). The second implementation accesses model
elements only if they are needed. Therefore, the first
implementation includes unnecessary model elements in
its scope but both implementations include all necessary
change impact scope elements. Both implementations are
valid and our approach would correctly handle both—
albeit the second more efficient than the first one.

3.2.3 The Scope Changes over Time

The scope of a CRI is not constant but changes over its life.
For example, the scope for CRI <rule1, wait> is {wait, st,
Streamer, stream(), wait()} in Fig. 1. If the base of object st
changes from Streamer to, say, Server, then the evaluation of
the same CRI <rule1, wait> accesses Server (the new base
class) but not Streamer (the old base class). Thus, after the
change, the scope of <rule1, wait> is {wait, st, Server,
connect(), handleRequest()}. The class Streamer and its
methods no longer affect this CRI’s truth value.

Fortunately, the scope of a CRI changes only if a model
element in its scope changes—triggering the CRI’s reevalua-
tion. Thus, the recomputation of a rule coincides with the
reevaluation of its truth value. This implies that the scope of
CRIs must be recomputed every time the CRI is reevaluated.
The overhead of this recomputation is negligible.

3.2.4 Creating and Destroying Rule Instances

Instant consistency checking requires an understanding of
when, where, and how the model changes. For this
purpose, our approach monitors the engineer while using
the modeling tool. Fig. 7 shows the architecture of our
approach. It depicts the modeling tool in the lower right
corner. The modeling tool needs to be wrapped such that
we can observe user activities—changes to the design
model which is embedded inside the modeling tool (i.e., a
UML design model).

The Consistency Checker (top left) accesses the design
model and, while doing so, the Model Profiler (middle)
monitors what model elements the consistency checker
accesses. The profiler then logs the accessed model elements
in a scope database, together with the knowledge of what

CRIs accessed them. The latter information comes from the
Rule Detector (bottom left). The rule detector instructs the
consistency checker on what CRIs to evaluate. It determines
this by observing model changes and looking up what CRIs
previously accessed the changed model elements. A simple
lookup table is sufficient to locate all affected CRIs for any
given changed model element.

There is an obvious chicken-and-the-egg problem here.
The rule detector requires the scope database to determine
what rules to reevaluate with model changes. This scope
database is, however, created after the evaluation of the
CRIs. There are two alternative solutions for this problem:
1) Force an initial evaluation of all CRIs on model load or
2) save the scope persistently. However, a challenge in both
cases is how to know what CRIs should exist. CRIs are
continuously created and destroyed during the entire life
cycle of a model to reflect the needs of the model. An
incremental consistency checker thus needs to keep track of
CRIs—it needs to know when and how to create and
destroy CRIs. This issue is explored next.

As was briefly discussed in Section 3.1, CRIs live and die
with their context elements. Recall that the context element
is the starting point for evaluating a consistency rule. In the
case of consistency rule 1, the context element was a UML
message. If there is no message, then there is no need to
evaluate consistency rule 1. If there are multiple messages
(as in Fig. 1), then consistency rule 1 must be evaluated
multiple times (once per message).

Our approach simply creates CRIs when context elements
are created and it destroys CRIs once their context elements
are destroyed. Implicitly, this implies that consistency rules
must come with the knowledge of what context element
they apply to. This was discussed in Section 2.1 when we
said that consistency rules are typically evaluated from
the viewpoint of a metamodel element. However, note
that the context for a consistency rule is defined for a
metamodel element and not its instances (e.g., model
elements). For example, consistency rule 1 is defined to
apply to a UML Message. Any creation of a model
element that instantiates a UML Message thus triggers the
creation of a CRI. Any destruction of such a model
element thus triggers the destruction of a CRI.

The RuleDetector algorithm below illustrates rule crea-
tion, destruction, and reevaluation in response to model
changes. We see that if a model element is created, then all
those consistency rules must be instantiated that have a
context element equal to the type of the changed element.
These new CRIs must be immediately evaluated to compute
their truth values and scopes. If a model element is
destroyed, then all those CRIs must be destroyed where
the context element equals the destroyed element (note:
the instances must match). A destroyed CRI need not be
evaluated any longer; its scope can be discarded. Indepen-
dent of rule creation and destruction, the RuleDetector
algorithm must also process the CRIs affected by the change
based on the scope database as was discussed above.

RuleDetector(changedElement, scope)

if changedElement was created

for every rule where

type(rule.rootElement) = type(changedElement)

EGYED: AUTOMATICALLY DETECTING AND TRACKING INCONSISTENCIES IN SOFTWARE DESIGN MODELS 195

Fig. 7. Architecture of model/analyzer.

Downloaded from www.VTUplanet.com

ruleInstance = new <rule, changedElement>
evaluate ruleInstance

end for

else if changedElement was deleted

for every CRI where

CRI.contextElement = changedElement

destroy CRI

end for

end if
for every CRI where CRI.scope contains changedElement

evaluate CRI

end for.

The life of a CRI is tied to the life of its context element.
Moreover, the context element remains constant for any
given CRI throughout its life. It is interesting to observe that
the creation of CRIs is based on the metamodel elements (e.g.,
UML Message) whereas the evaluation and destruction of
CRIs are based on model elements (e.g., message connect).
The algorithm above treats the evaluation (bottom) sepa-
rately from the rule creation and destruction (top). This is
because the deletion of a model element could trigger both
the destruction of some CRIs and the evaluation of others.

3.3 Processing Entire Change Groups

The RuleDetector algorithm shown above is not optimal
since it causes certain CRIs to be reevaluated more often
than needed. We discussed in Section 2.2 that model
changes almost never result in single change notifications
because a model change typically affects multiple model
elements. We referred to related changes as change groups.
Instant consistency checking should recognize these logical
groupings among change notifications because the consis-
tency rules are not expected to apply in between changes of
a change group but only thereafter. It is not meaningful to
check the consistency of a model that is in the middle of a
change—say, where a dependency has been removed from
one class but not yet added to the other. Furthermore, it is
also not useful to reevaluate a CRI more than once per
change group.

The RuleDetector algorithm discussed above investigated
changes instantly and independent of one another. It thus
triggers multiple reevaluations of the same CRI in cases
where multiple, logically connected changes affect the same
CRI. To prevent our approach from evaluating CRIs un-
necessarily, our approach first processes all change notifica-
tions before evaluating any CRIs to eliminate duplicates.
Fig. 8 depicts the internals of the RuleDetector component.

A secondary benefit of separating the selection of rules
from their evaluation is in potentially delaying consistency
checking—from instant consistency checking to lazy con-
sistency checking, if so desired. For example, an engineer
may wish to make a sequence of changes before reevaluat-
ing the consistency of these changes. This is then particu-
larly useful when changes are explorative and the engineer
knows that the changes are likely to conflict with the rest of
the model. In such cases, the engineer may not care to
receive intermittent inconsistency feedback but rather
desires feedback at the end, after the sequence of changes
is completed.

3.4 Tracking Inconsistencies

While it is important to know about inconsistencies, it is
often too distracting to resolve them right away. The notion
of “living with inconsistencies” [1], [5] advocates that there
is a benefit in allowing inconsistencies in design models on
a temporary basis. While our approach detects inconsisten-
cies instantly, it does not require the engineers to fix them
instantly. Our approach tracks all presently known incon-
sistencies and lets the engineers explore inconsistencies
according to their interests in the model. If an engineer later
on desires to identify all inconsistencies related to a
particular model element (or set of model elements), then
our approach simply searches through the scopes of all
CRIs to identify the ones that are relevant. In [13], [15], we
discuss how our technology helps the engineer resolve
inconsistencies at some later time. This issue is out of the
scope of this paper.

4 MODEL/ANALYZER TOOL

The Model/Analyzer tool implements our instant consis-
tency checking infrastructure (Fig. 9). There are four
implementations at this point: We built consistency check-
ers for IBM Rational Rose, Matlab/Stateflow, IBM Rational
Software Modeler, and the Dopler product line tool suite
[9]. The first two implementations are based on the UML13
infrastructure described in [14], the third implementation is
based on the EMF (Eclipse Modeling Framework), and the
fourth implementation is a nonstandardized modeling
language. The diverse nature of these implementations is
a strong support to our claim that our approach is
independent of the modeling language. Our approach is
also independent of the consistency rule language because
we have implemented consistency rules in Java, J#, C#, and
OCL [38] at this point. Fig. 9 depicts the screen snapshot for
the IBM Rational Software Modeler implementation. The
top depicts the illustration. Several inconsistencies
are highlighted in red and the scope elements of one of
the inconsistencies (consistency rule 1 evaluated on mes-
sage play) are depicted below. The consistency rules are
listed in the bottom left. The CRIs for the selected, first
consistency rule are depicted in the bottom right. As was
discussed earlier, the tool also helps the engineer in
understanding exactly how model elements affect incon-
sistencies. As such, when the engineer selects a model
element, say, the message connect, then the tool presents all
CRIs that accessed it. This bidirectional navigation is
essential for understanding and resolving inconsistencies.

196 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

Fig. 8. Filtering CRIs in the rule detector to support faster instant and
lazy consistency checking.

Downloaded from www.VTUplanet.com

This tool essentially automates all of the difficulties of

instant consistency checking discussed in this paper and it

was used for the empirical evaluation discussed in Section 5.

To include new consistency rules, the tool provides an

extension point for adding/removing consistency rules at

any point in the design process.
In order to port our technology to other modeling

languages, three basic challenges have to be addressed:

. Change notifications: In order to react to model
changes, changes must be observable. Fortunately,
most modeling tools today are open enough to allow
this. In the cases of IBM Rational Rose and Matlab/
Stateflow (older but still widely used tools), we were
able to use probing mechanisms to elicit them. This
is discussed in [14].

. Model profiling: In order to observe consistency
checkers, access to model elements must be obser-
vable. We found that most modeling tools today do
not provide adequate mechanisms to allow this.
However, with change notification in place, we
always managed to create an observable proxy of a
tool’s model such that consistency checkers accessed
the tool’s nonobservable model via the observable
proxy. The proxy was easily maintainable through
change notifications and typically required 1-3 per-
son months to implement.

. Consistency rules: Different modeling languages
may require different consistency rules. Fortunately,
our approach does not prescribe special handling of

consistency rules, aside from saying that if the
consistency rules are written monolithically, then
they should be divided up. We never encountered
serious problems with this task.

With change notifications, model profiling, and the
consistency rules in place, the remaining implementation
of our incremental consistency checker was quite easily
portable. The four implementations we have created to date
(IBM Rational Rose, IBM Rational Software Modeler,
Matlat/Stateflow, and DOPLER Product Lines) differ only
in the parts that address the above three challenges and in
certain basic assumptions on how to navigate a model or
deal with certain data types (e.g., collections).

5 VALIDATION

Instant consistency checking is only feasible if its computa-
tional cost is small and its results are correct. We thus
empirically validated our approach on 34 UML models
ranging from small models to very large ones (Table 1).
These models were evaluated on 24 types of consistency
rules (Fig. 2). In total, over 290,826 CRIs were evaluated,
which accessed a total of 280,801 unique model elements or
830,603 model element-field pairs.

Fig. 3 previously presented the average response times
of our approach relative to the model size. It showed that
brute-force consistency checking was not instant. It also
showed that type-based consistency checking did not scale
either. And it showed that our approach was not noticeably
affected by the model size for the 24 consistency rules.

EGYED: AUTOMATICALLY DETECTING AND TRACKING INCONSISTENCIES IN SOFTWARE DESIGN MODELS 197

Fig. 9. Model/analyzer tool depicting an inconsistency in IBM Rational Software Modeler.

Downloaded from www.VTUplanet.com

These data were computed by systematically changing all
model elements of all models. Since there were over
830,603 field values affected (most model elements had
multiple fields), we did so automatically. Fig. 10 depicts
the evaluation time across this large set of changes. We see
that the evaluation time was less than 7 ms for 95 percent of
all model changes—with a median of 0.2 ms. We consider
an evaluation time of 100 ms or more to be noticeable by
humans. In total, there were only 93 changes (out of the
830,603 total changes) where the evaluation time was above
100ms—with a worst case of 2 seconds. The measurements
were made on an Intel processor with 2.2 GHz.

Our approach requires the existence of a scope for every
CRI. The cost of computing the scope is negligible as it is
already included in the evaluation times mentioned above.

However, for continuous use across modeling sessions, we
either need to store the scope persistently (i.e., in a

database) or recompute it every time a model is loaded.
Both options are viable. The recomputation option is a one-

time expense upon loading. The persistent storage option is
also a one-time expense and reasonable as the scope

database only grows linearly with the size of the model.
We will first discuss the computation cost of loading and

incremental reevaluation. Later, we discuss the memory
cost of storing and maintaining CRIs.

. Initial Cost of Computing All Truth Values and
Scopes: The cost of a single evaluation of a CRI is
approximately the number of fields visited (¼ scope
size Ssize). The number of CRIs of a rule type RT# is
at most the number of existing model elements Msize.
The computational complexity for evaluating all
CRIs is thus O(RT# �Msize

�Ssize). This cost is a one-
time expense upon model load (if the scope is not
maintained persistently).

. Recurring Cost of Computing Changed Truth
Values and Scopes: For every changed model
element, it is necessary to identify all CRIs that are
affected. We define the number of affected CRIs as
ACRI. The computational cost for evaluating all
affected CRIs is thus OðACRI�SsizeÞ. This cost is a
recurring cost because it applies to every model
change.

5.1 Computational Scalability

We applied our instant consistency checking tool (the
Model/Analyzer) to the 34 sample models and measured
the scope sizes Ssize and the ACRI by considering all
possible model changes. This was done through automated
validation by systematically changing all fields of all model
elements. In the following, we present empirical evidence
that Ssize and ACRI are small values that do not increase
with the size of the model.

We expected some variability in Ssize because the sample

models were very diverse in contents, domain, and size.
Indeed, we measured a wide range of values between the

smallest and largest Ssize (average/max), but found that the
averages stayed constant with the size of the model. Fig. 11

depicts the values for Ssize relative to the model sizes for the
34 sample models. The figure depicts each model as a

vertical range (average to 98 percent maximum), where the
solid dots are the average values for any given model.

Notice the constant, horizontal line of average scope sizes.

198 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

Fig. 10. Evaluation time of model changes across all CRIs.

TABLE 1
Study Models Used for Empirical Evaluation

Downloaded from www.VTUplanet.com

The initial, one-time cost of computing the truth values
and scopes of a model is thus linear with the size of the
model and the number of rule types OðRT�MsizeÞ because
Ssize is a small constant and constants are ignored for
computational complexity.

To validate the recurring computational cost of comput-
ing changed truth values and scopes, we next discuss how
many CRIs must be evaluated with a single change (ACRI).
Since the scope sizes were constant, it was expected that the
ACRI would be constant also (i.e., the likelihood for CRIs to
be affected by a change is directly proportional to the scope
size). Again, we found a wide range of values for ACRI
across the many diverse models but confirmed that the
averages stayed constant with the size of the model. Fig. 12
depicts the average ACRI through solid dots and their
98 percent maximums.

ACRI was computed by evaluating all CRIs and then
measuring in how many scopes each model element
appeared. The figure shows that in some cases, many CRIs
had to be evaluated (hundreds and more). But the average
values reveal that most changes required few evaluations
(between 3 and 11 depending on the model).

Fig. 13 depicts the average cost of evaluating a model
change based on the type of change (Fig. 13a). We see that a
change to the association field of an AssociationEnd was the
most expensive kind of change, with over 4 ms reevaluation
cost, on average. A message name change (as was used
several times in this paper) was comparatively cheap, with
0.12 ms to reevaluate, on average. First and foremost, we
note that all types of model changes are quite reasonable to
reevaluate. This implies that irrespective of how often
certain types of changes happen, our approach performs

well on all of them. However, not all changes are equally
likely and we thus investigated the likelihood of these most
expensive types of model changes. For 8 out of the
34 models, we had access to multiple model versions—
covering 4,075 changes across them. Fig. 13b depicts that the
model changes were unevenly distributed across the types,
but as was expected, there is no single (or few) dominant
kinds of model changes. Indeed, the most expensive types of
model changes never occurred.

Previously, we mentioned that most changes required
very little reevaluation time and that there were very
rare outliers (0.00011 percent of changes with evaluation
time>100 ms). The reason for this is obvious in Fig. 14, where
we see that it is exponentially unlikely for CRIs to have larger
scope sizes (Fig. 14a) or for changes to affect many CRIs
(Fig. 14b). We show this datum to exemplify how similar the
34 models are in that regard, even though these models are
vastly different in size, complexity, and domain. Fig. 14a
depicts for all 34 models separately what percentage of CRIs
(y-axis) had a scope of <¼ 5; 10; 15; . . . scope elements
(x-axis). The table shows that over 95 percent of all CRIs
accessed less than 15 fields of model elements (scope
elements). Fig. 14b depicts for all 34 models separately what
percentage of changes (y-axis) affected <¼ 2; 4; 6; . . . CRIs.
The table shows that 95 percent of all changes affected fewer
than 10 CRIs (ACRI).

The data thus far considered a constant number of
consistency rules (24 consistency rules). However, the
number of consistency rules is variable and may change
from model to model or domain to domain. Clearly, our
approach (or any approach to incremental consistency
checking) is not amendable to arbitrary consistency rules.
If a rule must investigate all model elements, then such a
rule’s scope is bound to increase with the size of the model.
However, we demonstrated on the 24 consistency rules that

EGYED: AUTOMATICALLY DETECTING AND TRACKING INCONSISTENCIES IN SOFTWARE DESIGN MODELS 199

Fig. 12. Few consistency rule instances are affected by a model change.

Fig. 13. The most expensive types of model changes to evaluate and the
likelihoods of these changes occurring.

Fig. 11. CRI scope sizes remain constant with model sizes.

Downloaded from www.VTUplanet.com

rules typically are not global; they are, in fact, surprisingly

local in their investigations. This is demonstrated in Fig. 15,

which depicts the cost of evaluating changes for each

consistency rule separately. Still, each consistency rule takes

time to evaluate and Fig. 15 is thus an indication of the

increase in evaluation cost in response to adding new

consistency rules. We see that the 24 consistency rules took,

on average, 0.004-0.21 ms to evaluate with model changes.

Each new consistency rule thus increases the evaluation

time of a change by this time (assuming that new

consistency rules are similar to the 24 kinds of rules we

evaluated). The evaluation time thus increases linearly with

the number of consistency rules (RT#).
It is important to note that the evaluation was based on

consistency rules implemented in C#. Rules implemented in

Java were slightly slower to evaluate but rules implemented

in OCL [38] were comparatively expensive due to the high

cost of interpreting them.

5.2 Memory Cost

On the downside, our approach does require additional
memory for storing the scopes. Fig. 16 depicts the linear
relationship between the model size and this memory cost.
It can be seen that the memory cost rises linearly. This
should not be surprising given that the scope sizes are
constant with respect to the model size but the number of
CRIs increases linearly. As with the evaluation time, this
cost also increases with the number of consistency rules
(RT#). The memory cost is thus RT# �Ssize. For scalability,
this implies a quite reasonable trade-off between the
extensive performance gains over a linear (and thus
scalable) memory cost. To put this rather abstract finding
into a practical perspective, the scope is maintained as a
simple hashtable referencing the impacted CRIs in form of
arrays. With the largest model having over 400,000 scope
elements, each of which affects fewer than 10 CRIs, the
memory cost is thus equivalent to 400,000 arrays of fewer
than 10 CRIs each—quite manageable with today’s comput-
ing resources. The memory cost stays the same if the scope
is stored persistently, in which case the recomputation of
the scope upon model load is no longer required.

5.3 Usability

One key advantage of our approach is that engineers are
not limited by the modeling language or consistency rule
language. We demonstrated this by implementing our
approach on UML 1.3, UML 2.1, Matlab/Stateflow, and
Dopler Product Line, and using a wide range of languages
to describe consistency rules (from Java, C# to the
interpreted OCL). But, most significantly, engineers do
not have to understand our approach or provide any form
of manual annotations (in addition to writing the
consistency rule) to use it. These freedoms are all
important for usability.

This paper does not address how to best visualize
inconsistencies graphically. Much of this problem has to do
with human-computer interaction and future work will
study this. This paper also does not address downstream
economic benefits: For example, how does quicker (instant)
detection of inconsistencies really benefit software engineer-
ing at large. How many problems are avoided, how much
less does it cost to fix an error early on as compared to later
on? These complex issues have yet to be investigated.
However, as an anecdotal reference, it is worth pointing
out that nearly all programming environments today
support instant compilation (and thus syntax and semantic

200 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

Fig. 15. The cost of adding a consistency rule.

Fig. 16. Memory cost increases linearly with model size.

Fig. 14. (a) The number of model elements accessed by constraints and
(b) the number of constraints affected by changes as percentages
relative to thresholds.

Downloaded from www.VTUplanet.com

checking), which clearly benefits programmers. We see no
reason why these benefits would not apply to modeling.

5.4 Threats to Validity

Internal validity. We investigated 24 consistency rules in
the context of 34, mostly third-party, UML models. Both
models and rules were very diverse in size and domain. The
consistency rules we used were based on the standard
literature. We did not discard any rules or models as
outliers and we evaluated the impact of changes across all
of them exhaustively. Since our approach performed well
for all of these models and rules, we believe that the threats
to internal validity are small.

External validity. While the evaluation focused on the
UML 1.3 notation due to the availability of large design
models, we have tested our infrastructure on UML 2.1,
Matlab/Stateflow, and the Dopler Product Line. While the
models available there were not as large as the ones used in
this study, we were able to confirm that the approach works
and also scales—including the Dopler language, which is
semantically very different from UML and had very
different kinds of consistency rules.

However, more consistency rules imply more evaluation
time. This cost is expected to increase linearly. Clearly, we
cannot support an infinite number of constraint rules but
we typically do not have to. For the engineers we worked
with, the 24 rules covered all of relevant situations for the
consistency of sequence diagrams with class and statechart
diagrams (in their domains). And there are a few hundred
other known rules for other types of UML diagrams, say,
deployment diagrams or use-case diagrams. Thus, even if
these other rules were included in our approach, the scopes
of these rules would mostly overlap with other UML
diagrams and thus not affect our rules much. This implies
that more consistency rules do not necessarily imply longer
evaluation times. However, given that all consistency rules
evaluated added less than 1 ms each to the total evaluation
time, we do not foresee scalability issues even with one or
two orders of magnitude larger RT#.

This is not to say that consistency rules are always as
local as discovered here. We believe that there could be
rules that would not scale well. However, given that we
looked at a fairly large number of rules for different
languages, we are confident that most rules would scale. An
example of rules that would be more complex to validate is
the rules that require extensive transformation in addition
to checking. For example, validating the correct refinement
of two class diagrams is an issue we explored in [35]. This
problem requires not only consistency checking (in the
traditional sense) but also model transformation (to abstract
low-level models to high-level models [11]). Yet, even in
such situations, it is possible to increase efficiency sig-
nificantly by separating transformation from comparison
(consistency checking).

6 RELATED WORK

While researchers generally agree on what consistency
means, the methods on how to detect (in)consistencies vary
widely. In essence, we see a division between those who
compare design models directly and those who transform

design models into some intermediate representation to
compare there.

For example, Tsiolakis and Ehrig [19] check the con-
sistency between class and sequence diagrams by convert-
ing both into a common graph structure. VisualSpecs [3]
uses transformation to substitute the imprecision of OMT (a
language similar to UML) with algebraic specifications.
Conflicting specifications are then interpreted as incon-
sistencies. Belkhouche and Lemus [2] also follow along the
tracks of VisualSpecs in their use of a formal language to
substitute statechart and dataflow diagrams. Groher et al.
[20] explore the use of description logic to detect incon-
sistencies between sequence and statechart diagrams.
Campbell et al. [7] make use of the SPIN Model checker
to evaluate a range of consistency problems within and
across UML diagrams. Or, Zisman and Kozlenkov [40] use a
knowledge base where, with the help of patterns and
axioms, consistency rules are expressed. Using an inter-
mediate representation has many advantages. Yet, for
instant consistency checking, it has the disadvantage of
also having to implement incremental transformation in
addition to incremental consistency checking to continu-
ously translate and compare model changes. Furthermore,
it has the problem that inconsistencies detected in the
intermediate representation have to be transformed back to
make it understandable to the engineer—who ideally
should not even be aware of the intermediate representa-
tion. To the best of our knowledge, to date there exists only
one approach to incremental consistency checking that is
based on intermediate models. However, this approach
separated the transformation and comparison for the sake
of speeding up consistency checking [35] in situations
where transformation is computationally expensive and/or
its changes cannot easily be synced with that of comparison.
This approach is quite complex and requires manual
overhead in defining consistency and transformation
rules—an overhead that is avoidable for many consistency
rules, as was shown in this paper.

The use of an intermediate representation is not a
prerequisite for consistency checking. Indeed, it is possible
to write a consistency rule that directly compares design
models rather than transforming them first [18], [21], [27],
[31]. The most interesting ones among these are the xLinkIt
[27] and ArgoUML [31] approaches because they are
capable of performing incremental consistency checking.

xLinkIt [27] is an XML-based environment for evaluating
the consistency of “documents.” Such documents could be
anything, including UML design models. The advantage of
this environment is that consistency rules are expressed in a
uniform manner. xLinkIt is capable of checking the consis-
tency of an entire UML model and it also handles incremental
consistency by only evaluating changes to versions of a
“document.” However, it requires between 5 and 24 seconds
for evaluating changes and thus is not able to keep up with an
engineer’s rate of model changes. It is most useful for the
occasional exchange of models and for enforcing consistency
constraints in a uniform manner across different modeling
languages. The approach by Reiss [30] is, in principle, alike
xLinkIt. Rather than defining consistency rules on XML
documents, Reiss defines consistency rules as SQL queries,

EGYED: AUTOMATICALLY DETECTING AND TRACKING INCONSISTENCIES IN SOFTWARE DESIGN MODELS 201
Downloaded from www.VTUplanet.com

which are then evaluated on a database which may hold a
diverse set of artifacts. Reiss’ use of a database certainly
makes his approach more incremental. However, the incre-
mental updates in his study suggest noninstant performance
(with 30 seconds to 3-minute build times). However, his
models are more distributed and also include queries on
code, and thus his work appears applicable in maintaining
artifacts for a diverse tool set, which our approach or xLinkIt
does not.

ArgoUML also detects inconsistencies in UML models
[31] but it requires annotated consistency rules to enable
incremental consistency checking. ArgoUML implements
two consistency checking mechanisms: a “warm queue”
and a “hot queue.” Consistency rules for which no
annotations are provided are placed into the warm queue.
This queue is continuously evaluated at 20 percent CPU
time. Consistency rules in the hot queue have annotations
as to what types of model elements they affect. If a model
element changes, then all of those consistency rules are
evaluated that are affected by that element’s type. We
demonstrated that type-based consistency checking pro-
duces good performance but it is not able to keep up with
an engineer’s rate of model changes in very large models.
Also, it requires additional annotations, which are not
required by our approach. The evaluation of the warm
queue is essentially batch consistency checking, and thus
not scalable for even moderately large models. Yet
ArgoUML is an excellent tool for visually presenting
instant consistency feedback in a nonintrusive manner.
This aspect of ArgoUML is directly applicable to our
approach. It is important to note that ArgoUML’s way of
treating consistency checking has been adopted in a range
of commercial modeling tools: For example, the IBM
Rational Software Modeler also uses a type-based scope
to incremental consistency checking, which is significantly
better than batch consistency checking but still far from as
instant as our approach.

Blanc et al. [4] approach the issue of incremental
consistency checking from the perspective of model
changes. This is, in principle, like our approach since we
also react to changes. However, their consistency rules are
defined explicitly in terms of their impact on changes. This
requires the engineer to annotate consistency rules with the
exact impact of all design changes. This annotation, if done
correctly, leads to good performance. However, since
writing these annotations may cause errors, they are no
longer able to guarantee the correctness of incremental
consistency checking. Our approach, on the other hand,
does not impose any manual overhead on the engineer. This
source of error is thus eliminated.

While it is important to know about inconsistencies, it is
often too distracting to resolve them right away. The notion
of “living with inconsistencies” [2], [17] advocates that there
is a benefit in allowing inconsistencies in design models on
a temporary basis. While our approach provides incon-
sistencies instantly, it does not require the engineer to fix
them instantly. Our approach tracks all presently known
inconsistencies and lets the engineer explore inconsistencies
according to his/her interests in the model. This is a
nontrivial problem because the scope of an (in)consistency

is continuously affected by model changes. Our approach
could also be used for lazy consistency checking, which has
been explored in [32] but is out of the scope of this paper.
Also out of the scope of this paper is the issue of how to fix
inconsistencies. While inconsistencies may be tolerated for
some time, fixing them is eventually necessary. This issue is
explored in [13], [15], [28], [39].

Viewpoints [10] is a classical approach to consistency
checking. It also uses consistency rules that are defined and
validated against a formal model base. This approach,
however, emphasizes “upstream” modeling techniques and
it addresses issues such as how to resolve inconsistencies
[13], [28], [29], [34] and how to tolerate them. These aspects
are not discussed in this paper but are very relevant to
consistency checking. It is future work to discuss how our
approach handles these aspects.

In a broader sense, current approaches to consistency
checking borrow from programming environments such as
Centaur or Gandalf [22] that incrementally evaluate
syntactic or even semantic [16] consistency rules within
source code. These approaches use grammar information to
generate programming environments and incremental
consistency checker. In the UML domain, consistency rules
and checkers often already exist and are not generated.
While engineers in industry (e.g., Boeing Company) do
create their own consistency rules, they usually do not use a
grammar-based language. Yet they also investigate decen-
tralized consistency checking [23] and consistency checking
among different languages, which is considered outside the
scope here [36].

Our work is loosely related to the constraint satisfaction
problem (CSP). CSP deals with the combinatorial problem
of what choices best satisfy a given set of constraints. Since
this problem is computationally expensive, certain optimi-
zations have been developed. In particular, the AC3
optimization [26] defines a mapping between choices and
the constraints they affect. Constraints are then reevaluated
only if their choices change. We borrowed this concept in
our use of scopes. A key difference is that CSP uses “white
box constraints” where it is known in advance what choices
a constraint will encounter. This makes it relatively easy to
identify their scopes. Consistency rules in UML typically
are black box constraints. This is the main reason why most
approaches to incremental consistency checking require
additional annotations for consistency rules to cope with
this additional level of indirection.

Furthermore, it is worthwhile to stress that incremental
reasoning is used in many domains outside of consistency
checking. A considerable community exists that investigates
the effect of changes. Indeed, we can see some parallels
between our approach and the classical RETE algorithm [19],
which uses pattern matching as a means of establishing
correspondence between facts (e.g., models) and patterns
(e.g., consistency rules). Another example is the self-adaptive
computation [1], which applies to source code and investi-
gates how to update algorithms to better react to data
changes. Since our consistency rules can be seen as such
algorithms, a similarity exists. However, it is important to
point out that to the best of our knowledge, nobody has tried
to apply/transform these principles to the consistency

202 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011
Downloaded from www.VTUplanet.com

checking of software modeling. Also, while the concepts
have similarities, the details of these approaches do differ
widely from our approach.

7 CONCLUSION

This paper introduced an approach for quickly, correctly,
and automatically deciding when to evaluate consistency
rules. We demonstrated that our approach works with
many consistency rules and that these rules do not have
to be written in a special language with special annota-
tions. Instead, our approach used a form of profiling to
observe the behavior of the consistency rules during
evaluation. We demonstrated on 34 large-scale models
that the average model change cost 1.4 ms, 98 percent of
the model changes cost less than 7 ms, and that the worst
case was below 2 seconds.

It is very significant to understand that our approach
maintains a separate scope of model elements for every
application (instance) of a consistency rule. This scope is
computed automatically during evaluation and used to
determine when to reevaluate the rule. In the case of an
inconsistency, this scope tells the engineer all of the model
elements that were involved. Moreover, if an engineer
should choose to ignore an inconsistency (i.e., not resolve it
right away), an engineer may use the scopes to quickly
locate all inconsistencies that directly relate to any part of
the model of interest. This is important for living with
inconsistencies but it is also important for not getting
overwhelmed with too much feedback at once.

However, we cannot guarantee that all consistency rules
can be evaluated instantly. The 24 rules of our study were
chosen to cover the needs of our industrial partners. They
cover a significant set of rules and we demonstrated that
they were handled extremely efficiently. But it is theoreti-
cally possible to write consistency rules in a nonscalable
fashion, although it must be stressed that of the hundreds of
rules known to us, none fall into this category.

It is future work to discuss how to best present
inconsistency feedback visually to the engineer. Also, the
efficiency of our approach depends, in part, on how
consistency rules are written. Since consistency rules are
typically written manually (by engineers), it is future work
to investigate how to automatically optimize consistency
rules. We believe that it is possible to automatically
transform more complex, global consistency rules into
more numerous and efficient local consistency rules.

ACKNOWLEDGMENTS

The author would like to thank Iris Groher and Alexander
Reder for porting an earlier version of the tool onto IBM
Rational Software Modeler. This work was supported by
the Austrian FWF under agreement P21321-N15.

REFERENCES

[1] U.A. Acar, A. Ahmed, and M. Blume, “Imperative Self-Adjusting
Computation,” Proc. 35th ACM SIGPLAN-SIGACT Symp. Principles
of Programming Languages, pp. 309-322, 2008.

[2] R. Balzer, “Tolerating Inconsistency,” Proc. 13th Int’l Conf. Software
Eng., pp. 158-165, 1991.

[3] B. Belkhouche and C. Lemus, “Multiple View Analysis and
Design,” Proc. Int’l Workshop Multiple Perspectives in Software
Development, 1996.

[4] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting
Model Inconsistency through Operation-Based Model Construc-
tion,” Proc. 30th Int’l Conf. Software Eng., pp. 511-520, 2008.

[5] B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E.
Horowitz, R. Madacy, D. Reifer, and B. Steece, Software Cost
Estimation with COCOMO II. Prentice Hall, 2000.

[6] L.C. Briand, Y. Labiche, and L. O’Sullivan, “Impact Analysis and
Change Management of UML Models,” Proc. Int’l Conf. Software
Maintenance, p. 256, 2003.

[7] L.A. Campbell, B.H.C. Cheng, W.E. McUmber, and K. Stirewalt,
“Automatically Detecting and Visualising Errors in UML Dia-
grams,” Requirements Eng. J., vol. 7, pp. 264-287, 2002.

[8] B.H.C. Cheng, E.Y. Wang, and R.H. Bourdeau, “A Graphical
Environment for Formally Developing Object-Oriented Software,”
Proc. Sixth Int’l Conf. Tools with Artificial Intelligence, pp. 26-32,
1994.

[9] D. Dhungana, R. Rabiser, P. Grünbacher, K. Lehner, and C.
Federspiel, “DOPLER: An Adaptable Tool Suite for Product Line
Engineering,” Proc. 11th Int’l Software Product Line Conf., pp. 151-
152, 2007.

[10] S. Easterbrook and B. Nuseibeh, “Using ViewPoints for Incon-
sistency Management,” IEE Software Eng. J., vol. 11, pp. 31-43,
1995.

[11] A. Egyed, “Automated Abstraction of Class Diagrams,” ACM
Trans. Software Eng. and Methodology, vol. 11, pp. 449-491, 2002.

[12] A. Egyed, “Instant Consistency Checking for the UML,” Proc. 28th
Int’l Conf. Software Eng., pp. 381-390, 2006.

[13] A. Egyed, “Fixing Inconsistencies in UML Design Models,” Proc.
29th Int’l Conf. Software Eng., pp. 292-301, 2007.

[14] A. Egyed and B. Balzer, “Integrating COTS Software into Systems
through Instrumentation and Reasoning,” Int’l J. Automated
Software Eng., vol. 13, pp. 41-64, 2006.

[15] A. Egyed, E. Letier, and A. Finkelstein, “Generating and
Evaluating Choices for Fixing Inconsistencies in UML Design
Models,” Proc. 23rd Int’l Conf. Automated Software Eng., 2008.

[16] W. Emmerich, “GTSL—an Object-Oriented Language for Specifi-
cation of Syntax Directed Tools,” Proc. Eighth Int’l Workshop
Software Specification and Design, pp. 26-35, 1996.

[17] S. Fickas, M. Feather, and J. Kramer, Proc. ICSE-97 Workshop Living
with Inconsistency, 1997.

[18] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh,
“Inconsistency Handling in Multi-Perspective Specifications,”
IEEE Trans. Software Eng., vol. 20, pp. 569-578, 1994.

[19] C. Forgy, “Rete: A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem,” Artificial Intelligence, vol. 19,
pp. 17-37, 1982.

[20] I. Groher, A. Reder, and A. Egyed, “Instant Consistency Checking
of Dynamic Constraints,” Proc. 12th Int’l Conf. Fundamental
Approaches to Software Eng., 2010.

[21] J. Grundy, J. Hosking, and R. Mugridge, “Inconsistency Manage-
ment for Multiple-View Software Development Environments,”
IEEE Trans. Software Eng., vol. 24, no. 11, pp. 960-981, Nov. 1998.

[22] A.N. Habermann and D. Notkin, “Gandalf: Software Develop-
ment Environments,” IEEE Trans. Software Eng., vol. 12, no. 12,
pp. 1117-1127, Dec. 1986.

[23] S.M. Kaplan and G.E. Kaiser, “Incremental Attribute Evaluation in
Distributed Language-Based Environments,” Proc. Fifth Ann.
Symp. Principles of Distributed Computing, pp. 121-130, 1986.

[24] M. Lee, A.J. Offutt, and R.T. Alexander, “Algorithmic Analysis of
the Impacts of Changes to Object-Oriented Software,” Proc. 34th
Int’l Conf. Technology of Object-Oriented Languages and Systems,
pp. 61-70, 2000.

[25] M. Lindvall and K. Sandahl, “Practical Implications of Trace-
ability,” J. Software—Practice and Experience, vol. 26, pp. 1161-1180,
1996.

[26] A.K. Mackworth, “Consistency in Networks of Relations,”
J. Artificial Intelligence, vol. 8, pp. 99-118, 1977.

[27] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, “xlinkit:
A Consistency Checking and Smart Link Generation Service,”
ACM Trans. Internet Technology, vol. 2, pp. 151-185, 2002.

[28] C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency
Management with Repair Actions,” Proc. 25th Int’l Conf. Software
Eng., pp. 455-464, 2003.

EGYED: AUTOMATICALLY DETECTING AND TRACKING INCONSISTENCIES IN SOFTWARE DESIGN MODELS 203
Downloaded from www.VTUplanet.com

[29] B. Nuseibeh and A. Russo, “On the Consequences of Acting in the
Presence of Inconsistency,” Proc. Ninth Int’l Workshop Software
Specification and Design, pp. 156-158, 1998.

[30] S. Reiss, “Incremental Maintenance of Software Artifacts,” IEEE
Trans. Software Eng., vol. 32, no. 9, pp. 682-697, Sept. 2006.

[31] J. Robins et al, “ArgoUML,” http://argouml.tigris.org, 2010.
[32] N. Roussopoulos, “An Incremental Access Method for View-

Cache: Concept, Algorithms, and Cost Analysis,” ACM Trans.
Database Systems, vol. 16, pp. 535-563, 1991.

[33] J. Rumbaugh, J. Ivar, and B. Grady, The Unified Modeling Language
Reference Manual. Addison Wesley, 1999.

[34] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook, and M.
Chechik, “Consistency Checking of Conceptual Models via Model
Merging,” Proc. 15th IEEE Int’l Requirements Eng. Conf., 2007.

[35] W. Shen, K. Wang, and A. Egyed, “An Efficient and Scalable
Approach to Correct Class Model Refinement,” IEEE Trans.
Software Eng., vol. 35, no. 4, pp. 515-533, July/Aug. 2009.

[36] R.N. Taylor, R.W. Selby, M. Young, F.C. Belz, L.A. Clarce, J.C.
Wileden, L. Osterweil, and A.L. Wolf, “Foundations of the
Arcadia Environment Architecture,” Proc. Fourth Symp. Software
Development Environments, 1998.

[37] A. Tsiolakis and H. Ehrig, “Consistency Analysis of UML Class
and Sequence Diagrams Using Attributed Graph Grammars,”
Proc. Conf. Graph Transformation and Graph Grammars, pp. 77-86,
2000.

[38] J. Warmer and A. Kleppe, The Object Constraint Language. Pearson
Education, 2003.

[39] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei,
“Supporting Automatic Model Inconsistency Fixing,” Proc. Se-
venth Joint Meeting of the European Software Eng. Conf. and the ACM
SIGSOFT Symp. Foundations of Software Eng., 2009.

[40] A. Zisman and A. Kozlenkov, “Knowledge Base Approach to
Consistency Management of UML Specification,” Proc. 16th IEEE
Int’l Conf. Automated Software Eng., pp. 359-363, 2001.

Alexander Egyed received the doctorate de-
gree from the University of Southern California in
2000 under the mentorship of Dr. Barry Boehm.
He is currently a full professor at the Johannes
Kepler University, Linz, Austria, where he heads
the Institute for Software Engineering and
Automation. Previously, he worked as a re-
search scientist at Teknowledge Corporation
and then as a research fellow at University
College London, United Kingdom. His research

interests include software design modeling, traceability, requirements
engineering, variability modeling, consistency checking/resolution, and
change impact analysis. He is a member of the IEEE, the IEEE
Computer Society, the ACM, and ACM SigSoft.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

204 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011
Downloaded from www.VTUplanet.com

