
DoubleGuard: Detecting Intrusions
in Multitier Web Applications

Meixing Le, Angelos Stavrou, Member, IEEE, and Brent ByungHoon Kang, Member, IEEE

Abstract—Internet services and applications have become an inextricable part of daily life, enabling communication and the

management of personal information from anywhere. To accommodate this increase in application and data complexity, web services

have moved to a multitiered design wherein the webserver runs the application front-end logic and data are outsourced to a database

or file server. In this paper, we present DoubleGuard, an IDS system that models the network behavior of user sessions across both

the front-end webserver and the back-end database. By monitoring both web and subsequent database requests, we are able to ferret

out attacks that an independent IDS would not be able to identify. Furthermore, we quantify the limitations of any multitier IDS in terms

of training sessions and functionality coverage. We implemented DoubleGuard using an Apache webserver with MySQL and

lightweight virtualization. We then collected and processed real-world traffic over a 15-day period of system deployment in both

dynamic and static web applications. Finally, using DoubleGuard, we were able to expose a wide range of attacks with 100 percent

accuracy while maintaining 0 percent false positives for static web services and 0.6 percent false positives for dynamic web services.

Index Terms—Anomaly detection, virtualization, multitier web application.

Ç

1 INTRODUCTION

WEB-DELIVERED services and applications have increased
in both popularity and complexity over the past few

years. Daily tasks, such as banking, travel, and social
networking, are all done via the web. Such services typically
employ a webserver front end that runs the application user
interface logic, as well as a back-end server that consists of a
database or file server. Due to their ubiquitous use for
personal and/or corporate data, web services have always
been the target of attacks. These attacks have recently
become more diverse, as attention has shifted from attacking
the front end to exploiting vulnerabilities of the web
applications [6], [5], [1] in order to corrupt the back-end
database system [40] (e.g., SQL injection attacks [20], [43]). A
plethora of Intrusion Detection Systems (IDSs) currently
examine network packets individually within both the
webserver and the database system. However, there is very
little work being performed on multitiered Anomaly
Detection (AD) systems that generate models of network
behavior for both web and database network interactions. In
such multitiered architectures, the back-end database server
is often protected behind a firewall while the webservers are
remotely accessible over the Internet. Unfortunately, though
they are protected from direct remote attacks, the back-end
systems are susceptible to attacks that use web requests as a
means to exploit the back end.

To protect multitiered web services, Intrusion detection
systems have been widely used to detect known attacks by
matching misused traffic patterns or signatures [34], [30],
[33], [22]. A class of IDS that leverages machine learning can
also detect unknown attacks by identifying abnormal net-
work traffic that deviates from the so-called “normal”
behavior previously profiled during the IDS training phase.
Individually, the web IDS and the database IDS can detect
abnormal network traffic sent to either of them. However, we
found that these IDSs cannot detect cases wherein normal
traffic is used to attack the webserver and the database
server. For example, if an attacker with nonadmin privileges
can log in to a webserver using normal-user access
credentials, he/she can find a way to issue a privileged
database query by exploiting vulnerabilities in the webser-
ver. Neither the web IDS nor the database IDS would detect
this type of attack since the web IDS would merely see typical
user login traffic and the database IDS would see only the
normal traffic of a privileged user. This type of attack can be
readily detected if the database IDS can identify that a
privileged request from the webserver is not associated with
user-privileged access. Unfortunately, within the current
multithreaded webserver architecture, it is not feasible to
detect or profile such causal mapping between webserver
traffic and DB server traffic since traffic cannot be clearly
attributed to user sessions.

In this paper, we present DoubleGuard, a system used to
detect attacks in multitiered web services. Our approach can
create normality models of isolated user sessions that include
both the web front-end (HTTP) and back-end (File or SQL)
network transactions. To achieve this, we employ a light-
weight virtualization technique to assign each user’s web
session to a dedicated container, an isolated virtual comput-
ing environment. We use the container ID to accurately
associate the web request with the subsequent DB queries.
Thus, DoubleGuard can build a causal mapping profile by
taking both the webserver and DB traffic into account.

512 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

. M. Le and A. Stavrou are with the Department of Computer Science,
George Mason University, Research Hall, 4400 University Drive, Fairfax,
VA 22030. E-mail: {mlep, astavrou}@gmu.edu.

. B.B. Kang is with the Department of Applied Information Technology,
George Mason University, Research Hall, Room 431, 4400 University
Drive, Fairfax, VA 22030. E-mail: bkang5@gmu.edu.

Manuscript received 1 Dec. 2010; revised 4 Apr. 2011; accepted 4 Oct. 2011;
published online 10 Nov. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number
TDSCSI-2010-12-0228.
Digital Object Identifier no. 10.1109/TDSC.2011.59.

1545-5971/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Downloaded from www.VTUplanet.com

We have implemented our DoubleGuard container
architecture using OpenVZ [14], and performance testing
shows that it has reasonable performance overhead and is
practical for most web applications. When the request rate is
moderate (e.g., under 110 requests per second), there is
almost no overhead in comparison to an unprotected vanilla
system. Even in a worst case scenario when the server was
already overloaded, we observed only 26 percent perfor-
mance overhead. The container-based web architecture not
only fosters the profiling of causal mapping, but it also
provides an isolation that prevents future session-hijacking
attacks. Within a lightweight virtualization environment, we
ran many copies of the webserver instances in different
containers so that each one was isolated from the rest. As
ephemeral containers can be easily instantiated and de-
stroyed, we assigned each client session a dedicated contain-
er so that, even when an attacker may be able to compromise
a single session, the damage is confined to the compromised
session; other user sessions remain unaffected by it.

Using our prototype, we show that, for websites that do
not permit content modification from users, there is a direct
causal relationship between the requests received by the
front-end webserver and those generated for the database
back end. In fact, we show that this causality-mapping model
can be generated accurately and without prior knowledge of
web application functionality. Our experimental evaluation,
using real-world network traffic obtained from the web and
database requests of a large center, showed that we were able
to extract 100 percent of functionality mapping by using as
few as 35 sessions in the training phase. Of course, we also
showed that this depends on the size and functionality of the
web service or application. However, it does not depend on
content changes if those changes can be performed through a
controlled environment and retrofitted into the training
model. We refer to such sites as “static” because, though they
do change over time, they do so in a controlled fashion that
allows the changes to propagate to the sites’ normality
models.

In addition to this static website case, there are web
services that permit persistent back-end data modifications.
These services, which we call dynamic, allow HTTP
requests to include parameters that are variable and depend
on user input. Therefore, our ability to model the causal
relationship between the front end and back end is not
always deterministic and depends primarily upon the
application logic. For instance, we observed that the back-
end queries can vary based on the value of the parameters
passed in the HTTP requests and the previous application
state. Sometimes, the same application’s primitive function-
ality (i.e., accessing a table) can be triggered by many different
webpages. Therefore, the resulting mapping between web
and database requests can range from one to many,
depending on the value of the parameters passed in the
web request.

To address this challenge while building a mapping model
for dynamic webpages, we first generated an individual
training model for the basic operations provided by the web
services. We demonstrate that this approach works well
in practice by using traffic from a live blog where we
progressively modeled nine operations. Our results show
that we were able to identify all attacks, covering more than
99 percent of the normal traffic as the training model is
refined.

2 RELATED WORK

A network Intrusion Detection System can be classified into
two types: anomaly detection and misuse detection. Anom-
aly detection first requires the IDS to define and characterize
the correct and acceptable static form and dynamic behavior
of the system, which can then be used to detect abnormal
changes or anomalous behaviors [26], [48]. The boundary
between acceptable and anomalous forms of stored code and
data is precisely definable. Behavior models are built by
performing a statistical analysis on historical data [31], [49],
[25] or by using rule-based approaches to specify behavior
patterns [39]. An anomaly detector then compares actual
usage patterns against established models to identify
abnormal events. Our detection approach belongs to anom-
aly detection, and we depend on a training phase to build the
correct model. As some legitimate updates may cause model
drift, there are a number of approaches [45] that are trying to
solve this problem. Our detection may run into the same
problem; in such a case, our model should be retrained for
each shift.

Intrusion alerts correlation [47] provides a collection of
components that transform intrusion detection sensor alerts
into succinct intrusion reports in order to reduce the number
of replicated alerts, false positives, and nonrelevant positives.
It also fuses the alerts from different levels describing a single
attack, with the goal of producing a succinct overview of
security-related activity on the network. It focuses primarily
on abstracting the low-level sensor alerts and providing
compound, logical, high-level alert events to the users.
DoubleGuard differs from this type of approach that
correlates alerts from independent IDSs. Rather, Double-
Guard operates on multiple feeds of network traffic using a
single IDS that looks across sessions to produce an alert
without correlating or summarizing the alerts produced by
other independent IDSs.

An IDS such as in [42] also uses temporal information to
detect intrusions. DoubleGuard, however, does not correlate
events on a time basis, which runs the risk of mistakenly
considering independent but concurrent events as corre-
lated events. DoubleGuard does not have such a limitation
as it uses the container ID for each session to causally map
the related events, whether they be concurrent or not.

Since databases always contain more valuable informa-
tion, they should receive the highest level of protection.
Therefore, significant research efforts have been made on
database IDS [32], [28], [44] and database firewalls [21]. These
softwares, such as Green SQL [7], work as a reverse proxy for
database connections. Instead of connecting to a database
server, web applications will first connect to a database
firewall. SQL queries are analyzed; if they’re deemed safe,
they are then forwarded to the back-end database server. The
system proposed in [50] composes both web IDS and
database IDS to achieve more accurate detection, and it also
uses a reverse HTTP proxy to maintain a reduced level of
service in the presence of false positives. However, we found
that certain types of attack utilize normal traffics and cannot
be detected by either the web IDS or the database IDS. In such
cases, there would be no alerts to correlate.

Some previous approaches have detected intrusions or
vulnerabilities by statically analyzing the source code or
executables [52], [24], [27]. Others [41], [46], [51] dynami-
cally track the information flow to understand taint

LE ET AL.: DOUBLEGUARD: DETECTING INTRUSIONS IN MULTITIER WEB APPLICATIONS 513
Downloaded from www.VTUplanet.com

propagations and detect intrusions. In DoubleGuard, the
new container-based webserver architecture enables us to
separate the different information flows by each session.
This provides a means of tracking the information flow
from the webserver to the database server for each session.
Our approach also does not require us to analyze the source
code or know the application logic. For the static webpage,
our DoubleGuard approach does not require application
logic for building a model. However, as we will discuss,
although we do not require the full application logic for
dynamic web services, we do need to know the basic user
operations in order to model normal behavior.

In addition, validating input is useful to detect or
prevent SQL or Cross Site Scripting (XSS) injection attacks
[23], [36]. This is orthogonal to the DoubleGuard approach,
which can utilize input validation as an additional defense.
However, we have found that DoubleGuard can detect SQL
injection attacks by taking the structures of web requests
and database queries without looking into the values of
input parameters (i.e., no input validation at the websever).

Virtualization is used to isolate objects and enhance
security performance. Full virtualization and para-virtuali-
zation are not the only approaches being taken. An alter-
native is a lightweight virtualization, such as OpenVZ [14],
Parallels Virtuozzo [17], or Linux-VServer [11]. In general,
these are based on some sort of container concept. With
containers, a group of processes still appears to have its own
dedicated system, yet it is running in an isolated environ-
ment. On the other hand, lightweight containers can have
considerable performance advantages over full virtualiza-
tion or para-virtualization. Thousands of containers can
run on a single physical host. There are also some desktop
systems [37], [29] that use lightweight virtualization to isolate
different application instances. Such virtualization techni-
ques are commonly used for isolation and containment of
attacks. However, in our DoubleGuard, we utilized the
container ID to separate session traffic as a way of extracting
and identifying causal relationships between webserver
requests and database query events.

CLAMP [35] is an architecture for preventing data leaks
even in the presence of attacks. By isolating code at the
webserver layer and data at the database layer by users,
CLAMP guarantees that a user’s sensitive data can only be
accessed by code running on behalf of different users. In
contrast, DoubleGuard focuses on modeling the mapping
patterns between HTTP requests and DB queries to detect
malicious user sessions. There are additional differences
between these two in terms of requirements and focus.
CLAMP requires modification to the existing application
code, and the Query Restrictor works as a proxy to mediate all
database access requests. Moreover, resource requirements
and overhead differ in order of magnitude: DoubleGuard
uses process isolation whereas CLAMP requires platform
virtualization, and CLAMP provides more coarse-grained
isolation than DoubleGuard. However, DoubleGuard would
be ineffective at detecting attacks if it were to use the coarse-
grained isolation as used in CLAMP. Building the mapping
model in DoubleGuard would require a large number of
isolated web stack instances so that mapping patterns would
appear across different session instances.

3 THREAT MODEL AND SYSTEM ARCHITECTURE

We initially set up our threat model to include our
assumptions and the types of attacks we are aiming to
protect against. We assume that both the web and the
database servers are vulnerable. Attacks are network borne
and come from the web clients; they can launch application-
layer attacks to compromise the webservers they are
connecting to. The attackers can bypass the webserver to
directly attack the database server. We assume that the
attacks can neither be detected nor prevented by the current
webserver IDS, that attackers may take over the webserver
after the attack, and that afterward they can obtain full
control of the webserver to launch subsequent attacks. For
example, the attackers could modify the application logic of
the web applications, eavesdrop or hijack other users’ web
requests, or intercept and modify the database queries to
steal sensitive data beyond their privileges.

On the other hand, at the database end, we assume that
the database server will not be completely taken over by the
attackers. Attackers may strike the database server through
the webserver or, more directly, by submitting SQL queries,
they may obtain and pollute sensitive data within the
database. These assumptions are reasonable since, in most
cases, the database server is not exposed to the public and is
therefore difficult for attackers to completely take over. We
assume no prior knowledge of the source code or the
application logic of web services deployed on the webser-
ver. In addition, we are analyzing only network traffic that
reaches the webserver and database. We assume that no
attack would occur during the training phase and model
building.

3.1 Architecture and Confinement

All network traffic, from both legitimate users and adver-
saries, is received intermixed at the same webserver. If an
attacker compromises the webserver, he/she can potentially
affect all future sessions (i.e., session hijacking). Assigning
each session to a dedicated webserver is not a realistic
option, as it will deplete the webserver resources. To achieve
similar confinement while maintaining a low performance
and resource overhead, we use lightweight virtualization.

In our design, we make use of lightweight process
containers, referred to as “containers,” as ephemeral, dis-
posable servers for client sessions. It is possible to initialize
thousands of containers on a single physical machine, and
these virtualized containers can be discarded, reverted, or
quickly reinitialized to serve new sessions. A single physical
webserver runs many containers, each one an exact copy of
the original webserver. Our approach dynamically generates
new containers and recycles used ones. As a result, a single
physical server can run continuously and serve all web
requests. However, from a logical perspective, each session is
assigned to a dedicated webserver and isolated from other
sessions. Since we initialize each virtualized container using
a read-only clean template, we can guarantee that each
session will be served with a clean webserver instance at
initialization. We choose to separate communications at the
session level so that a single user always deals with the same
webserver. Sessions can represent different users to some
extent, and we expect the communication of a single user to
go to the same dedicated webserver, thereby allowing us to
identify suspect behavior by both session and user. If we
detect abnormal behavior in a session, we will treat all traffic

514 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012
Downloaded from www.VTUplanet.com

within this session as tainted. If an attacker compromises a
vanilla webserver, other sessions’ communications can also
be hijacked. In our system, an attacker can only stay within
the webserver containers that he/she is connected to, with no
knowledge of the existence of other session communications.
We can thus ensure that legitimate sessions will not be
compromised directly by an attacker.

Fig. 1 illustrates the classic three-tier model. At the
database side, we are unable to tell which transaction
corresponds to which client request. The communication
between the webserver and the database server is not
separated, and we can hardly understand the relationships
among them. Fig. 2 depicts how communications are
categorized as sessions and how database transactions can
be related to a corresponding session. According to Fig. 1,
if Client 2 is malicious and takes over the webserver, all
subsequent database transactions become suspect, as well as
the response to the client. By contrast, according to Fig. 2,
Client 2 will only compromise the VE 2, and the correspond-
ing database transaction set T2 will be the only affected
section of data within the database.

3.2 Building the Normality Model

This container-based and session-separated webserver
architecture not only enhances the security performances
but also provides us with the isolated information flows
that are separated in each container session. It allows us to
identify the mapping between the webserver requests and
the subsequent DB queries, and to utilize such a mapping
model to detect abnormal behaviors on a session/client
level. In typical three-tiered webserver architecture, the
webserver receives HTTP requests from user clients and
then issues SQL queries to the database server to retrieve
and update data. These SQL queries are causally dependent
on the web request hitting the webserver. We want to
model such causal mapping relationships of all legitimate
traffic so as to detect abnormal/attack traffic.

In practice, we are unable to build such mapping under a
classic three-tier setup. Although the webserver can
distinguish sessions from different clients, the SQL queries

are mixed and all from the same webserver. It is impossible
for a database server to determine which SQL queries are
the results of which web requests, much less to find out the
relationship between them. Even if we knew the application
logic of the webserver and were to build a correct model, it
would be impossible to use such a model to detect attacks
within huge amounts of concurrent real traffic unless we
had a mechanism to identify the pair of the HTTP request
and SQL queries that are causally generated by the HTTP
request. However, within our container-based webservers,
it is a straightforward matter to identify the causal pairs of
web requests and resulting SQL queries in a given session.
Moreover, as traffic can easily be separated by session, it
becomes possible for us to compare and analyze the request
and queries across different sessions. Section 4 further
discusses how to build the mapping by profiling session
traffics.

To that end, we put sensors at both sides of the servers. At
the webserver, our sensors are deployed on the host system
and cannot be attacked directly since only the virtualized
containers are exposed to attackers. Our sensors will not be
attacked at the database server either, as we assume that the
attacker cannot completely take control of the database
server. In fact, we assume that our sensors cannot be
attacked and can always capture correct traffic information
at both ends. Fig. 2 shows the locations of our sensors.

Once we build the mapping model, it can be used to
detect abnormal behaviors. Both the web request and the
database queries within each session should be in accor-
dance with the model. If there exists any request or query
that violates the normality model within a session, then the
session will be treated as a possible attack.

3.3 Attack Scenarios

Our system is effective at capturing the following types of
attacks:

3.3.1 Privilege Escalation Attack

Let’s assume that the website serves both regular users and
administrators. For a regular user, the web request ru will
trigger the set of SQL queries Qu; for an administrator, the
request ra will trigger the set of admin level queries Qa.
Now suppose that an attacker logs into the webserver as a
normal user, upgrades his/her privileges, and triggers
admin queries so as to obtain an administrator’s data. This
attack can never be detected by either the webserver IDS or
the database IDS since both ru and Qa are legitimate
requests and queries. Our approach, however, can detect
this type of attack since the DB query Qa does not match the
request ru, according to our mapping model. Fig. 3 shows
how a normal user may use admin queries to obtain
privileged information.

LE ET AL.: DOUBLEGUARD: DETECTING INTRUSIONS IN MULTITIER WEB APPLICATIONS 515

Fig. 1. Classic three-tier model. The webserver acts as the front end,
with the file and database servers as the content storage back end.

Fig. 2. Webserver instances running in containers.

Fig. 3. Privilege escalation attack.

Downloaded from www.VTUplanet.com

3.3.2 Hijack Future Session Attack

This class of attacks is mainly aimed at the webserver side.
An attacker usually takes over the webserver and therefore
hijacks all subsequent legitimate user sessions to launch
attacks. For instance, by hijacking other user sessions, the
attacker can eavesdrop, send spoofed replies, and/or drop
user requests. A session-hijacking attack can be further
categorized as a Spoofing/Man-in-the-Middle attack, an
Exfiltration Attack, a Denial-of-Service/Packet Drop attack,
or a Replay attack.

Fig. 4 illustrates a scenario wherein a compromised
webserver can harm all the Hijack Future Sessions by not
generating any DB queries for normal-user requests.
According to the mapping model, the web request should
invoke some database queries (e.g., a Deterministic Map-
ping (Section 4.1)), then the abnormal situation can be
detected. However, neither a conventional webserver IDS
nor a database IDS can detect such an attack by itself.

Fortunately, the isolation property of our container-
based webserver architecture can also prevent this type of
attack. As each user’s web requests are isolated into a
separate container, an attacker can never break into other
users’ sessions.

3.3.3 Injection Attack

Attacks such as SQL injection do not require compromising
the webserver. Attackers can use existing vulnerabilities in
the webserver logic to inject the data or string content that
contains the exploits and then use the webserver to relay these
exploits to attack the back-end database. Since our approach
provides a two-tier detection, even if the exploits are accepted
by the webserver, the relayed contents to the DB server would
not be able to take on the expected structure for the given
webserver request. For instance, since the SQL injection
attack changes the structure of the SQL queries, even if the
injected data were to go through the webserver side, it would
generate SQL queries in a different structure that could be
detected as a deviation from the SQL query structure that
would normally follow such a web request. Fig. 5 illustrates
the scenario of a SQL injection attack.

3.3.4 Direct DB Attack

It is possible for an attacker to bypass the webserver or
firewalls and connect directly to the database. An attacker
could also have already taken over the webserver and be
submitting such queries from the webserver without sending

web requests. Without matched web requests for such
queries, a webserver IDS could detect neither. Furthermore,
if these DB queries were within the set of allowed queries,
then the database IDS itself would not detect it either.
However, this type of attack can be caught with our approach
since we cannot match any web requests with these queries.
Fig. 6 illustrates the scenario wherein an attacker bypasses
the webserver to directly query the database.

3.4 DoubleGuard Limitations

In this section, we discuss the operational and detection
limitations of DoubleGuard.

3.4.1 Vulnerabilities Due to Improper Input Processing

Cross Site Scripting is a typical attack method wherein
attackers embed malicious client scripts via legitimate user
inputs. In DoubleGuard, all of the user input values are
normalized so as to build a mapping model based on the
structures of HTTP requests and DB queries. Once the
malicious user inputs are normalized, DoubleGuard cannot
detect attacks hidden in the values. These attacks can occur
even without the databases. DoubleGuard offers a com-
plementary approach to those research approaches of
detecting web attacks based on the characterization of
input values [38].

3.4.2 Possibility of Evading DoubleGuard

Our assumption is that an attacker can obtain “full control”
of the webserver thread that he/she connects to. That is, the
attacker can only take over the webserver instance running
in its isolated container. Our architecture ensures that every
client be defined by the IP address and port container pair,
which is unique for each session. Therefore, hijacking an
existing container is not possible because traffic for other
sessions is never directed to an occupied container. If this
were not the case, our architecture would have been similar
to the conventional one where a single webserver runs
many different processes. Moreover, if the database
authenticates the sessions from the webserver, then each
container connects to the database using either admin user
account or nonadmin user account and the connection is
authenticated by the database. In such case, an attacker will
authenticate using a nonadmin account and will not be
allowed to issue admin level queries. In other words, the
HTTP traffic defines the privileges of the session which can
be extended to the back-end database, and a nonadmin user
session cannot appear to be an admin session when it comes
to back-end traffic.

Within the same session that the attacker connects to, it is
allowed for the attacker to launch “mimicry” attacks. It is
possible for an attacker to discover the mapping patterns by
doing code analysis or reverse engineering, and issue
“expected” web requests prior to performing malicious
database queries. However, this significantly increases the

516 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

Fig. 4. Hijack future session attack.

Fig. 5. Injection attack.

Fig. 6. DB Query without causing web requests.

Downloaded from www.VTUplanet.com

efforts for the attackers to launch successful attacks. In
addition, users with nonadmin permissions can cause
minimal (and sometimes zero) damage to the rest of the
system and therefore they have limited incentives to launch
such attacks.

By default, DoubleGuard normalizes all the parameters.
Of course, the choice of the normalization parameters needs
to be performed carefully. DoubleGuard offers the cap-
ability of normalizing the parameters so that the user of
DoubleGuard can choose which values to normalize. For
example, we can choose not to normalize the value “admin”
in “user ¼ ‘admin’.” Likewise, one can choose to normalize
it if the administrative queries are structurally different from
the normal-user queries, which is common case. Addition-
ally, if the database can authenticate admin and nonadmin
users, then privilege escalation attacks by changing values
are not feasible (i.e., there is no session hijacking).

3.4.3 Distributed DoS

DoubleGuard is not designed to mitigate DDoS attacks.
These attacks can also occur in the server architecture
without the back-end database.

4 MODELING DETERMINISTIC MAPPING AND

PATTERNS

Due to their diverse functionality, different web applica-
tions exhibit different characteristics. Many websites serve
only static content, which is updated and often managed
by a Content Management System (CMS). For a static
website, we can build an accurate model of the mapping
relationships between web requests and database queries
since the links are static and clicking on the same link
always returns the same information. However, some
websites (e.g., blogs, forums) allow regular users with
nonadministrative privileges to update the contents of the
served data. This creates tremendous challenges for IDS
system training because the HTTP requests can contain
variables in the passed parameters.

For example, instead of one-to-one mapping, one web
request to the webserver usually invokes a number of SQL
queries that can vary depending on type of the request and
the state of the system. Some requests will only retrieve data
from the webserver instead of invoking database queries,
meaning that no queries will be generated by these web
requests. In other cases, one request will invoke a number of
database queries. Finally, in some cases, the webserver will
have some periodical tasks that trigger database queries
without any web requests driving them. The challenge is to
take all of these cases into account and build the normality
model in such a way that we can cover all of them.

As illustrated in Fig. 2, all communications from the
clients to the database are separated by a session. We assign
each session with a unique session ID. DoubleGuard
normalizes the variable values in both HTTP requests and
database queries, preserving the structures of the requests
and queries. To achieve this, DoubleGuard substitutes the
actual values of the variables with symbolic values. Fig. 15
depicts an example of the normalizations of the captured
requests and queries.

Following this step, session i will have a set of requests,
which is Ri, as well as a set of queries, which is Qi. If the
total number of sessions of the training phase is N , then we

have the set of total web requests REQ and the set of total
SQL queries SQL across all sessions. Each single web
request rm 2 REQ may also appear several times in
different Ri where i can be 1; 2 . . .N . The same holds true
for qn 2 SQL.

4.1 Inferring Mapping Relations

If several SQL queries, such as qn, qp, are always found
within one HTTP request of rm, then we can usually have
an exact mapping of rm ! fqn; qpg. However, this is not
always the case. Some requests will result in different
queries based on the request parameters and the state of the
webserver. For example, for web request rm, the invoked
query set can sometimes be fqn,qpg or, at other times, fqpg or
fqq; qn; qsg. The probabilities for these queries are usually
not the same. For 100 requests of rm, the set is at fqn; qpg
75 times, at fqpg20 times, and at fqq; qn; qsg only five times.
In such a case, we can find the mapping of rm ! qp is
100 percent, with an rm ! qn possibility of 80 percent and
an rm ! qs occurrence at 5 percent of all cases. We define
this first type of mapping as deterministic and the latter
ones as nondeterministic.

Below, we classify the four possible mapping patterns.
Since the request is at the origin of the data flow, we treat
each request as the mapping source. In other words, the
mappings in the model are always in the form of one request
to a query set rm ! Qn. The possible mapping patterns are
as follows:

4.1.1 Deterministic Mapping

This is the most common and perfectly matched pattern.
That is to say that web request rm appears in all traffic with
the SQL queries set Qn. The mapping pattern is then
rm ! Qn ðQn 6¼ ;Þ. For any session in the testing phase with
the request rm, the absence of a query set Qn matching the
request indicates a possible intrusion. On the other hand, if
Qn is present in the session traffic without the correspond-
ing rm, this may also be the sign of an intrusion. In static
websites, this type of mapping comprises the majority of
cases since the same results should be returned for each
time a user visits the same link.

4.1.2 Empty Query Set

In special cases, the SQL query set may be the empty set.
This implies that the web request neither causes nor
generates any database queries. For example, when a web
request for retrieving an image GIF file from the same
webserver is made, a mapping relationship does not exist
because only the web requests are observed. This type of
mapping is called rm ! ;. During the testing phase, we
keep these web requests together in the set EQS.

4.1.3 No Matched Request

In some cases, the webserver may periodically submit
queries to the database server in order to conduct some
scheduled tasks, such as cron jobs for archiving or backup.
This is not driven by any web request, similar to the reverse
case of the Empty Query Set mapping pattern. These
queries cannot match up with any web requests, and we
keep these unmatched queries in a set NMR. During the
testing phase, any query within set NMR is considered
legitimate. The size of NMR depends on webserver logic,
but it is typically small.

LE ET AL.: DOUBLEGUARD: DETECTING INTRUSIONS IN MULTITIER WEB APPLICATIONS 517
Downloaded from www.VTUplanet.com

4.1.4 Nondeterministic Mapping

The same web request may result in different SQL query
sets based on input parameters or the status of the webpage
at the time the web request is received. In fact, these
different SQL query sets do not appear randomly, and there
exists a candidate pool of query sets (e.g., fQn;Qp;Qq . . .g).
Each time that the same type of web request arrives, it
always matches up with one (and only one) of the query
sets in the pool. The mapping pattern is rm ! Qi

(Qi 2 fQn;Qp;Qq . . .g). Therefore, it is difficult to identify
traffic that matches this pattern. This happens only within
dynamic websites, such as blogs or forum sites. Fig. 7
illustrates all four mapping patterns.

4.2 Modeling for Static Websites

In the case of a static website, the nondeterministic mapping
does not exist as there are no available input variables or
states for static content. We can easily classify the traffic
collected by sensors into three patterns in order to build
the mapping model. As the traffic is already separated by
session, we begin by iterating all of the sessions from 1 to N .
For each rm 2 REQ, we maintain a set ARm to record the
IDs of sessions in which rm appears. The same holds for the
database queries; we have a set AQs for each qs 2 SQL to
record all the session IDs. To produce the training model,
we leverage the fact that the same mapping pattern appears
many times across different sessions. For each ARm, we
search for the AQs that equals the ARm. When ARm ¼ AQs,
this indicates that every time rm appears in a session, then qs
will also appear in the same session, and vice versa.

Given enough samples, we can confidently extract a
mapping pattern rm ! qs. Here, we use a threshold value t
so that if the mapping appears in more than t sessions (e.g.,
the cardinality of ARm or AQs is greater than t), then a
mapping pattern has been found. If such a pattern appears
less than t times, this indicates that the number of training
sessions is insufficient. In such a case, scheduling more
training sessions is recommended before the model is built,
but these patterns can also be ignored since they may be
incorrect mappings. In our experiments, we set t to three,
and the results demonstrate that the requirement was easily
satisfied for a static website with a relatively low number of
training sessions. After we confirm all deterministic map-
pings, we remove these matched requests and queries from
REQ and SQL, respectively. Since multiple requests are
often sent to the webserver within a short period of time by
a single user operation, they can be mapped together to the
same AQs. Some web requests that could appear separately
are still present as a unit. For example, the read request

always precedes the post request on the same webpage.
During the training phase, we treat them as a single
instance of web requests bundled together unless we
observe a case when either of them appears separately.

Our next step is to decide the other two mapping
patterns by assembling a white list for static file requests,
including JPG, GIF, CSS, etc. HTTP requests for static files
are placed in the EQS set. The remaining requests are
placed in REQ; if we cannot find any matched queries for
them, they will also be placed in the EQS set. In addition,
all remaining queries in SQL will be considered as No
Matched Request cases and placed into NMR.

Fig. 8 illustrates the use of the session ID provided by the
container (VE) in order to build the deterministic mapping
between http requests and the database requests. The
request rA has the set ARA of {2,4,5}, which equals to AQY .
Therefore, we can decide a Deterministic Mapping rA ! qY .

We developed an algorithm that takes the input of
training data set and builds the mapping model for static
websites. For each unique HTTP request and database
query, the algorithm assigns a hash table entry, the key of
the entry is the request or query itself, and the value of the
hash entry is AR for the request or AQ for the query,
respectively. The algorithm generates the mapping model
by considering all three mapping patterns that would
happen in static websites. The algorithm below describes
the training process.

Algorithm 1. Static Model Building Algorithm

Require: Training Data set, Threshold t

Ensure: The Mapping Model for static website

1: for each session separated traffic Ti do

2: Get different HTTP requests r and DB queries q in

this session

3: for each different r do

4: if r is a request to static file then

5: Add r into set EQS

6: else

7: if r is not in set REQ then

8: Add r into REQ

9: Append session ID i to the set ARr with r as

the key

10: for each different q do

11: if q is not in set SQL then

12: Add q into SQL

13: Append session ID i to the set AQq with q as the

key

14: for each distinct HTTP request r in REQ do

518 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

Fig. 7. Overall representation of mapping patterns. Fig. 8. Deterministic mapping using session ID of the container (VE).

Downloaded from www.VTUplanet.com

15: for each distinct DB query q in SQL do

16: Compare the set ARr with the set AQq

17: if ARr ¼ AQq and CardinalityðARrÞ > t then

18: Found a Deterministic mapping from r to q

19: Add q into mapping model set MSr of r

20: Mark q in set SQL

21: else

22: Need more training sessions

23: return False
24: for each DB query q in SQL do

25: if q is not marked then

26: Add q into set NMR

27: for each HTTP request r in REQ do

28: if r has no deterministic mapping model then

29: Add r into set EQS

30: return True

4.3 Testing for Static Websites

Once the normality model is generated, it can be
employed for training and detection of abnormal beha-
vior. During the testing phase, each session is compared
to the normality model. We begin with each distinct web
request in the session and, since each request will have
only one mapping rule in the model, we simply compare
the request with that rule. The testing phase algorithm is
as follows:

1. If the rule for the request is Deterministic Mapping
r! Q (Q 6¼ ;), we test whether Q is a subset of a
query set of the session. If so, this request is valid,
and we mark the queries in Q. Otherwise, a violation
is detected and considered to be abnormal, and the
session will be marked as suspicious.

2. If the rule is Empty Query Set r! ;, then the request
is not considered to be abnormal, and we do not
mark any database queries. No intrusion will be
reported.

3. For the remaining unmarked database queries, we
check to see if they are in the set NMR. If so, we
mark the query as such.

4. Any untested web request or unmarked database
query is considered to be abnormal. If either exists
within a session, then that session will be marked as
suspicious.

In our implementation and experimenting of the static
testing website, the mapping model contained the Determi-
nistic Mappings and Empty Query Set patterns without the
No Matched Request pattern. This is commonly the case for
static websites. As expected, this is also demonstrated in
our experiments in Section 5.

4.4 Modeling of Dynamic Patterns

In contrast to static webpages, dynamic webpages allow
users to generate the same web query with different
parameters. Additionally, dynamic pages often use POST
rather than GET methods to commit user inputs. Based on
the webserver’s application logic, different inputs would
cause different database queries. For example, to post a
comment to a blog article, the webserver would first query
the database to see the existing comments. If the user’s
comment differs from previous comments, then the webser-
ver would automatically generate a set of new queries to

insert the new post into the back-end database. Otherwise,
the webserver would reject the input in order to prevent
duplicated comments from being posted (i.e., no corre-
sponding SQL query would be issued). In such cases, even
assigning the same parameter values would cause different
set of queries, depending on the previous state of the
website. Likewise, this nondeterministic mapping case (i.e.,
one-to-many mapping) happens even after we normalize all
parameter values to extract the structures of the web
requests and queries. Since the mapping can appear
differently in different cases, it becomes difficult to identify
all of the one-to-many mapping patterns for each web
request. Moreover, when different operations occasionally
overlap at their possible query set, it becomes even harder
for us to extract the one-to-many mapping for each operation
by comparing matched requests and queries across the
sessions.

Since the algorithm for extracting mapping patterns in
static pages no longer worked for the dynamic pages, we
created another training method to build the model. First,
we tried to categorize all of the potential single (atomic)
operations on the webpages. For instance, the common
possible operations for users on a blog website may include
reading an article, posting a new article, leaving a comment,
visiting the next page, etc. All of the operations that appear
within one session are permutations of these operations. If
we could build a mapping model for each of these basic
operations, then we could compare web requests to
determine the basic operations of the session and obtain
the most likely set of queries mapped from these operations.
If these single operation models could not cover all of the
requests and queries in a session, then this would indicate a
possible intrusion.

Interestingly, our blog website built for testing purposes
shows that, by only modeling nine basic operations, it can
cover most of the operations that appeared in the real
captured traffic. For each operation (e.g., reading an article),
we build the model as follows: in one session, we perform
only a single read operation, and then we obtain the set of
triggered database queries. Since we cannot ensure that
each user perform only a single operation within each
session in real traffic, we use a tool called Selenium [15] to
separately generate training traffic for each operation. In
each session, the tool performs only one basic operation.
When we repeat the operation multiple times using the tool,
we can easily substitute the different parameter values that
we want to test (in this case, reading different articles).
Finally, we obtain many sets of queries from one session
and assemble them to obtain the set of all possible queries
resulting from this single operation.

By placing each rm, or the set of related requests Rm, in
different sessions with many different possible inputs, we
obtain as many candidate query sets fQn, Qp, Qq . . .g as
possible. We then establish one operation mapping model
Rm ! Qm (Qm ¼ Qn [Qp [Qq [. . .), wherein Rm is the set
of the web requests for that single operation and Qm

includes the possible queries triggered by that operation.
Notice that this mapping model includes both deterministic
and nondeterministic mappings, and the set EQS is still
used to hold static file requests. As we are unable to
enumerate all the possible inputs of a single operation
(particularly write type operations), the model may incur
false positives.

LE ET AL.: DOUBLEGUARD: DETECTING INTRUSIONS IN MULTITIER WEB APPLICATIONS 519
Downloaded from www.VTUplanet.com

4.5 Detection for Dynamic Websites

Once we build the separate single operation models, they
can be used to detect abnormal sessions. In the testing phase,
traffic captured in each session is compared with the model.
We also iterate each distinct web request in the session. For
each request, we determine all of the operation models that
this request belongs to, since one request may now appear in
several models. We then take the entire corresponding
query sets in these models to form the set CQS. For the
testing session i, the set of DB queries Qi should be a subset
of the CQS. Otherwise, we would find some unmatched
queries. For the web requests inRi, each should either match
at least one request in the operation model or be in the set
EQS. If any unmatched web request remains, this indicates
that the session has violated the mapping model.

For example, consider the model of two single opera-
tions such as Reading an article and Writing an Article. The
mapping models are READ! RQ and WRITE !WQ,
and we use them to test a given session i. For all the
requests in the session, we then find that each of them
either belongs to request set READ or WRITE. (You can
ignore set EQS here.) This means that there are only two
basic operations in the session, though they may appear as
any of their permutations. Therefore, the query set Qi

should be a subset of RQ [WQ, which is CQS. Otherwise,
queries exist in this session that do not belong to either of
the operations, which is inconsistent with the web requests
and indicates a possible intrusion. Similarly, if there are
web requests in the session that belong to none of the
operation models, then it either means that our models
haven’t covered this type of operation or that this is an
abnormal web request. According to our algorithm, we will
identify such sessions as suspicious so that we may have
false positives in our detections. We discuss the false
positive detection rate further in Section 5.

5 PERFORMANCE EVALUATION

We implemented a prototype of DoubleGuard using a
webserver with a back-end DB. We also set up two testing
websites, one static and the other dynamic. To evaluate the
detection results for our system, we analyzed four classes of
attacks, as discussed in Section 3, and measured the false
positive rate for each of the two websites.

5.1 Implementation

In our prototype, we chose to assign each user session into a
different container; however, this was a design decision. For
instance, we can assign a new container per each new IP
address of the client. In our implementation, containers were
recycled based on events or when sessions time out. We were
able to use the same session tracking mechanisms as
implemented by the Apache server (cookies, mod_usertrack,
etc.) because lightweight virtualization containers do not
impose high memory and storage overhead. Thus, we could
maintain a large number of parallel-running Apache
instances similar to the Apache threads that the server
would maintain in the scenario without containers. If a
session timed out, the Apache instance was terminated along
with its container. In our prototype implementation, we used
a 60-minute timeout due to resource constraints of our test
server. However, this was not a limitation and could be
removed for a production environment where long-running

processes are required. Fig. 9 depicts the architecture and
session assignment of our prototype, where the host
webserver works as a dispatcher.

Initially, we deployed a static testing website using the
Joomla [10] Content Management System. In this static
website, updates can only be made via the back-end
management interface. This was deployed as part of our
center website in production environment and served
52 unique webpages. For our analysis, we collected real
traffic to this website for more than two weeks and obtained
1,172 user sessions.

To test our system in a dynamic website scenario, we set
up a dynamic Blog using the Wordpress [18] blogging
software. In our deployment, site visitors were allowed to
read, post, and comment on articles. All models for the
received front-end and back-end traffic were generated
using these data.

We discuss performance overhead, which is common for
both static and dynamic models, in the following section. In
our analysis, we did not take into consideration the
potential for caching expensive requests to further reduce
the end-to-end latency; this we left for future study.

5.2 Container Overhead

One of the primary concerns for a security system is its
performance overhead in terms of latency. In our case, even
though the containers can start within seconds, generating a
container on the fly to serve a new session will increase the
response time heavily. To alleviate this, we created a pool of
webserver containers for the forthcoming sessions akin to
what Apache does with its threads. As sessions continued
to grow, our system dynamically instantiated new contain-
ers. Upon completion of a session, we recycled these
containers by reverting them to their initial clean states.

The overhead of the server with container architecture
was measured using a machine with the following specifica-
tions: four cores 2.8 GHz CPU, 8 GB memory, 100 MB/s NIC
card, and CentOS 5.3 as the server OS. Our container
template used Ubuntu 8.0.4 with Apache 2.2.8, and PHP
5.2.4. The size of the template was about 160 MB, and Mysql
was configured to run on the host machine. Our experiment
showed that it takes only a few seconds for a container to
start up, and our server can run up to 250 webserver
instances to form the pool of containers. Beyond this point,
we observed a dramatic performance downgrade of the
webserver instances.

520 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

Fig. 9. The overall architecture of our prototype.

Downloaded from www.VTUplanet.com

We evaluated the overhead of our container-based server
against a vanilla webserver. In order to measure throughput
and response time, we used two webserver benchmark tools:
http_load [9] and autobench [4]. The testing website was the
dynamic blog website, and both vanilla webserver and the
container-based webserver connected to the same Mysql
database server on the host machine. For the container-based
server, we maintained a pool of 160 webserver instances on
the machine.

For the http_load evaluation, we used the rate of five (i.e.,
it emulated five concurrent users). We tested under the
parameters of 100, 200, and 400 total fetches, as well as 3 and
10 seconds of fetches. For example, in the 100-fetches
benchmark, http_load fetches the URLs as fast as it can
100 times. Similarly, in the 10-seconds benchmark, http_load
fetches the URLs as fast as it can during the last 10 seconds.
We picked 15 major URLs of the website and tested them
against both servers. Fig. 10 shows our experiment results.

The value of fetches per second in the http_load results
is the most important indicator to reflect webserver
throughput performance. From the figure, we can observe
that the overhead varied from 10.3 to 26.2 percent, under
the full working load. When we put the parameters at 3 and
10 seconds, the overhead was about 23 percent.

We also tested using autobench, which is a Perl script
wrapper around httperf [8]. It can automatically compare the
performance of two websites. We tested demanding rate
ranging from 10 to 190, which means that a series of tests
started at 10 requests per second and increased by 20 requests
per second until 190 requests per second were being
requested; any responses that took longer than 10 seconds
to arrive were counted as errors. We compared the actual
requests rates and the replay rates for both servers.

Fig. 11 shows that when the rate was less than 110
concurrent sessions per second, both servers could handle
requests fairly well. Beyond that point, the rates in the
container-based server showed a drop: for 150 sessions per
second, the maximum overhead reflected in the reply rate
was around 21 percent (rate of 130). Notice that 21 percent
was the worst case scenario for this experiment, which is
fairly similar to 26.2 percent in the http_load experiment.
When the server was not overloaded, and for our server this
was represented by a rate of less than 110 concurrent sessions
per second, the performance overhead was negligible.

Fig. 12 depicts the time needed for starting a container.

As we opened 50 containers in a row, the average time was

about 4.2 seconds.

5.3 Static Website Model in Training Phase

For the static website, we used the algorithm in Section 4.2 to
build the mapping model, and we found that only the
Deterministic Mapping and the Empty Query Set Mapping
patterns appear in the training sessions. We expected that
the No Matched Request pattern would appear if the web
application had a cron job that contacts back-end database
server; however, our testing website did not have such a cron
job. We first collected 338 real user sessions for a training
data set before making the website public so that there was
no attack during the training phase.

We used part of the sessions to train the model and all the
remaining sessions to test it. For each number on the x-axis of
Fig. 13, we randomly picked the number of sessions from the
overall training sessions to build the model using the
algorithm, and we used the built model to test the remaining
sessions. We repeated each number 20 times and obtained the
average false positive rate (since there was no attack in the
training data set). Fig. 13 shows the training process. As the
number of sessions used to build the model increased, the
false positive rate decreased (i.e., the model became more
accurate). From the same figure, we can observe that after
taking 35 sessions, the false positive rate decreased and
stayed at 0. This implies that for our testing static website,
35 sessions for training would be sufficient to correctly build
the entire model. Based on this training process accuracy
graph, we can determine a proper time to stop the training.

5.4 Dynamic Modeling Detection Rates

We also conducted model building experiments for the
dynamic blog website. We obtained 329 real user traffic
sessions from the blog under daily workloads. During this
seven-day phase, we made our website available only to
internal users to ensure that no attacks would occur. We

LE ET AL.: DOUBLEGUARD: DETECTING INTRUSIONS IN MULTITIER WEB APPLICATIONS 521

Fig. 10. Performance evaluation using http_load. The overhead is
between 10.3 to 26.2 percent.

Fig. 11. Performance evaluation using autobench.

Fig. 12. Time for starting a new container.

Downloaded from www.VTUplanet.com

then generated 20 attack traffic sessions mixed with these
legitimate sessions, and the mixed traffic was used for
detection.

The model building for a dynamic website is different
from that for a static one. We first manually listed nine
common operations of the website, which are presented in
Table 1. To build a model for each operation, we used the
automatic tool Selenium [15] to generate traffic. In each
session, we put only a single operation, which we iterated
50 times with different values in the parameters. Finally, as
described in Section 4.4, we obtained separate models for
each single operation. We then took the built models and
tested them against all 349 user sessions to evaluate the
detection performance. Fig. 14 shows the ROC curves for
the testing results. We built our models with different
numbers of operations, and each point on the curves
indicates a different Threshold value. The threshold value is
defined as the number of HTTP requests or SQL queries in a
session that are not matched with the normality model. We
varied the threshold value from 0 to 30 during the detection.
As the ROC curves depict, we could always achieve a
100 percent True Positive Rate when doing strict detection
(threshold of 0) against attacks in our threat model. With a
more accurate model, we can reach 100 percent sensitivity
with a lower False Positive rate. The nature of False
Positives comes from the fact that our manually extracted
basic operations are not sufficient to cover all legitimate
user behaviors. In Fig. 14, if we model nine basic operations,
we can reach 100 percent Sensitivity with six percent False
Positive rate. In the case of 23 basic operations, we achieve
the False Positive rate of 0.6 percent. This is part of the
learning process illustrated in this paper, by extending the

learning step to include more operations we can create a
more robust model and further reduce the false positives.

5.5 Attack Detection

Once the model is built, it can be used to detect malicious
sessions. For our static website testing, we used the
production website, which has regular visits of around 50-
100 sessions per day. We collected regular traffic for this
production site, which totaled 1,172 sessions.

For the testing phase, we used the attack tools listed in
Table 2 to manually launch attacks against the testing
website, and we mixed these attack sessions with the
normal traffic obtained during the training phase. We used
the sqlmap [16], which is an automatic tool that can generate
SQL injection attacks. Nikto [13], a webserver scanner tool
that performs comprehensive tests, and Metasploit [12]
were used to generate a number of webserver-aimed http
attacks (i.e., a hijack future session attack). We performed
the same attacks on both DoubleGuard and a classic three-
tier architecture with a network IDS at the webserver side
and a database IDS at the database side. As there is no
popular anomaly-based open source network IDS available,
we used Snort [39] as the network IDS in front of the

522 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

Fig. 13. False positives versus training time in static website.

Fig. 14. ROC curves for dynamic models.

TABLE 1
Single Operation Models Example

TABLE 2
Detection Results for Attacks (GSQL Stands for
GreenSQL, and DG Stands for DoubleGuard,

�Indicates Attack Using Metasploit)

Downloaded from www.VTUplanet.com

webserver, and we used GreenSQL as the database IDS. For
Snort IDS, we downloaded and enabled all of the default
rules from its official website. We put GreenSQL into
database firewall mode so that it would automatically
whitelist all queries during the learning mode and block all
unknown queries during the detection mode. Table 2 shows
the experiment results where DoubleGuard was able to
detect most of the attacks and there were 0 false positives in
our static website testing.

Furthermore, we performed the same test for the
dynamic blog website. In addition to the real traffic data
that we captured for plotting the ROC curves, we also
generated 1,000 artificial traffic sessions using Selenium [15]
and mixed the attack sessions together with all of them. As
expected, the models for the dynamic website could also
identify all of the same attack sessions as the static case. In
the following section, we will discuss the experiment results
in Table 2 in more detail based on these four attack
scenarios in Section 3.3.

5.5.1 Privilege Escalation Attack

For Privilege Escalation Attacks, according to our previous
discussion, the attacker visits the website as a normal user
aiming to compromise the webserver process or exploit
vulnerabilities to bypass authentication. At that point, the
attacker issues a set of privileged (e.g., admin-level) DB
queries to retrieve sensitive information. We log and
process both legitimate web requests and database queries
in the session traffic, but there are no mappings among
them. IDSs working at either end can hardly detect this
attack since the traffic they capture appears to be legitimate.
However, DoubleGuard separates the traffic by sessions. If
it is a user session, then the requests and queries should all
belong to normal users and match structurally. Using the
mapping model that we created during the training phase,
DoubleGuard can capture the unmatched cases.

WordPress [18] 2.3.1 had a known privilege escalation
vulnerability. As described in [19], there was a vulnerable
check “if (strpos($_SERVER[‘PHP_SELF’], ‘wp-admin/’) !==
false) $this->is_admin = true;” that used the PHP strpos()
function to check whether the $_SERVER[“PHP_SELF”]
global variable contained the string “wp-admin/.” If the
strpos() function found the “wp-admin/” string within the
$_SERVER[“PHP_SELF”] variable, it would return TRUE,
which would result in the setting of the “is_admin” value to
true. This ultimately granted the user administrative rights
to certain portions of the web application. The vulnerable
code was corrected to “if (is_admin()) $this->is_admin = true;”
in a later version, which added a function to determine
whether the user has administrative privilege. With the
vulnerable code, an unauthorized user could input a forged
URL like “http://www.myblog.com/index.php/wp-admin/” so as
to set the value of variable $this->is_admin to TRUE. This
would allow the unauthorized user to access future, draft,
or pending posts that are administrator-level information.

According to our experimental results, DoubleGuard is
able to identify this class of attacks because the captured
administrative queries do not match any captured HTTP
request. In addition, the crafted URLs also violate the
mapping model of DoubleGuard, triggering an alert. In
contrast, Snort fails to generate any alert upon this type of
attack, as does GreenSQL. There are other privilege escala-
tion vulnerabilities, such as the ones listed in NVD [2], [3],

which prevent both a network IDS like Snort or a database
IDS from detecting attacks against these vulnerabilities.
However, by looking at the mapping relationship between
web requests and database queries, DoubleGuard is effective
at capturing such attacks.

5.5.2 Hijack Future Session Attack (Webserver-Aimed

Attack)

Out of the four classes of attacks we discuss, session
hijacking is the most common, as there are many examples
that exploit the vulnerabilities of Apache, IIS, PHP, ASP,
and cgi, to name a few. Most of these attacks manipulate the
HTTP requests to take over the webserver. We first ran
Nikto. As shown in our results, both Snort and Double-
Guard detected the malicious attempts from Nikto. As a
second tool, we used Metasploit loaded with various HTTP-
based exploits. This time, Snort missed most of these attack
attempts, which indicates that Snort rules do not have such
signatures. However, DoubleGuard was able to detect these
attack sessions. Here, we point out that most of these
attacks are unsuccessful, and DoubleGuard captured these
attacks mainly because of the abnormal HTTP requests.
DoubleGuard can generate two classes of alerts. One class
of alerts is generated by sessions whose traffic does not
match the mapping model with abnormal database queries.
The second class of alerts is triggered by sessions whose
traffic violates the mapping model but only in regard to
abnormal HTTP requests; there is no resulting database
query. Most unsuccessful attacks, including 404 errors with
no resulting database query, will trigger the second type of
alerts. When the number of alerts becomes overwhelming,
users can choose to filter the second type of alerts because it
does not have any impact on the back-end database. Last,
GreenSQL cannot detect these attacks.

DoubleGuard is not designed to detect attacks that
exploit vulnerabilities of the input validation of HTTP
requests. We argue that, if there is no DB query, this class of
attacks cannot harm other sessions through the webserver
layer because of the isolation provided by the containers.
However, as we pointed out in Section 3.4, XSS cannot be
detected nor mitigated by DoubleGuard since the session
hijacking does not take place at the isolated webserver layer.

5.5.3 Injection Attack

Here, we describe how our approach can detect the SQL
injection attacks. To illustrate with an example, we wrote a
simple PHP login page that was vulnerable to SQL injection
attack. As we used a legitimate username and password to
successfully log in, we could include the HTTP request in
the second line of Fig. 15.

We normalized the value of “admin” and “123456,” and
repeated the legitimate login process a few times during the
training phase. The mapping model that was generated is
shown in Fig. 15 (S stands for a string value), where the

LE ET AL.: DOUBLEGUARD: DETECTING INTRUSIONS IN MULTITIER WEB APPLICATIONS 523

Fig. 15. A trained mapping from web request to database queries.

Downloaded from www.VTUplanet.com

generalized HTTP request structure maps to the following
SQL queries. After the training phase, we launched an SQL
injection attack that is shown in Fig. 16. Note that the
attacker was not required to know the user name and
password because he/she could use an arbitrary username
the password 1’ or ’1=1, which would be evaluated as true.

The HTTP request from the SQL injection attacker
would look like the second line in Fig. 16. The parameter
shown in the box is the injected content. After normal-
izing all of the values in this HTTP request, we had the
same HTTP request as the one in Fig. 15. However, the
database queries we received in Fig. 16 (shown in box) do
not match the deterministic mapping we obtained during
our training phase.

In another experiment, we used sqlmap [16] to attack the
websites. This tool tried out all possible SQL injection
combinations as a URL and generated numerous abnormal
queries that were detected by DoubleGuard. GreenSQL was
also effective at detecting these attacks, which shows its
ability to detect SQL injection attacks. Regarding Snort,
although it is possible to write user-defined rules to detect
SQL injection attack attempts, our experiments did not
result in Snort reporting any SQL injection alerts.

SQL injection attacks can be mitigated by input validation.
However, SQL injection can still be successful because
attackers usually exploit the vulnerability of incorrect input
validation implementation, often caused by inexperienced or
careless programmers or imprecise input model definitions.
We establish the mappings between HTTP requests and
database queries, clearly defining which requests should
trigger which queries. For an SQL injection attack to be
successful, it must change the structure (or the semantics) of
the query, which our approach can readily detect.

5.5.4 Direct DB Attack

If any attacker launches this type of attack, it will easily be
identified by our approach. First of all, according to our
mapping model, DB queries will not have any matching
web requests during this type of attack. On the other hand,
as this traffic will not go through any containers, it will be
captured as it appears to differ from the legitimate traffic
that goes through the containers. In our experiments, we
generated queries and sent them to the databases without
using the webserver containers. DoubleGuard readily
captured these queries. Snort and GreenSQL did not report
alerts for this attack.

6 CONCLUSION

We presented an intrusion detection system that builds
models of normal behavior for multitiered web applications

from both front-end web (HTTP) requests and back-end
database (SQL) queries. Unlike previous approaches that
correlated or summarized alerts generated by independent
IDSs, DoubleGuard forms a container-based IDS with
multiple input streams to produce alerts. We have shown
that such correlation of input streams provides a better
characterization of the system for anomaly detection
because the intrusion sensor has a more precise normality
model that detects a wider range of threats.

We achieved this by isolating the flow of information from
each webserver session with a lightweight virtualization.
Furthermore, we quantified the detection accuracy of our
approach when we attempted to model static and dynamic
web requests with the back-end file system and database
queries. For static websites, we built a well-correlated model,
which our experiments proved to be effective at detecting
different types of attacks. Moreover, we showed that this
held true for dynamic requests where both retrieval of
information and updates to the back-end database occur
using the webserver front end. When we deployed our
prototype on a system that employed Apache webserver, a
blog application, and a MySQL back end, DoubleGuard was
able to identify a wide range of attacks with minimal false
positives. As expected, the number of false positives
depended on the size and coverage of the training sessions
we used. Finally, for dynamic web applications, we reduced
the false positives to 0.6 percent.

ACKNOWLEDGMENTS

This work was supported in part by US National Science
Foundation (NSF) CNS-TC 0915291, US National Science
Foundation (NSF) CNS 1118355, ETRI (B551179-09-01-00),
and a research fund from Google, Inc. Any opinions, findings,
and conclusions expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding
sponsors.

REFERENCES

[1] SANS, “The Top Cyber Security Risks,” http://www.sans.org/
top-cyber-security-risks/, 2011.

[2] National Vulnerability Database, “Vulnerability Summary for
CVE-2010-4332,” http://web.nvd.nist.gov/view/vuln/detail?
vulnId= CVE-2010-4332, 2011.

[3] National Vulnerability Database, “Vulnerability Summary for
CVE-2010-4333,” http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2010-4333, 2011.

[4] Autobench, http://www.xenoclast.org/autobench/, 2011.
[5] “Common Vulnerabilities and Exposures,” http://www.cve.

mitre. org/, 2011.
[6] “Five Common Web Application Vulnerabilities,” http://www.

symantec.com/connect/articles/five-common-web-application-
vulnerabilities, 2011.

[7] greensql, http://www.greensql.net/, 2011.
[8] httperf, http://www.hpl.hp.com/research/linux/httperf/, 2011.
[9] http_load, http://www.acme.com/software/http_load/, 2011.
[10] Joomla cms, http://www.joomla.org/, 2011.
[11] Linux-vserver, http://linux-vserver.org/, 2011.
[12] metasploit, http://www.metasploit.com/, 2011.
[13] nikto, http://cirt.net/nikto2, 2011.
[14] Openvz, http://wiki.openvz.org, 2011.
[15] Seleniumhq, http://seleniumhq.org/, 2011.
[16] sqlmap, http://sqlmap.sourceforge.net/, 2011.
[17] “Virtuozzo Containers,” http://www.parallels.com/products/

pvc45/, 2011.
[18] “Wordpress,” http://www.wordpress.org/, 2011.
[19] “Wordpress Bug,” http://core.trac.wordpress.org/ticket/5487,

2011.

524 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

Fig. 16. The resulting queries of SQL injection attack.

Downloaded from www.VTUplanet.com

[20] C. Anley, “Advanced Sql Injection in Sql Server Applica-
tions,” technical report, Next Generation Security Software,
Ltd., 2002.

[21] K. Bai, H. Wang, and P. Liu, “Towards Database Firewalls,” Proc.
Ann. IFIP WG 11.3 Working Conf. Data and Applications Security
(DBSec ’05), 2005.

[22] B.I.A. Barry and H.A. Chan, “Syntax, and Semantics-Based
Signature Database for Hybrid Intrusion Detection Systems,”
Security and Comm. Networks, vol. 2, no. 6, pp. 457-475, 2009.

[23] D. Bates, A. Barth, and C. Jackson, “Regular Expressions
Considered Harmful in Client-Side XSS Filters,” Proc. 19th Int’l
Conf. World Wide Web, 2010.

[24] M. Christodorescu and S. Jha, “Static Analysis of Executables to
Detect Malicious Patterns,” Proc. Conf. USENIX Security Symp.,
2003.

[25] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, “Swaddler:
An Approach for the Anomaly-Based Detection of State Violations
in Web Applications,” Proc. Int’l Symp. Recent Advances in Intrusion
Detection (RAID ’07), 2007.

[26] H. Debar, M. Dacier, and A. Wespi, “Towards a Taxonomy of
Intrusion-Detection Systems,” Computer Networks, vol. 31, no. 9,
pp. 805-822, 1999.

[27] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “Toward
Automated Detection of Logic Vulnerabilities in Web Applica-
tions,” Proc. USENIX Security Symp., 2010.

[28] Y. Hu and B. Panda, “A Data Mining Approach for Database
Intrusion Detection,” Proc. ACM Symp. Applied Computing (SAC),
H. Haddad, A. Omicini, R.L. Wainwright, and L.M. Liebrock, eds.,
2004.

[29] Y. Huang, A. Stavrou, A.K. Ghosh, and S. Jajodia, “Efficiently
Tracking Application Interactions Using Lightweight Virtuali-
zation,” Proc. First ACM Workshop Virtual Machine Security,
2008.

[30] H.-A. Kim and B. Karp, “Autograph: Toward Automated
Distributed Worm Signature Detection,” Proc. USENIX Security
Symp., 2004.

[31] C. Kruegel and G. Vigna, “Anomaly Detection of Web-Based
Attacks,” Proc. 10th ACM Conf. Computer and Comm. Security
(CCS ’03), Oct. 2003.

[32] S.Y. Lee, W.L. Low, and P.Y. Wong, “Learning Fingerprints for a
Database Intrusion Detection System,” ESORICS: Proc. European
Symp. Research in Computer Security, 2002.

[33] Liang and Sekar, “Fast and Automated Generation of Attack
Signatures: A Basis for Building Self-Protecting Servers,” SIGSAC:
Proc. 12th ACM Conf. Computer and Comm. Security, 2005.

[34] J. Newsome, B. Karp, and D.X. Song, “Polygraph: Automatically
Generating Signatures for Polymorphic Worms,” Proc. IEEE Symp.
Security and Privacy, 2005.

[35] B. Parno, J.M. McCune, D. Wendlandt, D.G. Andersen, and A.
Perrig, “CLAMP: Practical Prevention of Large-Scale Data Leaks,”
Proc. IEEE Symp. Security and Privacy, 2009.

[36] T. Pietraszek and C.V. Berghe, “Defending against Injection
Attacks through Context-Sensitive String Evaluation,” Proc. Int’l
Symp. Recent Advances in Intrusion Detection (RAID ’05), 2005.

[37] S. Potter and J. Nieh, “Apiary: Easy-to-Use Desktop Application
Fault Containment on Commodity Operating Systems,” Proc.
USENIX Ann. Technical Conf., 2010.

[38] W. Robertson, F. Maggi, C. Kruegel, and G. Vigna, “Effective
Anomaly Detection with Scarce Training Data,” Proc. Network and
Distributed System Security Symp. (NDSS), 2010.

[39] M. Roesch, “Snort, Intrusion Detection System,” http://www.
snort.org, 2011.

[40] A. Schulman, “Top 10 Database Attacks,” http://www.bcs.org/
server.php?show=ConWebDoc.8852, 2011.

[41] R. Sekar, “An Efficient Black-Box Technique for Defeating Web
Application Attacks,” Proc. Network and Distributed System Security
Symp. (NDSS), 2009.

[42] A. Seleznyov and S. Puuronen, “Anomaly Intrusion Detection
Systems: Handling Temporal Relations between Events,” Proc.
Int’l Symp. Recent Advances in Intrusion Detection (RAID ’99), 1999.

[43] Y. Shin, L. Williams, and T. Xie, “SQLUnitgen: Test Case
Generation for SQL Injection Detection,” technical report, Dept.
of Computer Science, North Carolina State Univ., 2006.

[44] A. Srivastava, S. Sural, and A.K. Majumdar, “Database Intrusion
Detection Using Weighted Sequence Mining,” J. Computers, vol. 1,
no. 4, pp. 8-17, 2006.

[45] A. Stavrou, G. Cretu-Ciocarlie, M. Locasto, and S. Stolfo, “Keep
Your Friends Close: The Necessity for Updating an Anomaly
Sensor with Legitimate Environment Changes,” Proc. Second ACM
Workshop Security and Artificial Intelligence, 2009.

[46] G.E. Suh, J.W. Lee, D. Zhang, and S. Devadas, “Secure Program
Execution via Dynamic Information Flow Tracking,” ACM
SIGPLAN Notices, vol. 39, no. 11, pp. 85-96, Nov. 2004.

[47] F. Valeur, G. Vigna, C. Krügel, and R.A. Kemmerer, “A
Comprehensive Approach to Intrusion Detection Alert Correla-
tion,” IEEE Trans. Dependable and Secure Computing, vol. 1, no. 3,
pp. 146-169, July-Sept. 2004.

[48] T. Verwoerd and R. Hunt, “Intrusion Detection Techniques and
Approaches,” Computer Comm., vol. 25, no. 15, pp. 1356-1365, 2002.

[49] G. Vigna, W.K. Robertson, V. Kher, and R.A. Kemmerer, “A
Stateful Intrusion Detection System for World-Wide Web Ser-
vers,” Proc. Ann. Computer Security Applications Conf. (ACSAC ’03),
2003.

[50] G. Vigna, F. Valeur, D. Balzarotti, W.K. Robertson, C. Kruegel, and
E. Kirda, “Reducing Errors in the Anomaly-Based Detection of
Web-Based Attacks through the Combined Analysis of Web
Requests and SQL Queries,” J. Computer Security, vol. 17, no. 3,
pp. 305-329, 2009.

[51] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G.
Vigna, “Cross Site Scripting Prevention with Dynamic Data
Tainting and Static Analysis,” Proc. Network and Distributed System
Security Symp. (NDSS ’07), 2007.

[52] D. Wagner and D. Dean, “Intrusion Detection via Static Analysis,”
Proc. Symp. Security and Privacy (SSP ’01), May 2001.

Meixing Le received the BS and MS degrees in
computer science from Fudan University,
Shanghai, China. He is working toward the
PhD degree at the Department of Computer
Science and is a member of the Center for
Secure Information Systems at George Mason
University, Fairfax, Virginia. His current interests
include web application security, automated
system recovery, and access control in distrib-
uted and cloud environments.

Angelos Stavrou received the MSc degree in
electrical engineering, and the MPhil and PhD
(with distinction) degrees in computer science all
from Columbia University. He also received the
MSc degree in theoretical computer science from
the University of Athens, and the BSc degree in
physics with distinction from the University of
Patras, Greece. He is an assistant professor in
the Computer Science Department and is a
member of the Center for Secure Information

Systems at George Mason University, Fairfax, Virginia. His current
research interests include security and reliability for distributed systems,
security principles for virtualization, and anonymity with a focus on
building and deploying large-scale systems. He is a member of the ACM,
the IEEE, and the USENIX.

Brent ByungHoon Kang received the BS
degree from Seoul National University, the MS
degree from the University of Maryland at
College Park, and the PhD degree in computer
science from the University of California at
Berkeley. He is currently an associate professor
at the Department of Applied IT and the Center
for Secure Information System at Volgeanu
School of Engineering at GMU. He has been
working on systems security and administrations,

with a focus in antispam, malware, and botnet research. He is a member
of the IEEE, the USENIX and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LE ET AL.: DOUBLEGUARD: DETECTING INTRUSIONS IN MULTITIER WEB APPLICATIONS 525
Downloaded from www.VTUplanet.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

