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Prediction or Not? An Energy-Efficient
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Abstract—For many applications in wireless sensor networks (WSNs), users may want to continuously extract data from the networks
for analysis later. However, accurate data extraction is difficult—it is often too costly to obtain all sensor readings, as well as not
necessary in the sense that the readings themselves only represent samples of the true state of the world. Clustering and prediction
techniques, which exploit spatial and temporal correlation among the sensor data provide opportunities for reducing the energy
consumption of continuous sensor data collection. Integrating clustering and prediction techniques makes it essential to design a new
data collection scheme, so as to achieve network energy efficiency and stability. We propose an energy-efficient framework for
clustering-based data collection in wireless sensor networks by integrating adaptively enabling/disabling prediction scheme. Our
framework is clustering based. A cluster head represents all sensor nodes in the cluster and collects data values from them. To realize
prediction techniques efficiently in WSNs, we present adaptive scheme to control prediction used in our framework, analyze the
performance tradeoff between reducing communication cost and limiting prediction cost, and design algorithms to exploit the benefit of
adaptive scheme to enable/disable prediction operations. Our framework is general enough to incorporate many advanced features
and we show how sleep/awake scheduling can be applied, which takes our framework approach to designing a practical algorithm for
data aggregation: it avoids the need for rampant node-to-node propagation of aggregates, but rather it uses faster and more efficient
cluster-to-cluster propagation. To the best of our knowledge, this is the first work adaptively enabling/disabling prediction scheme for

clustering-based continuous data collection in sensor networks. Our proposed models, analysis, and framework are validated via

simulation and comparison with competing techniques.

Index Terms—Sensor networks, algorithm/protocol design, clustering, adaptive prediction.

1 INTRODUCTION

WIRELESS sensor networks (WSNs) have a broad range of
applications, such as battlefield surveillance, envir-
onmental monitoring, and disaster relief. A sensor network
consists of a set of autonomous sensor nodes which
spontaneously create impromptu communication links,
and then, collectively perform tasks without help from
any central servers.

In sensor networks, accurate data extraction is difficult—it
is often too costly to obtain all sensor readings, as well as not
necessary in the sense that the readings themselves only
represent samples of the true state of the world. As such, one
technique so-called prediction emerges to exploit the
temporal correlation of sensor data. Technology trends in
recent years have resulted in sensors’ increasing processing
power and capacity [3]. Implementing more sophisticated
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distributed algorithms in a sensor network becomes possible.
One important class of such algorithms is predictors, which
use past input values from the sensors to perform prediction
operations. The existence of such prediction capability
implies that the sensors do not need to transmit the data
values if they differ from a predicted value by less than a
certain prespecified threshold, or error bound.

A simple approach to developing a predictor in sensor
networks is simply to transmit the data from all sensors to
the base station (i.e., the sink), which has been realized in
many previous studies [16], [24], [5]. Predictor training and
prediction operations are carried out by the base station
only, but not the sensor nodes, despite their increasing
computing capacity. This solution while practical has many
disadvantages, such as a high energy consumption incurred
by transmitting the raw data to the base station, the need for
wireless link bandwidth, and potential high latency.

One solution is clustering-based localized prediction
[26], where a cluster head also a sensor node maintains a set
of history data of each sensor node within a cluster. We
expect the use of localized prediction techniques is highly
energy efficient due to the reduced length of routing path
for transmitting sensor data. On the downside, clustering-
based local prediction in sensor networks faces a couple of
new challenges. First, since the cost of training a predictor is
nontrivial, we should carefully investigate the trade-off
between communication and computation. To support
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prediction techniques, energy is consumed on communica-
tion (e.g., sending and receiving sensor data) and computa-
tion (e.g., processing sensor data and calculating a
predicted value). Motivated by this observation, we
analytically study how to determine whether a prediction
technique is beneficial in this paper. We qualitatively derive
sufficient conditions for this and reveal that the decision is a
function of both the desired error bound and the correlation
among the sensor data values. For instance, when the error
bound is very tight or the correlation is not significant, a
sensor node always has to send its data to the cluster head.
The second challenge is due to the characteristics and
inherent dynamics of the sensor data. When the data
distribution, in particular the data locality, evolves over
time, prediction techniques may not work well for a set of
less predictable data. Global reclustering is costly if it is
initiated periodically. We propose an algorithm for dy-
namic updates of clustering and the algorithm requires
mostly local operations and very low communication cost.
This adaptive update of clustering is expected to facilitate
clustering-based localized prediction by maintaining the
similarity within clusters at low communication cost.

The rest of the paper is organized as follows: In Section 2,
we describe related work on prediction and clustering
techniques in sensor networks. In Section 3, we describe the
models, analysis, and algorithms our framework. Section 4
discusses the implementation issues and describes the
application of our framework to the design of more efficient
and scalable data aggregation algorithms and sleep/awake
scheduling. Section 5 provides a performance comparison
of different techniques. Finally, we conclude the paper in
Section 6.

2 RELATED WORK

Energy conservation is crucial to the prolonged lifetime of a
sensor network. Many approaches for energy-efficient
monitoring have been explored to minimize energy con-
sumption. One class of techniques—prediction-based algo-
rithms is based on the observation that the sensors capable
of local computation create the possibility of training and
using predictors in a distributed way [16], [24], [5], [2], [21].
Taking lessons from MPEG encoding process, Goel and
Imielinski [5] proposed a prediction-based monitoring
mechanism in sensor network. McConnell and Skillicorn
[16] proposed that each sensor transmits to the base station
the predicted target class rather than the entire raw data.
Chu et al. [2] proposed a robust approximate technique that
uses prediction models to minimize communication from
sensor nodes to the base station. Likewise, Silberstein et al.
[21] proposed the data-driven processing to provide
continuous data without continuous reporting. To do this,
they developed a suppression strategy that adopts models
for optimization of data collection.

One alternative approach to selecting representative
sensor data is using clustering technique [28]. With
clustering, only cluster heads need to communicate with
the base station via multihop communication. Several
clustering algorithms have been designed with particular
attention to energy-efficient query processing. Younis and
Fahmy [27] proposed a protocol called HEED where a node
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uses its residual energy as the primary parameter to
probabilistically elect itself to become a cluster head. The
LEACH protocol [6] is an application-specific clustering
protocol, which has been shown to significantly improve
the network lifetime. Hussain and Matin [8] extended
LEACH to a hierarchical clustering-based routing (HCR)
technique. Kuhn et al. [14] proposed a probabilistic
technique to select cluster heads in which the probability
is dependent on the node degree.

One work that is close to our work is ASAP [4]. They also
consider clustering such that nodes with similar sensor data
values are assigned to the same clusters. In addition,
adaptive data collection and model-based prediction are
used to minimize the number of messages used to extract
data from the network. However, we emphasize the
differences from their work. First, and most importantly,
we provide an error-bounded data collection scheme. We
are uniquely interested in when the prediction scheme
really benefits data collection and have derived solutions
after careful energy-aware analysis. Second, [4] focused on
clustering and cluster head selection. We present a scheme
for dynamic update of clustering. Third, we developed our
framework integrating data aggregation to demonstrate the
usefulness of our framework. Finally, we must note that the
our approach is not exclusive. Instead, it can used in
conjunction with other techniques, for example, the cluster-
ing and cluster head selection algorithms in [4].

3 OuR PROPOSED FRAMEWORK

Our framework consists of two main functional compo-
nents: 1) data processing and intracluster prediction. It is
noted that unlike previous dual-prediction techniques, our
prediction operation can be enabled/disabled to achieve
energy efficiency, and 2) adaptive cluster split/merge.
Table 1 lists symbols used in this paper.

3.1 Adaptive Scheme to Enable/Disable Prediction

Operations

Consider a cluster of sensor nodes, which can be awake or
sleeping. If the sensor nodes are sleeping, the prediction
problem is reduced to estimating data distribution para-
meters using history data. In this case, it could well be the
case that the estimates are already available. We can
neglect this case.

If the sensor nodes are awake, they continuously monitor
an attribute = and generate a data value x, at every time
instance t. Without local prediction capability at the cluster
head, a sensor node has to send all data values to the cluster
head that estimates data distribution accordingly. With
local prediction, however, a sensor node can selectively
send its data values to the cluster head. One model for
selective sending is e-loss approximation: Given an error
bound € > 0, a sensor node sends its value z; to the cluster
head if |z; — %] > ¢, where Z, is a predicted representative
data value to approximate the true data. The intuition of
this choice is that if a value is close to the predicted value
there is not much benefit by reporting it. If the value is
much different from the predicted value, it is important to
consider it for computing the data distribution." A question

1. This is especially true for outlier detection [22], [20].
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TABLE 1
Symbols Used in This Paper
€ Error bound.
Tt Sensor reading at time instance t. pz is the mean value and
o2 is the variance.
Ty The predicted data value of .
P(+) Linear predictor.
Cp The cost of a single prediction.
@ Confidence level.
D(-) The CDF of Gaussian white noise.
VAR(:) | The variance.
STD(-) | The standard deviation.
m,p The order AR predictor.
o The covariance.
p The correlation coefficient.
k The ratio between transmission cost and computation cost.
é d-compactness for clustering.
CH Cluster head.
Fou The feature of cluster.
TCH The radius of this cluster.
d(-,-) The distance between two features.

to ask, is prediction really energy-efficient by trading
computation power for communication saving?

To solve this problem, we first develop a localized
prediction model. Very complex models are not practical in
our application due to the limited computational capacity of
sensor nodes. Fortunately, simple linear predictors are
sufficient to capture the temporal correlation of realistic
sensor data as shown by previous studies [2], [17]. A history-
based linear predictor is one of popular approaches to
predicting the future based on past n measurements:
T = P(xi_1,%4-9,...,%4—p). In particular, it has the properties:
1) k2 = P(kxi-1, ki, ... kx; ) and 2) P, (-) = ¢, where c
is constant, and )" | P, (-) = 1 if the predictor is unbiased.
One of the examples, autoregressive model denoted by AR(p)
is written as x, = ¢+ w; + Y b, ¢;z—;, where ¢1,..., ¢, are
the parameters of the model. Here, c is a constant always
presumed to be zero and w, is a white noise process with zero
mean and variance o2. The process is covariance stationary if
|¢i| < 1. Accordingly, a p-order AR predictor is: Z; =
>P | ¢izi—;. The parameters can be calculated by Yule-
Walker equations [18] or using the least square method.
The parameters are often updated on every measurement
and the estimation is carried out by both the cluster header
and cluster members to achieve synchronization.

With this model, the first question to be answered is:
Given an error bound e what is the confidence level to which we
can trust the predicted value? First, for a linear predictor, we
prove that the error of a m-step prediction is less than m
times that of an one-step prediction.

Lemma 1. Given a linear predictor P, if the condition y %, |¢;| <
1 holds, a m-step prediction error is less than m times the one-
step prediction error.

Lemma 1 implies that even all m previous values are
predicted, the cumulative error of m-step prediction is not
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significant. The variance of a m-step prediction error is
obtained similarly: VAR[e(m)] < m?¢?. The confidence
interval is #; = ® '(a)mo, where ® is the cumulative
distribution function of Gaussian white noise. Conversely,
given an error bound ¢, the predictor can provide data at a
confidence le.ve.l of a,, = 2@(%) — 1. (SDV is the
standard deviation.)

After the prediction model is formulated, we look at the
algorithm selection problem. Without local prediction all
sensor nodes will send original data values to the cluster
head. This scheme incurs significant communication cost.
With local prediction the communication cost is reduced by
selectively sending data to the cluster head, but the
computation cost can be prohibitive. Clearly, there is a
trade-off between the two schemes and the question is
which is more energy efficient?

Let ¢, denote the cost of a single prediction. Let the
transmission cost be k times c¢,, where k > 1. We have

iofi € k
Theorem 1. If the error bound e satisfies ®(:5) >EEL, the

scheme with local prediction is more energy efficient.

A careful investigation of above results reveals that this
model is not complete since in practice the variance o is
unknown. To solve this problem, we turn to analysis based
on covariance and correlation coefficient. Consider a
stationary time series x with mean p,, variance oﬁ, and
covariance ,(j). The correlation coefficient is p,(j) =

v:(j)/o%. The one-step error variance is:

VAR[e(1)] = o> (1 — Xpﬁjpr(j)) :

Accordingly, VAR[e(m)] < m*02(1 = 38| 6;p.(j))- Wecan,
therefore, eliminate the unknown o in Theorem 1, but have:

Corollary 1. If the error tolerant e and correlation coefficients

pz(4) satisfy
< _ > mowqfl(k?%l), (1)
1=37" 1 6ip.(J)

the scheme with local prediction is more energy efficient.

This result says, if the correlation coefficient is too small,
prediction will not be accurate. As a result, sensor data
values are often not within the error bound and will still be
transmitted to the cluster head. Meanwhile, if the error
bound is small, the condition is not easily satisfied either and
transmissions are still required. Together, this corollary tells
that algorithm selection should be determined based on both
the desired error bound and the predictability of the sensor
data. In addition, we found from experimental results that
the effect on the parameter m is not deterministic. While a
large value of m often leads to the condition of (1) hardly
satisfied and thereby the prediction scheme at the node is
prone to being disabled, it can reduce the energy consump-
tion as a long term predictor when the condition is satisfied.

Fig. 1 shows the pseudocode description of the algo-
rithms at the cluster head. The cluster head maintains a set
(a circular array) of history data for each cluster member.
Lines (08)-(12) show the cluster head will continuously
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Process at the cluster head
01: if timeout after m * A seconds
02: for each member 7 in the cluster

03: if condition (1) holds

04: send message to member 7 to enable prediction
05: else

06: send message to member ¢ to disable prediction
07: else

08:  for each member i in this cluster

09: if receive a data value from member 7

10: update the history data for member %

11: else

12: perform prediction to update the history data

Fig. 1. Operations at the cluster head.

receive data values from each cluster member to update the
set of history data, or when no data values are received will
use the predicted value instead for update. The cluster head
also runs a periodic process, Lines (01)-(06) to determine
algorithm selection, with or without local prediction. The
decision is broadcast to all cluster members.>

Fig. 2 shows the pseudocode description of the algo-
rithms at each cluster member. Each cluster member
maintains a set of history data of its own. If the algorithm
selection is “no local prediction,” it simply transmits the data
values. If local prediction is turned on, the cluster member
will perform prediction on each data value. If the data value
is not within the error bound, it will be sent to the cluster
head too. Meanwhile, the local set of history data should be
updated as well. In particular, if local prediction is enabled
and the data value is within the error bound, the predicted
value not the actual value, will be included in the set of
history data. The purpose is to maintain the consistency
between local and the cluster head.

3.2 Adaptive Update of Clustering

Although, we state that many clustering algorithms can be
used in our framework, adaptive update of clustering is
often required to capture the change in locality patterns. A
complete reclustering is an option but can also be
expensive. Not only it involves the establishment of
clustering map for all sensors, the complete change in
cluster membership also implies all history data and models
must be constructed from scratch. In this section, we
present algorithms for the dynamic split and merge of
clusters, which require low communication cost.

Let us first formulate the problem. Let F; be the feature
of node 7 and Fppy be the feature of a cluster head. In our
case, the feature is defined to be the coefficients of AR
model. The similarity between two feature F; and Fry is
defined by the distance d(F;, Foy). Given a real number 6, a
o-clustering (or 6-compactness) means for any two nodes ¢
and j in a cluster, d(F;, F;) < 6. Since reclustering is
expensive, local operations such as split/merge could be
performed to avoid global computation. The problem is that
the design of such local operations should guarantee that
they will not lead to violations of the é-clustering condition.

2. To reduce the cost, a decision may not be broadcast if it is the same as
the previous one.
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Process at the cluster members

01: if prediction is disabled or |z; — ;| > ¢

02: send the data value to the cluster head

03:  update the history data using the data value
04: else

05:  perform prediction to update the history data

Fig. 2. Operations at the cluster members.

For the algorithm of splitting and merging clusters, we
consider two cases. First, if the é-clustering condition is
violated, reclustering within the cluster is necessary and the
cluster will be split. Local split requires less communication
cost compared to global reclustering. In particular, since in
our framework, each cluster head maintains sensor data for
each of its cluster members, it has fresh knowledge on the
distance d(.) to the cluster member. Thus, our framework
does not incur much communication cost. When a split
occurs, say a cluster with head CH; is split into multiple
clusters with heads CH{,CH},.... The new cluster head
nearest C'H; will inherit its position in the routing tree and
all other new cluster heads will become its children.

In the second case, clusters may be merged. Each cluster
head will check whether a pair of children can be merged or
whether itself should be merged with a child. Let us say, we
need to merge two clusters with CH; and CH; as cluster
heads and assume the first cluster is larger. C'H; will
become the head of the merged cluster (this requires the
update of all membership changes, e.g, via a broadcast). In
addition, history data of the corresponding nodes will
migrate from CH; to CH;.

4 DISCUSSIONS
4.1 Implementation Details

4.1.1 Estimation of the Parameter k

One of the biggest concerns in our framework is the
estimation of &, which is the ratio between communication
cost and prediction cost. We acknowledge this estimation is
not straightforward and may depend on the applications.
For instance, some recent works [13], [23] discuss the trade-
off between computation cost and communication cost. We
do not elaborate the optimization of this trade-off as we
found previous works validated a variety of values for this
ratio k. As a concrete instance in [7], the authors simulated
the LEACH protocol for the random network with 50 nJ/bit
for energy dissipated for both transmitter and receiver, as
well as a computation cost of 5 nJ/bit with local compres-
sion. In this sense, this ratio k£ is around 10. Their study
showed that energy dissipation can be reduced through
intelligent communication and computation energy trade-
off. Besides, [25] reported often commercial radios consume
around 150 nJ/bit for communication versus the Strong
ARM dissipating 1 nJ/bit. As such, 1 bit communication is
thus equivalent to performing 150 instructions. As AR(3)
model is typically used in our implementation, this means
that the ratio k£ could be roughly 150/7 ~ 21. Overall, we
emphasize this ratio k is varying according to the applica-
tion and the hardware configuration.
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Here, we propose one possible solution by applications
and do not claim it is exhaustive (we do so in anticipation of
further research exploiting the techniques, we herein apply
as well as to encourage more research to bring new
techniques to bear on this problem space). In realistic
systems, the node itself periodically estimates the ratio
between communication cost and computation cost accord-
ing to the residual energy. That is, the energy consumption
for a predictor includes: computation cost when performing
prediction, flashes read/write cost, and radio start-up/
shut-down cost [19]. Additional solution for estimation is
that for simplicity, this value can be viewed as an input
from system operator after trial experiments.

4.1.2 The Scenario with Packet Loss

Failure may not be rare in wireless sensor networks.
Clearly, if an update message is lost, that is, the message
from Line (04) or (06) in Fig. 1 is lost, the dual prediction
(cluster head and cluster member) will not be correct. In
that case, each node will perform a different prediction,
therefore, leading to a possible misbehavior. This is a key
issue that needs to be addressed in applications. One
possible solution is by the cluster member replying a small
ACK message to cluster head. As for the packets containing
sensor readings, as long as the packet loss rate is not
significant and approximation is acceptable, the impact of
failure could not be crucial. As an example, we found in our
previous aggregation work [9] that a small packet loss rate
does not have significant impact on the final results. As a
result, we focus on the discussion of adaptive scheme to
control prediction and adaptive cluster provided justifica-
tion for not considering packet loss.

4.1.3 Adaptive Update for System Input Changes

It noted, we do not claim a set of fixed parameters for the
linear predictor and for the value of error bound e. In
practice, for many applications the model parameters and
the error bound could be dynamics after setup. For instance,
the system operator may not satisfy an initial error bound e
and want to adjust it after the system has been set up for a
long time. In that case, the cluster head after receiving the
updated system input from the sink, should re-estimate the
model parameters and diffuse to the cluster members. This
adjustment is, therefore, performed locally.

4.2 Accommodation with Sleep/Awake Scheduling

This variation with sleep/wake scheduling is based on the
following observation. For some applications, the e-approx-
imation may not be strictly required. The applications may
tolerate few, if any missing data values not within the error
bound. If the confidence level (of having data values within
the e error bound) is very high, e.g., above a specified
threshold, say aipreshold, the cluster members may never
report data values to the cluster head. Therefore, there is no
paramount need for the cluster members to stay awake to
obtain data values most of which will be discarded anyway.

To allow sleep/wake scheduling for the cluster mem-
bers, we replace Lines (01)-(06) in Fig. 1 by Lines (01")-(07")
in Fig. 3, and by default, disable local prediction at cluster
members. When a cluster member is awake, the cluster
head checks if the member’s data values are within the error

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO.6, JUNE 2011

Algorithms at the cluster head
I
/I sleep scheduling for members, Lines (01°)—(07’)

01’: while member 7 is awake

02’:  if timeout after m * A seconds

03’: if condition (2) holds

04’: let member ¢ power off for m¢ * A seconds
05’: while member i is sleeping

06’: if timeout after my * A seconds

07: awake member ¢

Fig. 3. A variation with sleep/wake scheduling.

bound with high probability. If yes, the cluster head will
send a message to power off the member. The condition
should be the confidence level «,, is higher than the
threshold aipreshold, 1-€.,

€

> - — 1 > Qghreshold-
Moy, / 1- j=1 d)jpw(])

However, when the cluster members sleep, the cluster
head will not receive any data values, and hence, it is
impossible to perform accurate prediction. For this reason,
periodic but infrequent collection of data from the cluster
members is still necessary. The frequency of this infrequent
data collection is due an optimization problem: if the
frequency is high, the cost of collecting data can also
be high; if the frequency is low, the prediction can be
inaccurate and result in erroneous sleeping decisions. In
this paper, we provide only a heuristic solution to the
problem. Let A be the time interval between two con-
secutive reporting by a member. We set the duration of a
sleep period to m; * A, and when a cluster member wakes
up, it will continuously perform data reading (and possibly
reporting) for the next m * A time. Initially, m/ is set to m. It
can be increased if condition (2) consistently holds, or
decreased if the condition does not hold.’

20

(2)

4.3 Accommodation with Data Aggregation

With our framework, each cluster head will maintain the
representative data values for all members in the cluster. This
approach eliminates the need for collecting all data values
from individual members when the sink wishes to obtain
them. Instead, the cluster heads can form a routing tree,
along with a small number of nonhead nodes en routed.
There are many potential applications of our proposed
framework, such as outlier detection and sensor queries.

To demonstrate the utility of our framework, in this
section, we use data aggregation as an example, which often
exploits the spatial correlation of sensory data. Here, the
sink would like to obtain the overall distribution of the
sensor data in the entire network. A traditional in-network
aggregation technique would require building a routing
tree to contain all sensor nodes, and then, the summary

3. It is also important to avoid waking up the cluster members at the
same time since there can be wireless communication interference among
them. One simple idea is to schedule different sleeping times for all
members.
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information is propagated toward the sink. Each sensor
node, on receiving the summary information from its
downstream descendants in the routing tree, can aggregate
the summary information, and further propagate the
aggregate. With our framework, we avoid the need for
rampant node-to-node aggregation; rather, it uses faster
and more efficient cluster-to-cluster aggregation.

We develop our aggregation algorithm based on the
framework in Section 3 by combining our framework and
our previous aggregation scheme [9]. When the objective is
to obtain the statistical information of the sensor data, it
suffices if the aggregation algorithms return the probability
distribution of the data. Thus, a packet only contains a few
parameters of the data distribution. The aggregation process
starts at the remote cluster heads toward the sink. A remote
cluster headfirst sends packets containing the parameters of
the local data distribution to its parent. Intermediate cluster
heads, upon receiving packets from other cluster heads will
aggregate them (along with its own data). For the para-
meters estimation problem, the input information includes
both the values acquired from sensors within the local
cluster and the values received from its children in the
routing tree. A cluster head then uses the mixture model and
the Expectation Maximization (EM) algorithm, which is
standard for finding maximum likelihood estimates of
parameters in probabilistic models. After parameter estima-
tion, the cluster next sends packets to its parent too. This
distributed, iterative process continues until the sink
receives and aggregates the final results.

5 PERFORMANCE EVALUATION

To evaluate the performance of our proposed framework,
we conduct a series of experiments. We have implemented
the simulator, and in this paper, we quantify several
performance aspects of our algorithms. The simulation
parameters are set based on hardware configurations of
MICAZ2 [3]. Since for Intel Lab Data, sensor node reports the
data every 30 seconds, we measure the energy consumption
on the unit of 30 seconds. During every 30 seconds, the
energy consumption is 240 m] for active power, and 2.4 m]
for inactive power. For transmission, the energy consump-
tion is 10 mJ/byte, and thus, 80 mJ per message (we assume
the value is a 8-byte double-precision number). Besides, our
proposed framework is inserted on top of the data routing
layer. In this paper, we do not consider the mobile sensors.
The communication model we used in this paper is unit
disk modeling which is typically used in many previous
works. In the rest of this section, we first describe the cluster
model used in this work, and then, describe our data sets
and alternative techniques, and then, present the results
and analysis.

5.1 Cluster Model

With our framework, a sensor network is partitioned into
multiple subnetworks, i.e., clusters. A cluster can be formed
by the set of sensor nodes in a geographical area, where
data locality exists among the sensor nodes, and clusters are
dynamically split/merged to maintain good locality within
each cluster. All sensor nodes in a cluster are called cluster
members, including one elected cluster head. Within each
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cluster, the cluster head receives data selectively reported
by all cluster members, and performs local prediction on the
data distribution of the sensor data. Cluster members also
perform prediction, and data values are transmitted to the
cluster head only if they are not within a specified error
bound. In this way, a cluster head can perceive an accurate
view of all sensor data across the cluster, while commu-
nication cost is drastically reduced.

It is noted that our framework is clustering based, but the
construction of initial clusters is not an objective of this
work. Numerous previous studies have focused on sensor
node clustering algorithms and cluster head selection. We
bear this in mind and state that many of these algorithms
can be used in conjunction with our framework. Our
implementation in this work of cluster model is similar to
[17]. Briefly speaking, in the initial phase, each node of
some randomly selected candidates expands its cluster until
it is 9-compact and this node becomes the cluster head and
the rest nodes in this cluster become cluster members. This
process is recursively perform till each node belongs to one
cluster exactly. After that, as we mentioned in Section 3.2,
the cluster will be updated adaptively due to the changes of
the data distribution (that is, the locality pattern).

5.2 Data Sets

5.2.1 |Intel Berkeley Lab Data

This publicly available sensor data set was collected by the
Intel Berkeley Research Lab during a one-month period [1].
The data consists of environmental data regularly collected
from 54 nodes spread around their lab. We observed some
missing data values for various nodes at different time
epochs and filled there in with the average of the values
during the previous and subsequent epochs at the same
node. In our simulation, we select the entire temperature
records during a one-week period (28 February to 5 March).
We choose a node close to the center of the area as the sink
in each experiment.

5.2.2 Synthetic Data

To evaluate the algorithms in larger networks and with
larger data sets, we also generated synthetic networks and
synthetic data. The size of synthetic networks ranges from
100 nodes to 1,000 nodes. We have used a random placement
of nodes with a uniform probability distribution. Each node
has on the average 5 nodes within its radio range. Data at
every node ¢ is modeled as, z; = oyx;_1 + e;, where ¢; ~
N(0,0.1) and «; ~ N(1,0.01). For each node 2,880 data
values were generated. Every node is initialized with a; =1
and zy = 0. This model is updated on every measurement.

5.3 Alternative Techniques

5.3.1 Centralized Exact

In TinyDB [15], all sensor values are always reported to the
sink. This technique offers an error-free propagation of data.

5.3.2 Centralized Prediction

This technique [2] caches the last a few reported data values
at the sink and sensors. The sensor does not report a data
value if it is within an error bound. For fair comparison, we
use a simple predictor AR(3) for this technique, as used in
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Fig. 4. Energy consumption with/without energy-awareness.

our framework. In both this technique and our framework,
we assume the sink (cluster heads for our framework) and
sensors can cache 10 history data values, and the error
bound is 0.2° C.

5.3.3 GMM without Clustering

This technique [9] is to transmit a data distribution instead
of exact data values along a routing tree. Via hop-by-hop
propagation and aggregation each sensor sends data
distribution parameters to its parent. The base station is
able to obtain the data distribution information at low
communication cost. Unless otherwise noted, our imple-
mentation is based on 2-GMM model for this technique. For
fair comparison, our framework integrating data aggrega-
tion also uses 2-GMM model for intercluster aggregation
and the two techniques have comparable message sizes.

5.3.4 Without Adaptive Scheme to Control Prediction
Operations

Unless otherwise noted, we evaluate our framework with
local prediction control, which guarantees e-approximation.
Fig. 1, Lines (01)-(06), shows how a cluster head adaptively
enables or disables local prediction. We will evaluate the
benefits of using this adaptive scheme in Section 5.4. In
parallel, we label by “w /o adaptive scheme” the case where
the cluster head does not perform adaptive scheme, that is,
Lines (01)-(06) in Fig. 1 are omitted and the prediction
operations are always performed at cluster member.

5.4 Benefits of Adaptive Scheme to Enable/Disable
Prediction

We first investigate the effectiveness of our framework in
reducing the energy consumption. To that end, we compare
the energy consumption with/without adaptive scheme to
control local prediction. Since our energy-aware scheme only
benefits cluster members instead of cluster heads, we only
measure the energy consumption at cluster members during
the entire day of Feb 28. On average, there are 13 clusters and
40 cluster members. We output the sum of the energy
consumption of all these 40 cluster members. As for our
framework with control of sleep scheme, we set the
confidence level threshold aihreshold = 0.9 for nodes to sleep.

We vary the value of k to investigate the performance
sensitivity. Note that k& represents the ratio between the
transmission energy consumption and the prediction energy
consumption. As an example, for k=10 or k= 100, the
average energy consumption is 8 mJ or 0.8 mJ to predict a
value from the history data. Fig. 4 shows that energy

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO.6, JUNE 2011

20000 T T T
Accommodation with data aggregation —+—

5000 e

3 Centralized Prediction ---x---

S 15000 F Centralized Exact --->--- ]
= GMM Without Cluster & x

2 .

g 10000 - » |
Q.

kS ¥

g o
€

=)

b4

200 400 600 800
Number of nodes

1000

Fig. 5. Total number of packets required for a variety of algorithms.

consumption with different & values. First, it shows that
energy consumption is a decreasing function of k. Second, the
energy-aware technique is more beneficial when k is smaller.
We emphasize that while communication is more expensive
compared to prediction, the scheme is still applicable due to
the existence of other computational operations (e.g.,
calculating coefficients, maintaining/updating history data,
etc) not mentioned in this work. Finally, accommodating
with sleep scheduling improves the performance by up to
10 percent, mainly because we set the confidence level
threshold at 90 percent.

5.5 Accommodating to Data Aggregation
5.5.1 Overall Communication Costs

In this section, we evaluate the performance of the
algorithms in terms of the total number of transmitted
packets by all sensor nodes. For brevity, we only report the
representative results.

Fig. 5 shows the scalability of the algorithms with the size
of network using the synthetic data set. We see the superior
scalability of our framework integrating data aggregation.
This is because our distributed techniques perform data
update and prediction locally, whereas the centralized
scheme (labeled “centralized exact”) incurs a high-commu-
nication cost for transmitting the data to the sink.

6 CONCLUSIONS

We have proposed and described our framework for
clustering-based data collection. Our framework is 1)
clustering-based: sensor nodes form clusters and cluster
heads collect and maintain data values, and 2) prediction-
based: energy-aware prediction is used to find the subtle
trade-off between communication and prediction cost. We
have presented the detailed analysis and description of its
two main components: adaptive scheme to enable/disable
prediction operations and adaptive update of clustering, and
further demonstrated the usefulness of our framework by
accommodating to in-network aggregation and the sleep/
awake scheduling. Via performance evaluation, we have
shown that it achieves energy efficiency when sensor data is
spatially and temporally correlated. To summarize, we have
demonstrated that this is a viable framework to facilitate
data collection in large-scale wireless sensor networks.
There are several future directions. First, we plan to do real
testing in real sensor networks. Second, we are seeking the
possibility of using more efficient algorithms to reduce the
computational overhead of our prediction and aggregation
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techniques. Third, we plan to integrate other techniques such
as skeleton extraction [11], [12] to improve the quality of
clustering. The fourth is to further improve the framework in
order to facilitate other realistic applications such as object
tracking [26].
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