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Abstract—A distributed system’s allocation of software components to hardware nodes (i.e., deployment architecture) can have a

significant impact on its quality of service (QoS). For a given system, there may be many deployment architectures that provide the

same functionality, but with different levels of QoS. The parameters that influence the quality of a system’s deployment architecture are

often not known before the system’s initial deployment and may change at runtime. This means that redeployment of the software

system may be necessary to improve the system’s QoS properties. This paper presents and evaluates a framework aimed at finding

the most appropriate deployment architecture for a distributed software system with respect to multiple, possibly conflicting QoS

dimensions. The framework supports formal modeling of the problem and provides a set of tailorable algorithms for improving a

system’s deployment. We have realized the framework on top of a visual deployment architecture modeling and analysis environment.

The framework has been evaluated for precision and execution-time complexity on a large number of simulated distributed system

scenarios, as well as in the context of two third-party families of distributed applications.

Index Terms—Software architecture, software deployment, quality of service, self-adaptive software.
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1 INTRODUCTION

CONSIDER the following scenario, which addresses dis-
tributed deployment of personnel in cases of natural

disasters, search-and-rescue efforts, and military crises. A
computer at “Headquarters” gathers information from the
field and displays the current status and locations of the
personnel, vehicles, and obstacles. The headquarters com-
puter is networked to a set of PDAs used by “Team Leads”
in the field. The team lead PDAs are also connected to each
other and to a large number of “Responder” PDAs. These
devices communicate with one another, and potentially
with a large number of wireless sensors deployed in the
field, and help to coordinate the actions of their distributed
users. The distributed software system running on these
devices provides a number of services to the users:
exchanging information, viewing the current field map,
managing the resources, etc.

An application such as the one just described is
frequently challenged by the fluctuations in the system’s
parameters: network disconnections, bandwidth variations,
unreliability of hosts, etc. Furthermore, the different users’
usage of the functionality (i.e., services) provided by the
system and the users’ quality of service (QoS) preferences

for those services will differ, and may change over time. For
example, in the case of a natural disaster (e.g., wildfire)
scenario, “Team Lead” users may require a secure and
reliable messaging service with the “Headquarters” when
exchanging search-and-rescue plans. On the other hand,
“Responder” users are likely to be more interested in
having a low latency messaging service when sending
emergency assistance requests.

For any such large, distributed system, many deployment
architectures (i.e., mappings of software components onto
hardware hosts) will be typically possible. While all of those
deployment architectures may provide the same function-
ality, some will be more effective in delivering the desired
level of service quality to the user. For example, a service’s
latency can be improved if the system is deployed such that
the most frequent and voluminous interactions among the
components involved in delivering the service occur either
locally or over reliable and capacious network links. The
task of quantifying the quality of a system’s deployment
and determining the most effective deployment architecture
quickly becomes intractable for a human engineer if
multiple QoS dimensions (e.g., latency, security, availability,
power usage) must be considered simultaneously while
taking into account any additional constraints (e.g., compo-
nent X may not be deployed on host Y). Further exacerbat-
ing the problem is the fact that many of the parameters that
influence the optimal distribution of a system may not be
known before the system’s initial deployment and are likely
to change during the system’s lifetime.

In this paper, we consider the problem of quantifying the
quality of a system’s deployment and finding a deployment
architecture such that the QoS preferences stated by a
collection of distributed end-users are met; in other words,
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the overall utility of the system to all its users is maximized.
Our objective is for the solution to be applicable in a wide
range of application scenarios (i.e., differing numbers of
users, hardware hosts, software components, application
services, QoS dimensions, etc.). Providing a widely applic-
able solution to this problem is difficult for several reasons:

. In the general case, the number of possible deploy-
ments for a given distributed software system is
exponential in the number of the system’s compo-
nents. The amount of computation required for
exploring a system’s deployment space may thus
be prohibitive, even for moderately large systems.

. A very large number of parameters influence a
software system’s QoS dimensions. In turn, many
services and their corresponding QoS dimensions
influence the users’ satisfaction. Developing generic
solutions that can then be customized for any
application scenario is nontrivial.

. Different QoS dimensions may be conflicting, and
users with different priorities may have conflicting
QoS preferences. Fine-grained tradeoff analysis
among the different dimensions and/or preferences
is very challenging without relying on simplifying
assumptions (e.g., particular definition of a QoS
objective or predetermined, fixed constraints).

. Different application scenarios are likely to require
different algorithmic approaches. For example, a
system’s size, the users’ usage of the system, stability
of system parameters, and system distribution
characteristics may influence the choice of algorithm.

. Traditional software engineering tools are not read-
ily applicable to this problem. Instead, engineers
must adapt tools intended for different purposes

(e.g., constraint satisfaction or multidimensional
optimization) to the deployment improvement pro-
blem, which limits the potential for reuse and cross-
evaluation of the solutions.

To deal with the above challenges, we have developed a
tailorable approach for quantifying, continuously monitor-
ing, and improving a software-intensive system’s deploy-
ment architecture. The overall approach, depicted in Fig. 1,
is a specialization of our architecture-based system adapta-
tion framework [49], [50] to the redeployment problem,
presented in light of Kramer and Magee’s three-layer
reference model of self-management [27]. This paper
describes in detail the goal management layer of our
approach, called deployment improvement framework (DIF),
which consists of two activities:

1. Modeling—An extensible architectural model sup-
ports inclusion of arbitrary system parameters (software
and hardware), definition of arbitrary QoS dimensions
using those parameters, and specification of QoS
preferences by system users. Using the model, the
utility of any deployment of the system can be
quantified.

2. Analysis—Several tailored algorithms allow rapid
exploration of the space of possible deployment
architectures and analysis of both the effects of
changes in system parameters and of the system
downtime incurred during runtime adaptation on a
system’s QoS. No other approach known to us
provides such capabilities in tandem.

As depicted in Fig. 1, DIF relies on the presence of an
underlying implementation platform and runtime support
(i.e., change management and component control layers) for
improving the system’s QoS through redeployment. The
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Fig. 1. A three-layer view of our approach for improving a software system’s QoS through redeployment of its components. This paper describes the
deployment improvement framework, which corresponds to the goal management layer in our approach.
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platform needs to provide four types of capabilities:
Component Migration—the ability to move a software
component from one host to another [6]; (Re)Deployment
Coordination—the ability to manage the component’s state
and the order in which changes should be applied such that
the system is not placed in an inconsistent state; Runtime
Probing—the ability to instrument a running system with
probes for collecting usage data and samples of system’s
resources; Monitoring Gauge—the ability to continuously
assess changes in the collected data, fuse information from
various sources, and report significant variations to the goal
management layer (i.e., DIF) [15]. To thoroughly evaluate
DIF in actual running software systems, we have integrated it
with an implementation platform (i.e., middleware) devel-
oped in our previous work [34], [37] that provides sufficient
support for the aforementioned capabilities.

For any given application, the system architect instantiates
(configures) DIF by defining the appropriate system para-
meters and the QoS of interest. DIF is then populated with the
actual hardware and software parameters from a distributed
application and by the users’ preferences for the QoS
dimensions of each application service. Using these values,
the utility (i.e., the cumulative satisfaction with the system by
all its users) of a given deployment is calculated. Finally, one
of the algorithms supplied by DIF is used to find a
deployment architecture that improves the overall utility.

The key contributions of this paper are 1) the theoretical
underpinnings for modeling, quantifying, assessing, and
improving a software system’s deployment; 2) support for
quantitative exploration of a system’s, typically very large,
deployment space; and 3) the accompanying tool suite that
enables software engineers to use our framework.

The model and algorithms underlying this work are
empirically analyzed for execution-time complexity and
accuracy on a large number of distributed system scenarios.
In particular, the algorithms are compared with the current
state-of-the-art approaches in this area. DIF has also been in
use by a third-party organization in the context of their
family of sensor network applications [37]. We report on
this, as well as our own experience with applying DIF to
another software system developed in collaboration with an
external organization.

The remainder of paper is organized as follows: Section 2
provides some background on the challenges of assessing a
system’s deployment architecture, and our approach to
overcoming them. We then describe in detail the two
components of our framework: Section 3 details our system
model, and Section 4 describes the QoS-driven architectural
analysis, including the redeployment algorithms we have
devised. In Section 5, we provide an overview of the
framework’s implementation, and its integration with an
existing middleware platform, which has been used
extensively for evaluating the framework in real-world
applications. Our experience and evaluation results are
provided in Section 6. Finally, Section 7 discusses the
related work, and the paper concludes with a recap of
contributions and an outline of future work.

2 ASSESSING DEPLOYMENT ARCHITECTURES

For illustration, let us consider the very simple software
system conceptually depicted in Fig. 2, consisting of one

application-level service (ScheduleResources) provided to
two users by two software components (ModifyResourceMap
and ResourceMonitor) that need to be deployed on two
network hosts (a laptop and a PDA). In the absence of any
other constraints, the system has four possible deployments
(i.e., number of hostsnumber of components ¼ 22) that provide the
same functionality. Two of the deployments correspond to
the situations where the two components are collocated on
the same host, while the other two deployments correspond
to the situations where each component is deployed on a
separate host.

Let us assume that it is possible to measure (or estimate,
provided that appropriate models and analytical tools are
available to the engineers) the four deployments’ QoS
properties, as shown in Fig. 3a.1 It is clear that deployment
Dep1 has the shortest latency, while deployment Dep3 has
the longest battery life, defined as the inverse of the system’s
energy consumption rate. Dep1 is the optimal deployment
with respect to latency, while Dep3 is the optimal deploy-
ment with respect to battery life. If the objective is to
minimize the latency and at the same time maximize the
battery life of the system, none of the four deployments can
be argued to be optimal. This phenomenon is known as
Pareto Optimal in multidimensional optimization [65].

For any software system composed of many users and
services, the users will likely have varying QoS preferences
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Fig. 2. A hypothetical application scenario.

1. This assumption is essential in order to be able to consider any
objective strategy for assessing and improving a software system’s
deployment. We assume that, even if it is not feasible to quantify a QoS
property as a whole, it is possible to quantify different aspects of it. For
example, while it may not be possible to represent a system’s security as a
single numerical quality, it is possible to quantify different aspects of
security for the system (e.g., security of communication, encryption, and
authentication).
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for the system’s services. To deal with the QoS tradeoffs, we
can leverage the users’ QoS preferences (i.e., the utility that
a given level of quality for a given service would have for a
user). As an example, Fig. 3b shows the Team Lead’s utility
for the rates of change in the latency and battery life of
ScheduleResources. While the figure shows linear functions,
users may express their QoS preferences in many ways,
including by using much less precise phrasing. Any
deployment improvement model must be able to effectively
capture such preferences. We will discuss this issue further
in Sections 3 and 6.

In this particular example, Fig. 3c shows the results of
assessing the four deployments based on Team Lead’s utility
functions. As shown in Fig. 3c, assuming Dep2 is the current
deployment of the system, the quality of the other three
deployments can be calculated as follows: 1) From Fig. 3a
find the change in each QoS dimension from the current
deployment to the new deployment, 2) look up the utility
for the new level of QoS in Fig. 3b, and 3) aggregate the
utilities, as shown in Fig. 3c. In this (hypothetical) case, Dep3
provides the highest total utility to Team Lead and can be
considered to be the optimal deployment for her. In a multi-
user system, the other users also have to be considered in a

similar manner, and all of the users’ utilities must be
aggregated to determine a globally optimal deployment.2

However, even this solution quickly runs into problems.
Consider the following, slightly more complex variation of
the scenario depicted in Fig. 2, where we introduce a single
additional element to each layer of the problem: We end up
with three users who are interested in three QoS dimensions
of two services provided by three software components
deployed on three hosts. In this case, the engineer will have
to reason about 18 utility functions (three users � three QoS
dimensions � two services) across 27 different deployments
(three hosts and three components, or 33 deployments). The
problem quickly becomes intractable for a human engineer.
This has been the primary motivation for this research.

3 DEPLOYMENT MODEL

Modeling has been a key thrust of software architecture
research and practice, resulting in a large number of
specialized architecture description languages (ADLs) [29],
[32], as well as the broadly scoped UML [48]. These
languages enable the specification of a software system’s
architectural structure, behavior, and interaction character-
istics. Languages such as AADL [1] and UML [48] even
allow capturing the hardware hosts on which the software
components are deployed. However, none of the existing
languages provide the modeling constructs necessary for
properly examining a system’s deployment architecture in
terms of its, possibly arbitrarily varying, QoS requirements.
This motivated us to develop our deployment improvement
framework’s underlying model, which provides the foun-
dation for precisely quantifying the quality of any system’s
deployment and for formally specifying the deployment
improvement problem. This model is intended to be used in
conjunction with traditional software architecture modeling
approaches; as a proof-of-concept we have demonstrated
the model’s integration with two third-party ADLs, xADL
and FSP [12], [13].

A primary objective in designing DIF was to make it
practical, i.e., to enable it to capture realistic distributed
system scenarios and avoid making overly restrictive
assumptions. To that extent, we want to avoid prescribing
a predefined number of system parameters or particular
definitions of QoS dimensions; this objective forms one of the
key contributions of our work and sets it apart from the
previous research in this area [1], [5], [20], [22], [25], [35], [41],
[42], [47]. DIF provides: 1) a minimum skeleton structure for
formally formulating the basic concepts that are common
across different instances of our problem, and 2) a technique
for representing the variations among the different instances
of this problem by refining and extending this skeleton.

3.1 Basic Modeling Constructs

We model a software system’s deployment architecture as
follows:

1. A set H of hardware nodes (hosts), a set HP of
associated parameters (e.g., available memory or
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Fig. 3. (a) Latency and battery life measurements for the four candidate
deployments of the system in Fig. 2. (b) Team Lead’s utility for latency
and battery life of the ScheduleResources service. (c) Utility calculation
for each deployment architecture.

2. Note that, according to our definition of utility, a globally optimal
deployment may result in suboptimal QoS levels for specific services and
specific users.
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CPU on a host), and a function hparamH : HP ! R
that maps each parameter to a value.3

2. A set C of software component instances, a set CP of
associated parameters (e.g., required memory for
execution or JVM version), and a function cparamC :
CP ! R that maps each parameter to a value.

3. A set N of physical network links, a set NP of
associated parameters (e.g., available bandwidth,
reliability of links), and a function nparamN : NP !
R that maps each parameter to a value.

4. A set I of logical interaction links between software
components in the distributed system, a set IP of
associated parameters (e.g., frequency of compo-
nent interactions, average event size), and a func-
tion iparamI : IP ! R that maps each parameter
to a value.

5. A set S of services and a function

SParamS;fH[C[N[Ig : fHP [ CP [NP [ IPg ! R

that provides values for service-specific system
parameters. An example such parameter is the
number of component interactions resulting from an
invocation of an application service (e.g., “find best
route”).

6. A set DepSpace of all possible deployments (i.e.,
mappings of software components C to hardware
hosts H), where jDep Spacej ¼ jHjjCj.

7. A set Q of QoS dimensions, and associated functions
qV alueQ : S �DepSpace! R that quantify a QoS
dimension for a given service in the current
deployment mapping. For instance, the information
presented in Fig. 3a can be modeled using two
qV alue functions (for latency and battery life).

8. A set U of users and a function qUtilU;Q;S : R!
½MinUtil; MaxUtil� that denotes a user’s prefer-
ences (in terms of the achieved utility) for a given
level of QoS. A user may denote a utility between the
range of MinUtil and MaxUtil. Relative importance of
different users is determined by MaxUtil. In general,
a larger value of MaxUtil indicates higher importance
(or relative influence) of the user, allowing us to
specify a particular user priority scheme, including,
for example, completely subordinating the priorities
of some users to those of others. As an example, the
information presented in Fig. 3b can be modeled
using two qUtil functions: one for the Team Lead’s
latency preferences and another for her battery life
preferences. As detailed later in the paper, DIF does
not place a constraint on the format of utility
functions. In fact, for exposition purposes the func-
tions shown in Fig. 3b are expressed in terms of rate
of change in QoS, but utility functions could be
specified very similarly using concrete levels of QoS.

9. A set PC of parameter constraints, and a function
pcSatisfiedPC : DepSpace! f1

0 that given a con-
straint and a deployment architecture, returns 1 if
the constraint is satisfied and 0 otherwise. For
example, if the constraint is “bandwidth satisfaction,”

the corresponding function may ensure that the total
volume of data exchanged across any network link
does not exceed that link’s bandwidth in a given
deployment architecture. The set PC and function
pcSatisfied could also be used to specify QoS con-
straints.

10. Using the following two functions, the deployment
of components can be restricted:

loc : C �H !
1; if c 2 C can be deployed onto h 2 H;

0; if c 2 C cannot be deployed onto h 2 H;

�

colloc : C � C !
1; if c1 2 C has to be on the same host as

c2 2 C;

�1; if c1 2 C cannot be on the same host

as c2 2 C;

0; if there are no restrictions:

8>>>>>><
>>>>>>:
For example, loc can be used to restrict the

deployment of a computationally expensive compo-
nent to hosts with sufficient CPU power, while colloc
may prohibit two components providing the pri-
mary and backup of the same service to be
collocated on the same host.

Note that some elements of the framework model are
intentionally left “loosely” defined (e.g., the sets of system
parameters or QoS dimensions). These elements correspond
to the many and varying factors that are found in different
distributed applications. As we will show below, when the
framework is instantiated, the system architect specifies
these loosely defined elements.

For brevity we use the following notations in the
remainder of the paper: Hc is a host on which component c
is deployed; Ic1;c2 is an interaction between components c1
and c2; Nh1;h2 is a network link between hosts h1 and h2;
finally,Cs andHs represent, respectively, a set of components
and hosts that participate in provisioning the service s.

Fig. 4 shows the formal definition of the utility of a single
system’s deployment, and the deployment optimization
problem based on our framework model. The function
overallUtil represents the overall satisfaction of the users
with the QoS delivered by the system. The goal is to find a
deployment architecture that maximizes overallUtil and
meets the constraints on location, collocation, and system
parameters (recall items 9 and 10 above). Note that the
scope of our work is limited to finding and effecting an
improved software deployment. Other types of adaptation
decisions that may also impact a system’s QoS (e.g.,
changing the amount of system resources at the software
component’s disposal or replacing one version of a
component with another) are complementary to our work,
but we do not consider them here.

3.2 Model Instantiation

As mentioned earlier, some aspects of our framework’s
model have been intentionally left loosely defined. To
actually use the framework, one needs to precisely specify
an application scenario. Framework instantiation is the
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3. For simplicity, we show the functions as mappings to real numbers.
This need not be the case for certain parameters relevant in a given context.
Our model will support such additional mappings in the same manner.
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process of configuring the framework model for an
application scenario. We illustrate the instantiation using
four QoS dimensions: availability, latency, communication
security, and energy consumption. Note that any QoS
dimension that can be quantitatively estimated can be used
in our framework.

The first step in instantiating the framework is to define
the relevant system parameters. Item 1 of Fig. 5 shows a list

of parameters that we have identified to be of interest for
estimating the four selected QoS dimensions in the mobile
emergency response setting. If additional parameters are
found to be relevant, they can be similarly instantiated in
our framework. Once the parameters of interest are
specified, the parameter realization functions (e.g., hParam,
cParam) need to be defined. These functions can be defined
in many ways: by monitoring the system, by relying on the

78 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 4. Problem definition.

Fig. 5. Framework instantiation example.
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system engineers’ knowledge, by extracting them from the
architectural description, etc. For example, hParamh1

(hostMem) designates the available memory on host h1.
A software system’s availability is commonly defined as

the degree to which the system is operational when
required for use [21], [52]. In the context of mobile software
systems, where a common source of failure is the network,
we estimate availability in terms of successfully completed
intercomponent interactions in the system. Item 2 of Fig. 5
estimates the availability for a single service s in a given
deployment d.

A software service’s latency is commonly defined as the
time elapsed between making a request for service and
receiving the response [21], [51]. The most common causes
of communication delay in a distributed mobile system are
the network transmission delay, unreliability of network
links, and low bandwidth. Item 3 of Fig. 5 estimates latency
for a service s.

A major factor in the security of distributed mobile
systems is the level of encryption supported in remote
communication (e.g., 128-bit versus 40-bit encryption) [60].
This is reflected in item 4 of Fig. 5.

Finally, energy consumption (or battery usage) of each
service is determined by the energy required for the
transmission of data among hosts plus the energy required
for the execution of application logic in each software
component participating in providing the service. Item 5 of
Fig. 5 estimates energy consumption of service s. For ease of
exposition, we have provided a simplified definition of
energy consumption; a more sophisticated model can be
found in our prior work [55], [56].

To illustrate parameter constraints we use the memory
available on each host. The constraint in item 6 of Fig. 5
specifies that the cumulative size of the components
deployed on a host may not be greater than the total
available memory on that host. Other constraints are
included in an analogous manner.

As the reader may recall from the previous section, we
also need to populate the set S with the system services and
the set U with the users of the system. Finally, each user’s
preferences are determined by defining the function qUtil.
The users define the values this function takes based on
their preferences, with the help of our tool support
described in Section 5.

3.3 Underlying Assumptions

The definitions in Fig. 5 are intended to serve as an
illustration of how QoS dimensions are estimated and used
in DIF. We do not argue that these are the only, “correct,”
or even most appropriate quantifications. DIF does not
place any restrictions a priori on the manner in which QoS
dimensions are estimated. This allows an engineer to tailor
DIF to the application domain and to her specific needs.
Our instantiation of the framework model, shown in Fig. 5,
is based on our experience with mobile emergency
response software systems [34], [36], [37], such as those
described in Section 1.

Other researchers have acknowledged the impact of
deployment on a system’s QoS in several other domains,
e.g., data-intensive systems [22], wireless sensor networks
[47], and online multimedia systems [28]. We also believe

that the emergence of new computing paradigms further
underlines the importance of scalable deployment analysis
techniques, e.g., large-scale data centers that depend on
clusters of hundreds or thousands of general purpose
servers (e.g., popular search engines), and cloud computing,
whereby distributed and often virtualized computing
resources are dynamically provisioned and shared among
many users.

In other application domains, some of the simplifying
assumptions we have made may not hold and other
estimations of QoS may be more appropriate. For instance,
consider the following simplifying assumptions made in the
analytical models presented in Fig. 5:

. Availability. In other domains, such as data centers,
other system parameters (e.g., unavailability of
resources due to high workload) may need to be
considered.

. Latency. In our specification of latency we did not
consider the computational delay associated with
each software component’s execution. This can be
justified, e.g., in the context of emergency response
mobile systems, where the implementations of
system services are often relatively simple and
network communication is the predominant source
of delay. As before, in other domains such as data
centers or scientific applications, a reasonable estima-
tion of latency would certainly need to account for the
execution time of software components.

. Security. We assume that a single encryption
algorithm is used, where the size of the key indicates
the difficulty of breaking ciphered data. In cases
where this assumption is not true or multiple
encryption algorithms are available, the model
would have to be extended to account for the unique
behavior of each algorithm.

The assumptions listed above are not intended to be
comprehensive, but rather highlight the fact that 1) by its
nature, any analytical formulation of a QoS makes certain
simplifying assumptions based on what is considered
negligible in a given domain, and 2) different domains are
likely to have different QoS concerns. Indeed, one of the key
contributions of DIF is that, unlike existing approaches [1],
[5], [20], [25], [35], [41], [42] that prescribe a particular
model, through the extensible modeling methodology
described above the engineer tailors the framework for a
given domain.

Utility functions originated in economics [23], but have
been extensively used in many areas of computer science,
including autonomic computing [64], performance analysis
[5], and software engineering [53], to denote the usefulness
of a system or its properties to the users. While the ability to
represent the users’ preferences is clearly a prerequisite for
accurate analysis of a system’s deployment, it is a topic that
has been investigated extensively in the existing literature,
and we consider it to be outside the focus of this paper. For
instance, interested readers may refer to [57], [58], where
authors have demonstrated the feasibility of accurately
inferring users’ QoS preferences in terms of utility via user-
friendly graphical widgets. These techniques have influ-
enced DIF’s tool support as detailed in Section 5.
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DIF is also independent of the type of utility functions
and the approach employed in extrapolating them. Argu-
ably, any user can specify hard constraints, which can be
trivially represented as step functions. Alternatively, a
utility function may take on more advanced forms to
express more refined preferences. Most notably, sigmoid
curves have been shown to provide an appropriate middle
ground between expressiveness and usability, and used in
many existing approaches (e.g., [5], [40], [53]).

4 DEPLOYMENT ANALYSIS

Once a system’s architectural model is completed, the
model can be analyzed for properties of interest. Tradition-
ally, architectural analysis has been the prevailing reason
for using ADLs [29]. The objective of our framework’s
analysis activity is to ensure an effective deployment of the
modeled system, both prior to and during the system’s
execution. This analysis is based on a set of algorithms
specifically developed for this purpose. Determining an
effective deployment for a system is challenging for reasons
discussed in Section 1: The problem space is exponential,
while a very large set of system parameters must be taken
into account and must satisfy arbitrary constraints. Because
of this, most of our algorithms are heuristic-based and
provide approximate solutions. We have developed multi-
ple algorithms in order to best leverage the characteristics of
different scenarios involving varying QoS requirements,
user preferences, and hardware and/or software perfor-
mance characteristics. These algorithms provide the foun-
dation for an automated deployment analyzer facility that is
a centerpiece of our framework. In this section, we first
present our deployment improvement algorithms and then
discuss other factors that impact a system’s preferred
deployment architecture.

4.1 Deployment Improvement Algorithms

The deployment optimization problem as we have stated it
is an instance of multidimensional optimization problems,
characterized by many QoS dimensions, system users, and
user preferences and constraints that influence the objective

function. Our goal has been to devise reusable algorithms
that provide accurate results (assuming accurate model
parameter estimates are available and appropriate QoS
dimension quantifications are provided) regardless of the
application scenario. A study of strategies applicable to this
problem has resulted in four algorithms to date, where each
algorithm has different strengths and is suited to a
particular class of systems. Unlike previous works, which
depend on the knowledge of specific system parameters [4],
[5], [20], [25] or assume specific architectures [22], [47], we
have introduced several heuristics for improving the
performance and accuracy of our algorithms independently
of the system parameters or architectures. Therefore,
regardless of the application scenario, the architect simply
executes the algorithm most suitable for the system (e.g.,
based on the size of the system or stability of parameters,
further discussed in Section 6.7) without any modification.

Of the four approaches that we have used as the basis of
our algorithms, two (Mixed-Integer Nonlinear Program-
ming, or MINLP, and Mixed-Integer Linear Programming,
or MIP [65]) are best characterized as techniques developed
in operations research to deal with optimization problems.
They are accompanied by widely used algorithms and
solvers. We tailor these techniques to our problem, and
thereby improve their results. The remaining two ap-
proaches (greedy and genetic) can be characterized as
generally applicable strategies, which we have employed in
developing specific algorithms tailored to our problem.

4.2 Mixed-Integer Nonlinear Programming
Algorithm

The first step in representing our problem as an MINLP
problem is defining the decision variables. We define
decision variable xc;h to correspond to the decision of
whether component c is to be deployed on host h.
Therefore, we need jCj � jHj binary decision variables,
where xc;h ¼ 1 if component c is deployed on host h, and
xc;h ¼ 0 otherwise.

The next step is defining the objective function, which
in our case is to maximize the overallUtil function, as shown
in (1) of Fig. 6. The definition of overallUtil is the same as in
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Fig. 4. However, note that the qValue functions of our
instantiated model (recall Fig. 5) are now rewritten to
include the decision variables xc;h. This is illustrated for the
availability dimension in (2) of Fig. 6.

Finally, we need to specify the constraints. We have
depicted two common constraints: (3) enforces the con-
straint that a single software component can only be
deployed on a single host and (4) enforces the memory
constraint that was defined previously in our instantiated
model (item 6 of Fig. 5).

The product of variables in (2) of Fig. 6 demonstrates
why the deployment problem is inherently nonlinear. There
is no known algorithm for solving an MINLP problem
optimally other than trying every possible deployment.
Furthermore, for problems with nonconvex functions (such
as ours), MINLP solvers are not guaranteed to find and
converge on a solution [65]. Finally, given the nonstandard
techniques for solving MINLP problems, it is hard to
determine a complexity bound for the available MINLP
solvers.4 For all of these reasons, we needed to investigate
other options.

4.2.1 Mixed-Integer Linear Programming Algorithm

An important characteristic of MIP problems is that they
can be solved to find the optimal solution. We have
leveraged a technique for transforming the above MINLP
problem into MIP by adding new “auxiliary” variables. We
introduce jCj2 � jHj2 new binary decision variables
tc1;h1;c2;h2 to the specification formula of each QoS such that
tc1;h1;c2;h2 ¼ 1 if component c1 is deployed on host h1 and
component c2 is deployed on host h2, and tc1;h1;c2;h2 ¼ 0
otherwise.

To ensure that the variable t satisfies the above relation-
ship, we add the following three constraints:

tc1;h1;c2;h2 � xc1;h1; tc1;h1;c2;h2 � xc2;h2;

and 1þ tc1;h1;c2;h2 � xc1;h1 þ xc2;h2:

This allows us to remove the multiplication of decision
variables from the qValue functions (e.g., (2) of Fig. 6).
However, this transformation significantly increases the
complexity of the original problem. Since MIP solvers use
branch-and-bound to solve a problem efficiently, our
problem has the upper bound of

Oðsize of branchheight of treeÞ
¼ O 2number of t variables þ 2number of x variables

� �
¼ O

�
2jHj

2jCj2 þ 2jHjjCj
�
¼ O

�
2jHj

2jCj2�:
One heuristic that we have developed is to assign a higher

priority to x variables and lower priority to t variables. Thus,
we are able to reduce the complexity of the algorithm to
Oð2jHjjCjÞ: After solving the problem for the x variables, the
values of tvariables trivially follow from the three constraints
introduced above. Finally, the constraint that each compo-
nent can be deployed on only one host ((3) of Fig. 6) allows for
significant pruning of the branch-and-bound tree, thus
reducing the complexity of our problem to OðjHjjCjÞ.

By fixing some components to selected hosts, the
complexity of the exact algorithm reduces to

O
Y
c2C

X
h2H

locðc; hÞ
 !

:

Similarly, specifying that a pair of components ci and cj

have to be collocated on the same host could further reduce
the algorithm’s complexity.

Our heuristics significantly reduce the complexity of the
MIP problem. However, as we will see in Section 6, even
after this reduction, the MIP algorithm remains computa-
tionally very expensive. It may still be used in calculating
optimal deployments for smaller systems, or those whose
characteristics are stable for a very long time. However,
even in such cases, running the algorithm may become
infeasible very quickly unless the number of allowed
deployments is substantially reduced through location
and collocation constraints.

4.2.2 Greedy Algorithm

The high complexity of MIP and MINLP solvers and the
fact that the MINLP solvers do not always find an improved
solution motivated us to devise additional algorithms. Our
greedy algorithm is an iterative algorithm that incremen-
tally finds better solutions. Unlike the previous algorithms
that need to finish executing before returning a solution, the
greedy algorithm generates a valid and improved solution
in each iteration. This is a desirable characteristic for
systems where the parameters change frequently and the
available time for calculating an improved deployment
varies significantly.

In each step of the algorithm, we take a single
component aComp and estimate the new deployment
location (i.e., a host) for it such that the objective function
overallUtil is maximized. Our heuristic is to improve the
QoS dimensions of the “most important” services first. The
most important service is the service that has the greatest
total utility gain as a result of the smallest improvement in
its QoS dimensions. The importance of service s is
calculated via the following formula:

svclmpðsÞ ¼
X
u2U

X
q2Q

qUtilu;s;qð�qÞ;

where �q is a configurable threshold in the algorithm and
denotes a small rate of improvement in the QoS dimension q.
Going in decreasing order of service importance, the
algorithm iteratively selects component aComp that partici-
pates in provisioning that service, and searches for the host
bestHost for deployment. bestHost is a host h 2 H that
maximizes overallUtilðd; dacomp!hÞ, where d is the current
deployment and dacomp!h is the new deployment if aComp
were to be deployed on h.

If the bestHost for aComp satisfies all the constraints, the
solution is modified by mapping aComp to bestHost.
Otherwise, the algorithm leverages a heuristic that finds
all “swappable” components sComp on bestHost such that,
after swapping a given sComp with aComp, 1) the constraints
associated with HaComp and bestHost are satisfied, and 2) the
overall utility is increased. If more than one swappable
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component satisfies the two conditions, we choose the
component whose swapping results in the maximum utility
gain. Finally, if no swappable components exist, the next
best host (i.e., the host with the next highest value of
overallUtil if aComp were to be deployed on it) is selected
and the above process repeats.

The algorithm continues improving the overall utility by
finding the best host for each component of each service, until
it determines that a stable solution has been found. A solution
becomes stable when during a single iteration of the
algorithm all components remain on their respective hosts.

The complexity of this algorithm in the worst case with
k iterations to converge is5

Oð#iteration�#services�#comps�#hosts

� overallUtil�#swappable comps� overallUtilÞ
¼ Oðk� jSj � jCj � jHj � ðjSjjU jjQjÞ � jCj � jðSjjU jjQjÞ
¼ OjSj3ðjCjjUjjQjÞ2Þ:

Since often only a small subset of components participate
in providing a service and swappable components are only a
small subset of components deployed on bestHost, the
average complexity of this algorithm is typically much lower.
Finally, just like the MIP algorithm, further complexity
reduction is possible through specification of locational
constraints, which reduces the number of times overallUtil
is calculated.

The component swapping heuristic is important in that it
significantly decreases the possibility of getting “stuck” in a
bad local optimum. Further enhancements to the algorithm
are possible at the cost of higher complexity. For example,
simulated annealing [54] could be leveraged to explore
several solutions and return the best one by conducting a
series of additional iterations over our algorithm.

4.2.3 Genetic Algorithm

Another approximative solution we have developed is
based on a class of stochastic approaches called genetic
algorithms [54]. An aspect of a genetic algorithm that sets it
apart from the previous three algorithms is that it can be
extended to execute in parallel on multiple processors with
negligible overhead. Furthermore, in contrast with the two
approximative algorithms that eventually stop at “good”
local optima (MINLP and greedy), a genetic algorithm
continues to improve the solution until it is explicitly
terminated by a triggering condition or the global optimal
solution has been found. However, the performance and
accuracy of a genetic algorithm significantly depend on its
design (i.e., the representation of the problem and the
heuristics used in promoting the good properties of
individuals). In fact, the genetic algorithm we developed
initially without deployment-specific heuristics signifi-
cantly underperformed in comparison to the other algo-
rithms. As a result, we had to devise a novel mechanism
specifically tailored to our problem, discussed below.

In a genetic algorithm, an individual represents a
solution to the problem and consists of a sequence of genes

that represent the structure of that solution. A population
contains a pool of individuals. An individual for the next
generation is evolved in three steps: 1) Two or more parent
individuals are heuristically selected from the population,
2) a new individual is created via a crossover between the
parent individuals, and 3) the new individual is mutated
via slight random modification of its genes.

In our problem, an individual is a string of size jCj that
corresponds to the deployment mapping of all software
components to hosts. Fig. 7a shows a representation of an
individual for a problem of 10 components and 4 hosts.
Each block of an individual represents a gene and the
number in each block corresponds to the host on which the
component is deployed. For example, component 1 of
Individual 1 is deployed on host 4 (denoted by h4), as are
components 4, 5, and 8. The problem with this representa-
tion is that the genetic properties of parents are not passed
on as a result of crossovers. This is because the components
that constitute a service are dispersed in the gene sequence
of an individual and a crossover may result in a completely
new deployment for the components of that service. For
instance, assume that in Fig. 7a service 1 of Individual 1 and
services 2 and 3 of Individual 2 have very good deployments
(with respect to user utility); then, as a result of a crossover,
we may create an individual that has an inferior deploy-
ment for all three services. For example, the components
collaborating to provide service 2 are now distributed
across hosts 1, 3, and 4, which is different from the
deployment of service 2 in both Individuals 1 and 2.

Fig. 7b shows a heuristic we have developed for
representing an individual in response to this problem.
The components of each service are grouped together via a
mapping function, represented by the Map sequence. Each
block in the Map sequence tells us the location in the gene
sequence of an individual to which a component is
mapped. For example, component 2 is mapped to block 5
in the gene sequence (denoted by i5). Thus, block 5 of
Individual 1 in Fig. 7b corresponds to block 2 of Individual 1
in Fig. 7a, and both denote that component 2 is deployed on
host 1. If the component participates in more than one
service, the component is grouped with the components
providing the service that is deemed most important.
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Fig. 7. Application of the genetic algorithm to a problem comprised of
10 components and 4 hosts. (a) Simple representation. (b) Representa-
tion based on services.

5. Our analysis is based on the assumption that the numbers of system
parameters (e.g., sets HP and CP) are significantly smaller than the numbers
of modeling elements (i.e., sets H, C, N, and I) with which they are
associated.
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Similarly to the heuristic used in our greedy algorithm, the
most important service results in the highest utility gain for
the smallest improvement in its QoS dimensions. We only
allow crossovers to occur on the borders of services. For
example, in Fig. 7b, we allow crossovers at two locations:
the line dividing blocks 4 and 5 and the line dividing
blocks 7 and 8 of Individuals 1 and 2. As a result of the
crossover in Fig. 7b, we have created an individual that has
inherited the deployment of service 1 from Individual 1 and
the deployment of services 2 and 3 from Individual 2.

After the crossover, the new individual is mutated. In
our problem, this corresponds to changing the deployment
of a few components. To evolve populations of individuals,
we need to define a fitness function that evaluates the
quality of each new individual. The fitness function returns
zero if the individual does not satisfy all the parameter and
locational constraints; otherwise, it returns the value of
overallUtil for the deployment that corresponds to the
individual. The algorithm improves the quality of a
population in each evolutionary iteration by selecting
parent individuals with a probability that is directly
proportional to their fitness values. Thus, individuals with
a high fitness value have a greater chance of getting
selected, and increase the chance of passing on their genetic
properties to the future generations of the population.
Furthermore, another simple heuristic we employ is to
directly copy the individual with the highest fitness value
(i.e., performing no crossover or mutation) from each
population to the next generation, thus keeping the best
individual found in the entire evolutionary search.

The complexity of this algorithm in the worst case is

Oð#populations�#evolutions�#individuals

� complexity of fitness function
¼ Oð#populations�#evolutions�#individuals

� jSjjUjjQjÞ:

We can further improve the results of the algorithm by
instantiating several populations and evolving each of them
independently. These populations are allowed to keep a
history of their best individuals and share them with other
populations at prespecified time intervals.

4.3 Additional Factors in (Re)Deployment Analysis

If the characteristics of an execution scenario change while
the system is running, i.e., after the initial deployment is

calculated and effected, the system is analyzed again by
applying the most appropriate redeployment algorithm(s).
Then, the improved deployment architecture is effected by
redeploying the system’s components as recommended by
the algorithm(s). This process was depicted in Fig. 1.

For illustration, Fig. 8 shows the overall utility of a
hypothetical distributed system to its users over a given
time interval. Let us assume that the system’s initial overall
utility, U1, is deemed unsatisfactory. This can happen either
because the system’s runtime characteristics change (e.g., a
network link fails, a new host enters the system) or because
QoS dimensions and/or user preferences change. In either
case, the system’s operation is monitored and its model
updated as appropriate during the interval TM. The new
model is then analyzed and an improved configuration may
be determined during the period TA. At that point, the
system’s redeployment is triggered if necessary. The
triggering agent may be a human architect; alternatively,
an automated deployment analyzer may initiate the task if
prespecified utility thresholds are reached. We provide
such an automated deployment analyzer, further discussed
in the remainder of this section.

Redeployment involves suspending some subset of the
system’s running components, relocating those components
among the hosts, as well as possibly removing existing
and/or introducing new components. During this time
period, TR, the system’s overall utility, will likely decrease
as services become temporarily unavailable. The utility
“dip” depends on the characteristics of the system (e.g.,
frequencies of interactions, number of dependencies) as
well as the support provided by the implementation
platform (e.g., rerouting of events, replicating components).
Once the redeployment is completed, however, the overall
utility increases to U2 for the remainder of time period T . If
the system parameters change again, the system’s utility
may decrease, and this process may be repeated (illustrated
in Fig. 8 with period T ’).

The above process makes a critical assumption: The times
required to monitor a system, update its model, analyze, and
redeploy the system are small relative to the system’s normal
operation interval TO (i.e., TM þ TA þ TR << TO). If this is
not the case, the system’s parameters will be changing too
frequently, triggering constant redeployments. This will
result in the opposite of the intended effect since the
system users would repeatedly experience the utility
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“dip.” Therefore, in order to properly determine whether
and how often to redeploy a system, our framework’s
deployment analyzer needs to know

1. the rate of change in system parameters,
2. the time required to apply the algorithms,
3. the time needed to actually redeploy the system,
4. the overall utility gain of the calculated redeployment.

We elaborate on these factors below.
For some systems, it may be possible to predict the

frequency with which system parameters are likely to
change (e.g., based on domain characteristics or similar past
systems). In other cases, the deployment analyzer leverages
the system’s execution history to estimate the change rate in
parameters; collecting this history is further discussed in
Section 6. It is, of course, impossible to guarantee that the
predicted behavior will be borne out in practice or that past
behavior is representative of future behavior. In particular,
our approach will not be effective in the extreme case where
changes occur so rapidly and randomly that no particular
generalization of the monitored data can be made and no
particular patterns of behavior can be identified, making it
impractical to optimize the system. At the same time, an
argument can be made that other remedies need to be
considered for such systems before determining an effective
deployment becomes a priority.

While, in theory, one should always strive for the
(re)deployment that maximizes the system’s overall utility,
in practice the time needed to apply the different redeploy-
ment solutions and the overall utility gain must be taken
into account. Even though, with the exception of MIP, the
algorithms we have devised run in polynomial time, they
have very different characteristics that significantly affect
their runtime performance as well as accuracy. Those
characteristics are extensively evaluated in Section 6,
allowing us to automatically select the most appropriate
algorithm in a given situation.

Finally, deployment analysis must also take into account
the amount of time required to actually redeploy the system
and the intervening loss of system services. The time
required to migrate a single component depends on the
component’s size as well as the reliability and bandwidth of
the network link between the source and destination hosts.
For example, if two hosts are connected by a 100 Kbps
connection with 50 percent reliability, a 100 KB component
would get migrated in 16s on average. The upper bound on
the total time to effect a system’s redeployment, TR, for the
scenario instantiated in Section 3 can be estimated as follows:

TR ¼
X
r2R

cParamrðcompMemÞ
nParamsourcer;destrðbwÞ�nParamsourcer destrðrelÞ

 !
;

where R is the set of components to be redeployed, source
and dest are the source and destination hosts, respectively,
and bw and rel are the bandwidth and reliability of the
network link, respectively. The above equation does not
include network latency introduced by the underlying
network protocol. Existing network latency estimation
techniques (e.g., [16]) can be applied to estimate TR more
accurately. Additionally, the migrations on different hosts
usually happen in parallel, thus significantly reducing the
value of TR. Finally, the above discussion assumes that

either no additional mechanisms (e.g., rerouting of events,
component replication) are provided to reduce service
disruption during redeployment or, if they are provided,
that they are captured by updating our system model.

The unavailability of system services during the TR

interval (depicted by the utility “dip” in Fig. 8) may be a
critical factor in deciding on the best deployment for a
system in a given scenario. In some cases, users may be
willing to accept temporary losses of service, so the
algorithm suggesting a deployment with the highest utility
will be preferable. In other cases, however, losing certain
critical services beyond a specific amount of time will be
unacceptable to users, so redeployments that guarantee
short downtimes for the components providing those
services will be preferable (this may also result in simply
retaining the current deployment). In such cases, the
objective of applying a deployment improvement algorithm
is to trade off the utility gain achieved by a suggested new
deployment (interval TO in Fig. 8) against the utility loss
caused by the redeployment process (interval TR). In order
for our framework’s deployment analyzer to be able to
make this tradeoff autonomously, it must know the system
users’ preferred utility thresholds. The thresholds can be
obtained in a manner analogous to capturing the users’ QoS
preferences (recall Section 2). If such thresholds do not exist,
the output of a deployment improvement algorithm
becomes a set of suggested deployments, with their
resulting utility gains during TO and losses during TR. In
those cases, a human is tasked with determining the best
option. Finally, note that if any loss of a given service is
unacceptable, this becomes a redeployment constraint in the
system model (recall Section 3).

5 TOOL SUPPORT

We have realized DIF as a visual Eclipse-based environment.
The environment can be readily employed for improving the
deployment of any existing Eclipse software project, assum-
ing the availability of an underlying implementation plat-
form with the capabilities discussed in Section 1 and
depicted in the bottom two layers of Fig. 1. In this section,
we provide an overview of DIF’s tool support, as well as its
integration with an implementation platform, which has
been used extensively in our evaluation.

5.1 Framework’s Implementation

We have implemented DIF by extending and tailoring
DeSi, a preliminary version of which was described in
[44]. DeSi is a visual deployment exploration environment
that supports specification, manipulation, and visualiza-
tion of deployment architectures for large-scale, highly
distributed systems.

DeSi uses an enhanced variation of xADL [11], an XML-
based third-party architecture description language [29], to
model the deployment concerns. We have extended the
conventional constructs found in commonly used ADLs [29],
such as xADL, in three ways. First, xADL was extended to
enable modeling of hardware as well as software properties
of interest, the containment relationships between software
and hardware elements, and the details of both logical and
physical connectors. Second, we introduced the notion of a
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service, which as described earlier represents a user-level
functionality and has a mapping to a subset of a system’s
architecture involved in provisioning it. Finally, we ex-
tended xADL to provide the constructs necessary for
capturing the user types, user preferences, and analytical
models for representing QoS in the system.

By leveraging DeSi, an architect is able to enter desired
system parameters into the model, and also to manipulate
those parameters and study their effects. For example, as
depicted in Fig. 9b, the architect is able to use a graphical
environment to specify new architectural constructs (e.g.,
components, hosts), parameters (e.g., network bandwidth,
host memory), and values for the parameters (e.g.,
available memory on a host is 1 MB). The architect may
also specify constraints. Example constraints are the
maximum and minimum available resources, the location
constraint that denotes the hosts on which a component
may not be deployed, and the collocation constraint that
denotes a subset of components that should not be
deployed on the same host. DeSi also provides a tabular
view that provides a comprehensive summary of the
system’s monitored data, deployment architecture, and
the results of analysis (shown in Fig. 9a). In the same view,
DeSi provides a control panel through which any of the
algorithms can be executed and the impact of a new
solution on the system’s QoS visually assessed.

Fig. 16 shows DeSi’s graphical depiction of a system
users’ preference view, where the system’s users (left) have
expressed their QoS preferences (middle) for user-level
services (right). This figure corresponds to one of the
applications we have used for evaluating DIF and will be
revisited in more detail in Section 6. Some possible
methods of eliciting user preferences include: 1) discrete—
select from a finite number of options (e.g., a certain level
of QoS for a given service is excellent, good, poor, or very
poor), 2) relative—a simple relationship or ratio (e.g.,
10 percent improvement in a given QoS has 20 percent
utility), and 3) constant feedback—input preferences based
on the delivered QoS at runtime (e.g., given a certain QoS
delivered at runtime ask for better, same, or ignore).

DeSi can be used in two modes: 1) Simulated mode—used
to automatically generate and manipulate large numbers of
hypothetical deployment architectures (shown in the para-
meter ranges in Fig. 9a). As detailed in Section 6, we used
this feature of DeSi to comprehensively evaluate the trade-
offs between alternative algorithms on a large number of
deployment problems. 2) Online mode—used in conjunction
with an execution platform, most likely in the form of a
middleware, that provides DeSi with the information from
a running system. A middleware adapter is employed to
integrate DeSi with a running system. The middleware
adapter would need to provide implementations for two
Java interfaces: IMonitor and IEffector. An implementation of
IMonitor captures the runtime data from the running system
and uses DeSi’s exported API to update the system’s
deployment model. An implementation of IEffector, on the
other hand, is used by DeSi for effecting the calculated
(improved) deployment architecture. The implementation
would use the middleware’s runtime adaptation facilities to
modify the running system’s deployment architecture. The

details of this process are further elaborated below, in the
context of an example middleware used in our evaluation.

5.2 Integration with a Runtime Platform

As described in Section 1, to achieve DIF’s goal of
improving the system’s QoS through redeployment of its
components, we rely on the availability of an underlying
implementation platform with the necessary runtime
facilities. These facilities roughly correspond to those
depicted in the two bottom layers of Fig. 1. While DIF is
independent of the underlying platform, for evaluating it in
actual software systems we integrated DeSi with Prism-MW
[34], which is a middleware platform developed in our
previous work, with extensive support for monitoring and
component redeployment. We briefly provide an overview
of Prism-MW and elaborate on its integration with the DIF’s
implementation in DeSi. The interested reader can find a
detailed description of Prism-MW in [34].

Prism-MW is an architectural middleware, meaning that
it provides implementation-level constructs for architec-
tural concepts such as components, connectors, ports,
events, architectural styles, and so on. This characteristic
sets Prism-MW apart from general purpose middleware
platforms that often lack support for certain facets of
software architectures (e.g., architectural styles, explicit
connectors [30]).

A software system in Prism-MW is implemented as an
Architecture object containing the configuration of the
system’s Component and Connectors. Fig. 14a provides an
overview of an application developed on top of Prism-MW
and described in detail as part of our evaluation. A
distributed system is implemented as a set of interacting
Architecture objects, communicating via distribution-en-
abled Prism-MW Ports. The one-to-one mapping between
the architectural model and its implementation in turn
simplifies (re)deploying the system as suggested by its
architectural analysis, which is one of the key motivations
behind the selection of this middleware for the evaluation
of DIF.

To support system (re)deployment and monitoring,
Prism-MW provides meta-level components, which contain a
reference to the Architecture, as depicted in Fig. 14a. This
allows a meta-level component to achieve architectural
awareness, i.e., to be able to access all architectural elements
in its local configuration. In essence, a meta-level component
acts as an agent that coexists with the application-level
components, effects changes to their local configuration,
and monitors changes in their execution conditions. Prism-
MW provides two implementations of meta-level compo-
nents, Admin and Deployer, which, respectively, provide the
component control and change management capabilities de-
picted in Fig. 1, as follows:

Each host has an Admin, which acts as an agent in charge
of collecting system measurements and making the runtime
changes in the corresponding host. In Prism-MW, the
developer can associate arbitrary monitoring probes with
architectural constructs. For instance, Fig. 15b shows an
application used in our evaluation, where a NetworkRelia-
bilityMonitor is attached to a distribution-enabled port to
assess the status of the associated network link, while
EvtFrequencyMonitor is attached to a component to observe
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Fig. 9. User interface of the DeSi environment: (a) The editable tabular view of a system’s deployment architecture and the control panel for
executing the algorithms. (b) The graphical view of the architecture.
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event traffic going through its port. Each monitoring probe
compares the collected data with a “base” value and reports
any discrepancies to the local host’s Admin, which periodi-
cally sends the updated information to the Deployer. Admin
provides the component migration (recall Fig. 1) facility by
(un)welding components from the architecture, and ship-
ping them to other Admin components across the network.
Prism-MW provides various component serialization me-
chanisms that we have leveraged in our work. For instance,
the Java version of the middleware simply relies on JVM’s
serialization capability, while the C++ version ships
Dynamic Link Libraries and requires the component logic
to implement an API that can read/write the state of a
component from/to a byte array [37].

The Deployer component used in our evaluation imple-
ments DeSi’s IEffector and IMonitor interfaces. Recall from
Section 5.1 that a middleware adapter needs to provide
implementations of these two interfaces to allow for the
collection of data and adaptation of the running system.
Through these two interfaces the Deployer component
continuously engages DeSi and provides the change
management capabilities as follows: In the role of an
effector, given a new deployment architecture, it coordi-
nates the migration of components among the Admins. For
instance, it determines the order in which components
should be redeployed to minimize the application down-
time, avoid functional inconsistency, etc. In the role of a
monitor, the Deployer provides a monitoring gauge facility
which aggregates the monitoring data received from the
Admins, looks for changes that are considered significant,
and makes requests of DeSi to update the system’s model
and analyze its utility. This reinitiates the entire process
depicted in Fig. 1 and described above.

The details of each of the steps performed by Deployer
and Admins (e.g., ensuring that a component is quiescent
[26] before it is removed from the local configuration or that
messages are properly routed to the redeployed compo-
nents) are enabled by Prism-MW following the techniques
described in [49], [50]. We elide these details here as they
are not necessary to understand the subsequent discussion.

6 EVALUATION

We have used DIF in a number of distributed system
scenarios. While a majority of those were developed
internally to observe and refine the framework, one was
motivated by an external collaborator’s real-world needs
and another has resulted in the adoption of DIF and its
accompanying tools by an industrial organization. This
demonstrates that DIF is effective in some situations, but it
does not indicate the extent of its effectiveness. To do that,
we have also evaluated different facets of DIF in numerous
simulated settings. We have focused our analysis on the
critical aspects of DIF, and refer the interested reader to [34]
for a thorough assessment of the runtime monitoring and
redeployment facilities in Prism-MW. We first assess DIF’s
modeling and analysis capabilities along several dimen-
sions. We then describe our collaborative experience in
applying our technique to two third-party families of
distributed applications.

6.1 Experimental Setup

We have leveraged DIF’s implementation in DeSi for our
evaluation. DeSi’s extensible modeling and visualization
capabilities allowed us to configure it arbitrarily. The
starting point of our evaluations was the instantiation of
the framework with the system parameters and QoS
dimensions discussed in Section 3.2 and shown in Fig. 5.
We then varied the parameters and extended the model
with additional QoS dimensions. The largest scenarios we
have worked with to date have involved on the order of
dozens of users, QoS dimensions, and hardware hosts,
and hundreds of software components and system
services. The model from Section 3 has proven highly
expressive in capturing the details of distributed system
scenarios, as will be demonstrated in the remainder of
this section.

We instrumented DeSi to transform its internal model to
GAMS [8], an algebraic optimization language. This
allowed us to integrate DeSi with state-of-the-art MIP
and MINLP solvers [10]. DeSi also exports an API for
accessing its internal model, which we leveraged to
implement the greedy and genetic algorithms. Finally, we
leveraged DeSi’s hypothetical deployment generation cap-
ability [44] to evaluate the algorithms on a large number of
deployment scenarios. In the generation of deployment
scenarios, some system parameters are populated with
randomly generated data within a specified range, and an
initial deployment of the system that satisfies all the
constraints is provided automatically.

Fig. 10 shows the input into DeSi for the generation of
example scenarios and benchmarks. The values in Fig. 10
represent the allowable ranges for each system parameter.
The numbers of hosts, components, services, and users vary
across the benchmark tests and are specified in the
description of each test. Note that both DIF and its
implementation in DeSi are independent of the unit of data
used for each system parameter. For example, in the case of
transmission delay, neither DIF nor DeSi depend on the unit
of time (s, ms, etc.). It is up to the system architect to ensure
that the right units and appropriate ranges for the data are
supplied to DeSi. After the deployment scenario is
generated, DeSi simulates users’ preferences by generating
hypothetical desired utilities (qUtil) for the QoS dimensions
of each service. While users may only use and specify QoS
preferences for a subset of services, we evaluate our
algorithms in the most constrained (and challenging) case,
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where each user specifies a QoS preference for each service.
Unless otherwise specified, the genetic algorithm used in
the evaluation was executed with a single population of one
hundred individuals, which were evolved until a stable
solution was found (i.e., as a result of three consecutive
evolutionary cycles no better new solution was found). Our
evaluation focused on five different aspects of our analysis
support, as detailed next.

6.2 Improving Conflicting QoS Dimensions

In this section, we provide an evaluation of the algorithms’
ability to simultaneously satisfy multiple users’ conflicting
QoS preferences in a representative scenario. The results
reported here are complemented by the benchmarks of the
algorithms in a large number of scenarios given in Section 6.4.
Table 1 shows the result of running our algorithms on an
example application scenario generated for the input of
Fig. 10 (with 12 components, 5 hosts, 8 services, and 8 users).
The values in the first eight rows correspond to the
percentage of improvement over the initial deployment of
each service. The ninth row shows the average improvement
over the initial deployment for each QoS dimension of all the
services. Finally, the last row shows the final value of our
objective function (overallUtil). The results demonstrate that,
given a highly constrained system with conflicting QoS
dimensions, the algorithms are capable of significantly
improving the QoS dimensions of each service. As discussed
in Section 4, the MIP algorithm found the optimal deploy-
ment (with the objective value of 64 in this case).6 The other
algorithms found solutions that are within 20 percent of the
optimal. We have observed similar trends across many other
scenarios as discussed below.

6.3 Impact of Users’ Preferences

Recall from Section 3 that the importance of a QoS
dimension to a user is determined by the amount of utility

specified for that dimension. QoS dimensions of services
that have higher importance to the users typically show a
greater degree of improvement. For example, in the
scenario of Table 1, the users have placed a great degree
of importance on service 4’s availability and security. This
is reflected in the results: For example, in MIP’s solution,
the availability of service 4 is improved by 215 percent and
security by 302 percent; the average respective improve-
ment of these two dimensions for all services was 86 and
66 percent. Note that, for this same reason, a few QoS
dimensions of some services have degraded in quality, as
reflected in the negative percentage numbers. These were
not as important to the users and had to be degraded in
order to improve other, more important QoS dimensions.
As another illustration, a benchmark of 20 application
scenarios generated based on the input of Fig. 10 showed
an average QoS improvement of 89 percent for the top one-
half of system services in terms of importance as rated by
the users, and an average improvement of 34 percent for
the remaining services.

6.4 Performance and Accuracy

Fig. 11 shows a comparison of the four algorithms in terms
of 1) performance, i.e., execution time, and 2) accuracy, i.e.,
value of the objective function overallUtil. For each data
point (shown on the horizontal axis with the number of
components, hosts, services, and users) in Fig. 11, we
created 35 representative problems and ran the four
algorithms on them. The two graphs correspond to the
average values obtained in these benchmarks. We explain
this data in detail next.

The high complexity of MIP and MINLP solvers made it
infeasible to solve the larger problems. Our greedy and
genetic algorithms demonstrate much better performance
than both MIP and MINLP solvers, and are scalable to larger
problems. The MINLP solvers were unable to find solutions
for approximately 20 percent of larger problems (beyond
20 components and 10 hosts). For a meaningful comparison
of the benchmark results, Fig. 11 does not include problems
that could not be solved by the MINLP solvers.
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TABLE 1
Results of an Example Scenario with 12C, 5H, 8S, and 8U

A positive number indicates improvement.

6. An objective value (i.e., result of overallUtil) provides a scalar number
indicating the quality of a deployment solution in comparison to other
deployments within the same application scenario.
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The data table at the bottom of Fig. 11a shows the likely
range for the algorithms’ performance in problems of
different sizes. Specifically, the table shows the 95 percent
confidence interval on the mean. The results indicate that
even at confidence limits (i.e., most optimistic and
pessimistic variations), different algorithms present signifi-
cant performance tradeoffs. Note that the performance of a
greedy algorithm is more predictable than that of other
algorithms. This is reasonable since the greedy algorithm
always executes a bounded number of iterations, while the
other algorithms, such as genetic, may heavily depend on
the characteristics of the problem. For instance, the
populations in the genetic algorithm evolve through an
intrinsically semirandom process, which, in the case of a
highly constrained problem, may result in the generation of
many invalid individuals, and thus may take a long time for
the algorithm to converge.

In the smaller problems, comparing the accuracy (see
Fig. 11b) of MINLP, greedy, and genetic algorithms against
the optimal solution found by the MIP algorithm shows
that all three optimization algorithms on average come
within at least 20 percent of the optimal solution. We have
not provided confidence intervals for each set of deploy-
ment problems since, unlike the performance metric,
different problems may result in starkly different utility
values, and no particular meaningful observation can be
made through a statistical analysis of the values obtained

for problems of certain size. Instead, for each deployment
problem in the first three sets of experiments (i.e., for a
total of 105 deployment problems), we compared the
difference between the utility of solutions found by greedy
and genetic algorithm against the optimal found by MIP.
The results showed an average difference of 10:8%� 2:3 at
95 percent confidence for the greedy algorithm, and 9:6%�
3:1 at 95 percent confidence for the genetic algorithm. This
empirical analysis shows that greedy and genetic algo-
rithms often come very close to the optimal solution found
by MIP. However, as expected, given that the deployment
problem is NP-hard, no particular guarantees can be made.

In the larger problems, since the MIP algorithm could not
be executed and the optimal solution is unknown, we
compare the algorithms against the unbiased average. To
compute the unbiased average, we implemented an algo-
rithm that generates different deployments by randomly
assigning each component to a single host from a set of
component’s allowable hosts. If the generated deployment
satisfies all of the constraints, the utility of the produced
deployment architecture is calculated. This process repeats a
given number of times (in these experiments, 10,000 times)
and the average utility of all valid deployments is calculated.
Unbiased average denotes a representative (or likely) deploy-
ment of the system when the engineer does not employ
sophisticated algorithms for automated analysis. The results
show that all of the optimization algorithms find solutions
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that are significantly better than the unbiased average.
Moreover, the greedy and genetic algorithms are capable of
finding solutions that are on par with those found by state-
of-the-art MINLP solvers.

6.5 Impact of QoS Dimensions

Fig. 12 shows the impact of the number of QoS dimensions on
each algorithm’s performance. In this set of experiments, for
each data point we analyzed 35 different deployment
problems of the same size (12 components, 5 hosts, 5 services,
and 5 users) with varying numbers of QoS dimensions. The
graph shows the average impact of the number of QoS
dimensions on each algorithm’s performance, while the
bottom data table provides the 95 percent confidence interval
on the mean. In addition to the four QoS dimensions from
Section 3.2, we added arbitrary “dummy” QoS dimensions.
Our framework’s modeling support was able to capture
those additional QoS dimensions easily.

As expected, the performance of all four algorithms is
affected by the addition of new dimensions. However, the
algorithms show different levels of impact. The genetic
algorithm shows the least degradation in performance. This
is corroborated by our theoretical analysis: The complexity
of the genetic algorithm increases linearly in the number of
QoS dimensions, while, for instance, the complexity of the
greedy algorithm increases polynomially. We do not have
access to the proprietary algorithms of MIP and MINLP
solvers, but it is evident that their performance also
depends significantly on the number of QoS dimensions.

6.6 Impact of Heuristics

In Fig. 13, we illustrate our evaluation of the heuristics we
have introduced in the development of our algorithms
(recall Section 4). Each data point shows the averages
obtained on the execution of algorithms on 35 deployments.
The graph in Fig. 13a shows the effect of variable ordering in
the MIP algorithm, while the data table shows the 95 percent
confidence interval on the reported mean. As discussed in
Section 4.1.2 and shown in the results of Fig. 13a, specifying
priorities for the order in which variables are branched can
improve the performance of MIP significantly (in some
instances, by an order of magnitude).

Fig. 13b compares the greedy algorithm against a version
that does not swap components when the parameter
constraints on the bestHost are violated. As was discussed
in Section 4.1.3, by swapping components we decrease the
possibility of getting “stuck” in a bad local optimum. The
results of Fig. 13b corroborate the importance of this
heuristic on the accuracy of the greedy algorithm.

Since, as already discussed, the utility may change
drastically from one problem to another, calculating
confidence intervals for the 35 deployment problems used
in each class (size) of problems is not useful. Instead, we
compared the accuracy of each algorithm in each deploy-
ment problem used in this set of experiments, for a total of
5� 35 ¼ 175 deployment problems. The results showed an
average difference of 40:6%� 3:1 at 95 percent confidence
for the two variations of the greedy algorithm.

Finally, Fig. 13c compares the three variations of the
genetic algorithm. The first two variations were discussed
in Section 4.1.4, where one uses the Map sequence to group
components based on services and the other does not. As
expected, the results show a significant improvement in
accuracy when components are grouped based on services.
Comparing the difference between the two variations across
175 deployment problems showed an average improvement
of 57:2%� 4:0 at 95 percent confidence in the algorithm
employing mapping. The last variation corresponds to the
distributed and parallel execution of the genetic algorithm.
In this variation we evolved three populations of one
hundred individuals in parallel, where the populations
shared their top 10 individuals after every 20 evolutionary
iterations. The results show a small improvement in
accuracy over the simple scenario where only one popula-
tion of individuals was used. Comparing the difference
between the parallel version of algorithm against the one
using the mapping heuristic across the 175 deployment
problems showed that the former achieves an average
improvement of 4:8%� 1:2 at 95 percent confidence.

6.7 Algorithm Selection

Since each of our algorithms has different strengths and
weaknesses, two important questions are 1) when to use a
given algorithm and 2) which algorithm is most appropriate
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in a given situation. We can provide some guidelines,
depending on the system’s context. Unlike the results
presented above, these guidelines are qualitative, which is a
reflection of the inexact nature of software architectural
design. One aspect of a distributed system that influences
the complexity of improving its deployment architecture is
its design paradigm, or architectural style. The two
predominant design paradigms for distributed systems
are client-server and peer-to-peer.

Traditional client-server applications are typically com-
posed of bulky and resource-expensive server components,
which are accessed via comparatively light and more
efficient client components. The resource requirements of
client and server components dictate a particular deploy-
ment pattern, where the server components are deployed
on capacious back-end computers and the client compo-
nents are deployed on users’ workstations. Furthermore,
the stylistic rules of client-server applications disallow

interdependency among the clients, while many of the
client components that need to be deployed on the users’
workstations are determined based on users’ requirements
and are often fixed throughout the system’s execution (e.g.,
client components that are GUI components typically do
not need to be redeployed). Therefore, the software
engineer is primarily concerned with the deployment of
server components among the back-end hosts. Given that,
usually, there are fewer server components than client
components and fewer server computers than user work-
stations, the actual problem space of many client-server
applications is much smaller than it may appear at first
blush. In such systems, one could leverage the locational
constraint feature of our framework to limit the problem
space significantly. Therefore, it may be feasible to run the
MIP algorithm for a large class of client-server systems and
find the optimal deployment architecture in a reasonable
amount of time.
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In contrast, a growing class of peer-to-peer systems are
not restricted by stylistic rules or resource requirements that
dictate a particular deployment architecture pattern.7

Therefore, locational constraints cannot be leveraged in
the above manner, and the problem space remains
exponentially large. For even medium-sized peer-to-peer
systems, the MIP algorithm becomes infeasible and the
software engineer has to leverage one of the three
optimization algorithms to arrive at an improved deploy-
ment architecture.

In larger application scenarios, the greedy and genetic
approaches have an advantage over MINLP since they
exhibit better performance and have a higher chance of
finding a good solution. When the application scenario
includes very restrictive constraints, greedy has an advan-
tage over the genetic algorithm. This is because the greedy
algorithm makes incremental improvements to the solution,
while the genetic algorithm depends on random mutation
of individuals and may result in many invalid individuals
in the population. Even if the genetic algorithm were to
check the locational constraints before the individuals are
added to the population, many invalid individuals would
have to be checked due to the random mutation, which
would hamper the algorithm’s performance.

Another class of systems that are significantly impacted
by the quality of deployment architecture are mobile and
resource constrained systems, which are highly dependent
on unreliable wireless networks on which they are running.
For these systems, the genetic algorithm is the best option: It
is the only algorithm in its current form that allows for
parallel execution on multiple decentralized hosts, thus
distributing the processing burden of running the algo-
rithm. We believe other types of parallel algorithms (e.g.,
variations of greedy) could be developed as well. We
consider this to be an interesting avenue of future research.

The above discussion demonstrates that there is no one-
size-fits-all solution for the deployment problem. Our intent
with the development of our algorithms has not been to be
exhaustive, but rather to demonstrate the feasibility of
developing effective heuristics and algorithms that are
generally applicable across different application scenarios.
We expect that our framework will need to be augmented
with additional algorithms. In fact, we are in the process of
generalizing our auction-based algorithm for improving
system availability [35] and integrating it into the frame-
work to support (re)deployment in decentralized settings.

6.8 Practical Applications of the Framework

We have applied the described DIF framework on two
application families developed with external collaborators.
The first application family, Emergency Deployment Sys-
tem [31], is from the domain of mobile pervasive systems
intended to deal with situations such as natural disasters,
search-and-rescue efforts, and military crises. Our work on
EDS initially motivated this research. The second applica-
tion family is MIDAS [37], a security monitoring distributed
application composed of a large number of wirelessly

connected sensors, gateways, hubs, and PDAs. In both
cases, the applications involved varying numbers of hosts,
components, system parameters, and QoS, allowing our
collaborators to apply the framework. Below we describe
our experience with applying our framework in the context
of these two application families. We provide an overview
of their functionalities and architectures to the extent
necessary for explaining the role of the DIF framework.
An interested reader can find more details about these
systems in [31], [36], and [37].

6.8.1 MIDAS

Fig. 14 shows a subset of MIDAS’s software architecture.
MIDAS is composed of a large number of wirelessly
connected sensors, gateways, hubs, and PDAs. The sensors
are used to monitor the environment around them. They
communicate their status to one another and to the
gateways. The gateway nodes are responsible for managing
and coordinating the sensors. Furthermore, the gateways
translate, aggregate, and fuse the data received from the
sensors, and propagate the appropriate data (e.g., events) to
the hubs. Hubs, in turn, are used to evaluate and visualize
the sensor data for human users, as well as to provide an
interface through which a user can send control commands
to the various sensors and gateways in the system. Hubs
may also be configured to propagate the appropriate sensor
data to PDAs, which are used by the mobile users of the
system. As denoted on the left side of the figure, three
architectural styles were used in MIDAS: service-oriented,
publish-subscribe, and peer-to-peer. The peer-to-peer por-
tion of this architecture corresponds to the meta-level
functionality of system monitoring, analysis, and adapta-
tion via DeSi and Prism-MW.

MIDAS has several QoS requirements that need to be
satisfied in tandem. The two most stringent requirements are
latency and energy consumption: MIDAS is required to
transmit a high-priority event from a sensor to a hub and to
receive an acknowledgment back in less than two seconds;
given that some of the MIDAS platforms (e.g., sensors and
some gateways) are battery-powered, minimizing the energy
consumption is also of utmost concern. MIDAS also has
several deployment constraints that need to be satisfied.
Some examples of these constraints are as follows: Exactly
one instance of the SDEngine component, which is respon-
sible for the discovery of currently available services in
MIDAS, should be deployed on each host; every Session
Operator component should be collocated with the corre-
sponding SessionAdministrator component; a HubOperator
component can only be deployed on a hub; and so on. On top
of the locational constraints, MIDAS has several resource
(system) constraints. Most notably, the sensors, PDAs, and
some of the gateway platforms are memory-constrained
devices that could only host a small number of components.

Our objective was to find and maintain an effective
deployment for different instantiations of MIDAS. Prior to
this, MIDAS’s deployments were determined manually, at
times guided by unclear rationales, and their effectiveness
was never evaluated quantitatively. This is of particular
concern in a mobile embedded system, which is affected by
unpredictable movement of target hosts and fluctuations in
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the quality of wireless network links. Moreover, since
engineers did not know a priori the properties of the target
environment and the system’s execution context, they would
often make deployment decisions that were inappropriate. In
turn, given that the majority of platforms in MIDAS lack a
convenient interface (e.g., monitor, disk drive, or keyboard)
that could be used for the download and installation of
software, redeploying the software was a cumbersome task
that required bringing MIDAS down each time.

One set of application scenarios in which our framework
was applied was similar to that shown in Fig. 14, but with
two additional gateways and a total of 30 software
components. We could not execute the MIP algorithm due
to size of the problem (i.e., 530 combinations). Instead, we
executed the genetic, greedy, and MINLP algorithms, and
selected the best solutions. For these particular scenarios,
the genetic algorithm outperformed greedy and MINLP. It
took the genetic algorithm slightly over 40 seconds on a
mid-range PC to find the solutions every time, in compar-
ison to the average of 4.5 hours required for an engineer to
manually find a deployment for the same system that
satisfied only the system’s constraints (i.e., without even
attempting to optimize the latency and energy consumption
QoS dimensions). It is then not surprising that the genetic
algorithm’s solutions were on the average 23 percent better
than the manual deployments in terms of QoS provisioned
by the system’s services.

After a design-time analysis of the model, our framework
was leveraged to deploy and execute each instance of the
system. To this end, the Effector component in the DeSi
Adapter Architecture converted the deployment model ex-
ported by DeSi into a total of 165 commands, which were sent
to the Deployer and Admin components running on MIDAS’s
hosts. Each command corresponds to a runtime adaptation
(e.g., add component, attach communication port) that is
performed by Prism-MW. The total time for automatically
deploying the software, which included shipping the
component’s logic via DLL files, instantiating and initializing
the component, and configuring the architecture, was

measured to be just under 11 seconds on the average. In
comparison, it took the MIDAS engineers 6 hours on average
to deploy and configure the same software system using
common build scripts (e.g., Apache Ant).

The system was then monitored, and the framework’s
ability to react to changes in the environment was tested
repeatedly during the system’s execution. The framework
proved useful in improving the system’s QoS in several
instances. In particular, our collaborators found the frame-
work effective in mitigating two types of situations. When
the movement of a PDA caused the available wireless
network bandwidth to drop off significantly, the framework
would selectively redeploy some of the services in the
service-oriented layer of the gateways (e.g., NodeInfoSvc) to
the PDA, which resulted in close to a 30 percent improve-
ment in the application’s response time on the average.
Similarly, in situations where unexpected load on the
system depleted some gateways’ or PDAs’ batteries,
the framework redeployed the computationally intensive
components (e.g., TopologyCalculator) to the back-end hubs,
and prolonged the life of the depleted hosts. Our measure-
ments showed that these particular redeployments reduced
the energy consumption of the depleted hardware hosts by
40 percent or more, although they also resulted in increased
latencies. While it is conceivable that an engineer may have
been able to effect the same redeployments manually, our
framework allowed her to rapidly explore a number of
options, set the appropriate parameter priorities, and obtain
accurate quantitative results.

The analysis of the MIDAS architecture in approximately
100 different scenarios resulted in the redeployment of three
software components on average. That is, only a small
fraction of the system’s 30 components was redeployed at
any point in time. This is attributed to the fact that the
changes were localized to a small portion of the system at
any point in time (e.g., heavy load on a host, weak network
signal due to the movement of a particular PDA). Moreover,
since the framework typically redeployed only small
portions of the system at a given time, the system’s users
were often unaware that the changes were occurring.
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The average size of the MIDAS components redeployed
in our experiments was 113 KB. Given that on average
three components were redeployed per scenario, we
estimate the network traffic associated with redeployment
to be 340 KB. The DIF framework’s network usage was
negligible in MIDAS, as the devices were connected using a
dedicated IEEE 802.11b wireless network, which provides
up to 11 Mbps of bandwidth. However, the DIF’s network
impact would have to be considered more carefully in
systems with a slower network.

Finally, an unexpected outcome of our experience was
that the engineers found DIF to be helpful not only for
improving QoS, but also for rapidly testing a fix to a
problem during the development. This is a highly time-
consuming task that is traditionally performed manually in
this setting, which our framework’s redeployment and
monitoring facilities were able to streamline.

6.8.2 Emergency Deployment System

We now describe our experience with DIF in the context of
the Emergency Deployment System application family,
which was foreshadowed in the scenario used in the
Introduction. An instance of EDS with single Headquarters,
four Team Leads, and 36 Responders is shown in Fig. 15a. A
computer at Headquarters gathers information from the field
and displays the current field status: the locations of
friendly and, if applicable, enemy troops, vehicles, and
obstacles such as fires or mine fields. The headquarters
computer is networked via secure links to a set of PDAs
used by Team Leads in the field. The team lead PDAs are
connected directly to each other and to a large number of
Responder PDAs. Each team lead is capable of controlling his
own part of the field: deploying responders, analyzing the
deployment strategy, transferring responders between team
leads, and so on. In case the Headquarters device fails, a
designated Team Lead assumes the role of Headquarters.
Responders can only view the segment of the field in which

they are located, receive direct orders from the Team Leads,
and report their status.

Fig. 15b shows the initial deployment architecture of an
instance of EDS that we use to describe our experiences in
this case study. The corresponding models were first
constructed in DeSi, populated with the information
available prior to system’s execution (e.g., upper-bound
estimates on the sizes of components, locational constraints,
available memory on the hosts), and the initial deployment
was then selected through the application of DIF at design-
time. As depicted in Fig. 15b, DIF was then applied during
the system’s execution by monitoring the system (e.g.,
frequency of invocations, network reliabilities), reassessing
its deployment, and migrating the components.

Fig. 16 shows a portion of the models constructed in DeSi
to represent the system’s users (left), their QoS preferences
(middle), and user-level services (right) provisioned by the
system’s components for the deployment architecture from
Fig. 15b. In Fig. 16, Latency is selected as the QoS dimension
of interest. As a result, DeSi is showing the Headquarters’
latency preferences for the Analyze Strategy service in the
property sheet (bottom). This figure shows one way of
specifying preferences in DeSi: A 10 percent (0.1) improve-
ment in latency results in a 20 percent (0.2) increase in
utility for the Headquarters user.

The EDS scenario reported on here and depicted in Fig. 15b
consisted of five users: Headquarters, Left Team Lead, Right
Team Lead, Left Responder, and Right Responder. Altogether, the
users specified 10 different QoS preferences for a total of eight
services. The services were Analyze Strategy, Move Resources,
Get Weather, Get Map, Update Resources, Remove Resources,
Simulate Drill, and Advise Deployment.

Table 2 shows the preferences of the five users, captured
in this case as linear functions. The table shows that
Headquarters has specified a utility that increases twice as
fast as the changes in latency of the Analyze Strategy service.
In EDS, we found simple linear representation of the users’
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Fig. 15. (a) An instance of Emergency Deployment System (EDS). (b) A subset of the EDS deployment architecture that is monitored and
redeployed using our framework.
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preference to be sufficiently expressive. Other forms of
representing the users’ preferences, such as sigmoid
functions proposed in [58], are also possible. Note that
users are not required to express their preferences in terms
of functions. For example, they may express their prefer-
ences in terms of simple scalar values, which are then
passed through commonly available regression tools to
derive equivalent utility equations.

Unlike the “synthesized” problems presented in Sec-
tion 6.1, where we evaluated the algorithms under the
most stringent conditions (i.e., all users specify prefer-
ences for all of the QoS dimensions of all services), in this

scenario the users did not specify preferences for some of
the QoS dimensions of certain services.

The greedy algorithm was the best approach for solving
this problem for two reasons (recall Section 6.7): 1) The
architecture was large enough (i.e., 517 	 760 billion
possible deployments) that executing the MIP algorithm
required approximately 3 hours and MINLP approximately
8 minutes; and 2) there were many locational constraints,
which tend to hamper the accuracy of the genetic algorithm.
The greedy algorithm executed in 7.6 seconds and was able
to produce a solution that was within 4 percent of the
optimal solution eventually found by MIP.
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Fig. 16. Some of the EDS users, their QoS preferences, and user-level services as modeled in DeSi.

TABLE 2
Users’ Preferences in EDS,

Where a, e, l, and s Represent the Level of Availability, Energy Consumption, Latency, and Security, Respectively
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Table 3 shows the results of executing the greedy
algorithm on the instance of the EDS application depicted
in Fig. 15b. Careful analysis of this table allows us to relate
the characteristics of the deployment suggested by the
algorithm to the preferences specified by the users, and
hence develop some insights into the quality of the solution
produced by the algorithm:

. On average, the four QoS dimensions of the eight
services improved by 42 percent. This indicates the
extent to which a good deployment can impact a
system’s overall QoS.

. The QoS dimension of services for which the users
have specified a preference improved on the average
by 78 percent, while the remaining QoS dimensions
improved on the average by 17 percent. This
corroborates that the greedy algorithm indeed
zeroes in on the QoS dimensions that are important
to the users.

. The average improvement in the QoS dimensions of
the Simulate Drill service is 4 percent, which is
significantly lower than the average improvement of
other services. This is attributed to the fact that no
QoS preferences were specified for Simulate Drill
(recall Table 2). In contrast, the average improve-
ment in the delivered quality of the services for
which multiple users specified preferences (e.g.,
Move Resources, Get Map, and Advise Deployment) is
significantly higher than for the other services.

. The average improvements for Energy Consumption
and Latency are significantly higher than for the
other two QoS dimensions. This is attributed to
the fact that users specified more preferences for
these two dimensions.

. Notice that in a few cases the QoS dimensions have
degraded slightly, reflecting the fact that the users
have not specified any preferences for them.

The results obtained in this instance are consistent with
those obtained from other examples (e.g., recall Table 1) as
well as in other instances of EDS. The largest instance of EDS
on which we applied the framework consisted of 105 software
components and 41 hardware hosts. While in that instance it
was not possible to execute the MIP and MINLP solvers, the
genetic and greedy algorithms were able to find solutions in
approximately 4 and 5 minutes, respectively. A detailed
analysis of the solutions found by these algorithms indicated
the same level of fine-grained tradeoff analysis based on the
users’ preferences. The details of applying the greedy and
genetic algorithm on the larger instances of EDS are elided
because the problem’s size prevents us from being able to
depict the relevant data (e.g., user preferences for different
system services) in a meaningful way.

7 RELATED WORK

Numerous researchers have looked at the problem of
improving a system’s QoS through resource scheduling
[24] and resource allocation [28], [46]. However, only a few
have considered the users’ preferences in improving QoS.
The most notable of these approaches are Q-RAM [28] and
the work by Poladian et al. [53]. Q-RAM is a resource
reservation and admission control system that maximizes
the utility of a multimedia server based on the preferences
of simultaneously connected clients. Poladian et al. have
extended Q-RAM by considering the problem of selecting
applications among alternatives such that the cost of change
to the user is minimized. Neither of these works considers
the impact of the software system’s deployment architec-
ture on the provided QoS. Furthermore, these approaches
are only applicable to resource-aware applications, i.e.,
applications that can be directly customized based on the
available resources.

Several previous approaches [2], [3], [9], [14] have used
techniques grounded in stochastic process algebra to assess a
software system’s QoS properties at runtime. These
techniques leverage annotated architectural models to
derive the corresponding process algebra (e.g., Markov
Model), which are then assessed to obtain estimates of the
system’s performance (e.g., [3], [4]) and reliability (e.g., [9],
[14]). These techniques are complementary to our work, as
they could be used to estimate the QoS provisioned by a
given deployment architecture. In other words, such
techniques could be used to instantiate the qValue functions
in Fig. 5.

Carzaniga et al. [7] provide an extensive comparison of
existing software deployment approaches. They identify
several issues lacking in the existing deployment tools,
including integrated support for the entire deployment life
cycle. An exception is Software Dock [6], which provides
software agents that travel among hosts to perform soft-
ware deployment tasks. Unlike our approach, however,
Software Dock does not focus on extracting system
parameters, visualizing, or evaluating a system’s
deployment architecture, but rather on the practical
concerns of effecting a deployment.

The problem of improving a system’s deployment has
been studied by several researchers. I5 [1] proposes the use of
the integer programming model for generating an optimal
deployment of a software application over a given network
such that the overall remote communication is minimized.
Solving their model is exponentially complex, rendering I5
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TABLE 3
Results of Running the Greedy Algorithm on the EDS Scenario

The highlighted cells correspond to the QoS dimensions for which the
users have specified preferences in Table 2.
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applicable only to systems with very small numbers of
software components and hosts. Coign [20] provides a
framework for distributed partitioning of a COM application
across only a pair of hosts on a network. Coign monitors
intercomponent communication and then selects a distribu-
tion of the application that will minimize communication
time, using the lift-to-front minimum-cut graph cutting
algorithm. J-Orchestra [63] transforms a centralized Java
program executing on a single JVM into a distributed one
running across multiple JVMs. It provides a semi-automatic
transformation supported by a GUI, which is used by the
user to select the system’s classes and assign them to network
locations. Kichkaylo et al. [25] provide a model, called
component placement problem (CPP), for describing a
distributed system in terms of network and application
properties and constraints, and a planning algorithm for
solving the CPP model. The focus of this work is to capture
the constraints that restrict the solution space of valid
deployment architectures and search for any valid deploy-
ment that satisfies those constraints, without considering the
deployment’s quality. Manolios et al. [39] propose a
language for expressing the requirements of component
assembly, including a set of properties and constraints that
need to be satisfied. Requirements are compiled into a
Boolean Satisfiability Problem (SAT) and solved using
commonly available solvers. This approach checks only
whether a given component assembly is legal, and does not
take into consideration users, user preferences, or optimiza-
tion of multiple objectives. Bennani and Menasce [5], [41]
have developed a technique for finding the optimal alloca-
tion of application environments to servers in data centers.
Similarly to our approach, their objective is to optimize a
utility function, which is used to perform tradeoff analysis on
the different facets of performance. Unlike our approach,
however, their utility functions are not driven by the users’
preferences. Moreover, the models and algorithms presented
are limited to predefined system and QoS properties that are
deemed important in the data center domain. Two recent
approaches try to optimize specific system characteristics,
but are restricted to dataflow architectures. One of them,
Dryad [22], addresses the problem of making it easier for
developers to write efficient parallel and distributed applica-
tions. A Dryad application combines computational “ver-
tices” with communication “channels” to form a dataflow
graph. Dryad runs the application by executing the vertices
of this graph on a set of available computers while
optimizing the system’s efficiency. The other dataflow-based
system, Wishbone [47], provides a solution for optimal
partitioning of sensor network application code across
sensors and backend servers. Wishbone’s objective is to
achieve optimal trade-off between the CPU load and net-
work utilization. Finally, in our prior work [35], [42], we
devised a set of algorithms for improving a software system’s
availability by finding an improved deployment. The
novelty of our approach was a set of algorithms that scaled
well to larger systems. However, our approach was limited
to a predetermined set of system parameters and a
predetermined definition of availability.

None of the above approaches (including our own
previous work) considers the system users and their QoS
preferences, or attempts to improve more than one QoS
dimension of interest. The only exception is our earlier
work [45], in which we highlighted the need for user-driven
multidimensional optimization of software deployment and

briefly outlined a subset of DIF. Furthermore, no previous
work has considered users’ QoS preferences at the
granularity of application-level services. Instead, the entire
distributed software system is treated as one service with
one user, and a particular QoS dimension serves as the only
QoS objective. Finally, DIF is unique in that it provides a
mathematical framework for quantifying the utility of an
arbitrary system’s deployment, taking into account a set of
system parameters of interest. The framework thereby
provides an objective scale for assessing and comparing
different deployments of a given system.

The implementation and evaluation of the existing
redeployment techniques mentioned above is done in an
ad hoc way, making it hard to adopt and reuse their results.
One of the motivations for developing our framework and
its accompanying tool support has been to address this
shortcoming. Related to our work is the research on
architecture-based adaptation frameworks, examples of
which are the frameworks by Garlan et al. [15] and Oreizy
et al. [49]. Similarly to them, in [38, we present the
application of a subset of our framework’s components in
enabling architecture-based adaptation of a mobile robotic
system; we do not summarize those results in this paper’s
evaluation because the primary focus there is on addressing
challenges posed by mobility rather than deployment. As
opposed to general purpose architecture-based adaptation
frameworks, we are only considering a specific kind of
adaptation (i.e., redeployment of components). Therefore,
we are able to create a more detailed and practical frame-
work that guides the developers in the design of redeploy-
ment solutions. Also related is previous research on
adaptation assurance and verification techniques [61], [66],
which we view as complementary to our approach for
ensuring safe and sound reconfiguration of software
components.

Optimizing allocation of software (logical) elements to
hardware (physical) resources is an area of research that has
been studied in a variety of contexts before, such as
distributed process scheduling [17], task scheduling in grid
computing [59], and process allocation to clustered compu-
ters [19]. These works have guided the development of our
framework. However, unlike any of these works, our
framework is targeting the allocation of software compo-
nents, which are not only conceptually very different from
OS-level processes or grid-level tasks, but are also realized
and treated differently in practice. Moreover, almost none
of these approaches are driven by complex and conflicting
user QoS requirements, but rather focus on improving a
particular system-level metric (e.g., maximizing CPU
utilization/throughput) in isolation.

8 CONCLUSION

As the distribution and mobility of computing environ-
ments grow, so does the impact of a system’s deployment
architecture on its QoS properties. While several previous
works have studied the problem of assessing and improv-
ing the quality of deployment in a particular scenario or
class of scenarios, none have addressed it in its most general
form, which may include multiple, possibly conflicting QoS
dimensions, many users with possibly conflicting QoS
preferences, many services, and so forth. Furthermore, no
previous work has developed a comprehensive solution to
the problem of effectively managing the quality of a

MALEK ET AL.: AN EXTENSIBLE FRAMEWORK FOR IMPROVING A DISTRIBUTED SOFTWARE SYSTEM’S DEPLOYMENT ARCHITECTURE 97
Downloaded from www.VTUplanet.com



system’s deployment. In this paper, we have presented an
extensible framework, called Deployment Improvement Fra-
mework, for improving a software-intensive system’s QoS by
finding the best deployment of the system’s software
components onto its hardware hosts. DIF allows rapid,
quantitative exploration of a system’s, typically very large,
deployment space.

From a theoretical perspective, the contribution of our
approach is a QoS tradeoff model and accompanying
algorithms which, given the users’ preferences for the
desired levels of QoS, find the most suitable deployment
architecture. We have demonstrated the tailorability of
our solution and its ability to handle tradeoffs among
QoS dimensions by instantiating it with four representa-
tive, conflicting dimensions. We also discussed four
approaches to solving the resulting multidimensional
optimization problem, and presented several novel heur-
istics for improving the performance of each approach.
The design of the framework model and algorithms
allows for arbitrary specification of new QoS dimensions
and their improvement.

From a practical perspective, the contribution of our work
is an integrated solution in which the data about system
parameters are either acquired at design-time (via an ADL
or from a system architect) or at runtime (via an execution
platform such as Prism-MW), and an improved deployment
architecture is calculated (via DeSi) and effected (via an
interplay between the execution platform and DeSi). Our
framework provides the foundation for comparing these
and other solutions and for conducting future research into
new distribution scenarios and new algorithms.

While our results have been very positive, a number of
pertinent questions remain unexplored. We intend to extend
the model to allow for the expression of negative utility due
to the inconvenience of changing a system’s deployment at
runtime. This will make the approach more practical for use
in highly unstable systems, where continuous fluctuations
may force constant redeployments. We are also developing
the capability to automatically select the best algorithm(s)
based on system characteristics and execution profile. Since
redeployment is only one approach for improving QoS of
distributed software systems, we plan to extend the frame-
work to other types of adaptation choices that may impact a
system’s QoS, and perform the analysis not only among the
alternative deployments, but across a larger suite of adapta-
tion choices [49], [50], [62].
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