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Graph-Based Query Strategies for Active Learning
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Abstract—This paper proposes two new graph-based query
strategies for active learning in a framework that is convenient to
combine with semi-supervised learning based on label propaga-
tion. The first strategy selects instances independently to maximize
the change to a maximum entropy model using label propagation
results in a gradient length measure of model change. The second
strategy involves a batch criterion that integrates label uncertainty
with diversity and density objectives. Experiments on sentiment
classification demonstrate that both methods consistently improve
over a standard active learning baseline, and that the batch
criterion also gives consistent improvement over semi-supervised
learning alone.

Index Terms—Active learning, graph, query strategy, sentiment
classification.

I. INTRODUCTION

L ACK of training data is a problem for many machine
learning tasks, especially in the natural language pro-

cessing (NLP) area, where data sparsity is a common issue.
Because it can be expensive and time consuming to annotate
training data, researchers have sought ways to minimize hand
labeling efforts through active learning [1], [2], which aims
to choose data to label that is expected to provide the biggest
improvement in system performance. Active learning starts
with a base model trained with a small labeled set and uses
a query strategy to select the most informative data samples
(referred to here as instances) from the unlabeled set. These
instances are hand-labeled and added to the training set, and
then the process may be repeated to add another batch of data.
The key to active learning is the query strategy, which has
received much attention in previous work; readers can refer to
[3] for a detailed summary. The most commonly used query
strategies choose individual instances that have the highest
label uncertainty, e.g., as measured by entropy [4].
The uncertainty-based strategy of choosing individual in-

stances ignores the potential relatedness between samples.
In this work, we take advantage of a graph-based represen-
tation—specifically an instance-feature bipartite graph—to
characterize the relatedness between data instances. Using the
graph, we introduce two new query strategies that leverage

Manuscript received March 09, 2012; revised July 01, 2012; accepted Au-
gust 28, 2012. Date of publication October 05, 2012; date of current version
November 21, 2012. This work was supported by the National Science Foun-
dation (NSF under Grant IIS-0916951. The opinions and conclusions are those
of the authors and should not be construed as representing the official views or
policies of the NSF. The associate editor coordinating the review of this manu-
script and approving it for publication was Dr. Gokhan Tur.
The authors are with the Department of Electrical Engineering, University of

Washington, Seattle, WA, 98195 USA e-mail: weiwu@uw.edu; ostendor@uw.
edu.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASL.2012.2219525

relatedness in two different ways. In one case, the relatedness
is used to improve the uncertainty estimates associated with in-
dividual instances, tightly integrating semi-supervised learning
with active learning. In the second case, the relatedness is used
in a batch query to extract instances with both high uncertainty
and diversity. In either case, the resulting models learned from
the hand-labeled data can be integrated with semi-supervised
learning in a final stage. In general, the proposed graph-based
active learning framework has the advantages that it is easy to
incorporate prior information about features and it is simple to
compute in a parallel framework such as MapReduce [5].
Semi-supervised learning [6] provides amechanism for lever-

aging large amounts of unlabeled data in combination with some
labeled data. Of the many different approaches proposed, graph-
based semi-supervised learning is well-matched to the bipartite
graph representation leveraged in this work. Graph-based semi-
supervised learning typically involves applying label propaga-
tion [7], [8] over a graph built according to relatedness between
data instances in the corpus [9], and passing the labeling in-
formation from labeled data instances to unlabeled ones. Zhu
et al. [10] combined active learning with graph-based semi-su-
pervised learning strategy using a Gaussian field to enhance
an expected risk query strategy, assessed on both topic clas-
sification and other tasks. A key difference in our approach
vs. [10] (and vs. other work on active learning integrated with
self-training and EM-based semi-supervised learning [11]–[15])
is the use of model combination: a maximum entropy model
[16] trained from labeled data provides a regularizing prior in
combination with label propagation for graph-based semi-su-
pervised learning.
The relatedness of individual instances can be accounted for

in active learning by retraining the model after each instance is
labeled, but this is not practical in most applications. Instead,
instances are usually added to the supervised set in a batch. In
batch-mode active learning, criteria have been explored to re-
duce minimize redundancy or increase diversity of the exam-
ples. Hoi and colleagues [17], [18] account for redundancy by
maximizing the Fisher information of the queried batch. Brinker
[19] provided a diversity criterion for support vector machines.
Diversity is combined with density and estimated relevance in
active learning aimed at relevance feedback for information re-
trieval [20] with a linearly interpolated score. Here, we use the
graph structure to account for relatedness between instances in
a batch query strategy that moves beyond prior work by tightly
integrating uncertainty with diversity and density.
In this work, we use sentiment classification as a test bed to

evaluate the performance of the proposed graph-based active
learning framework. Sentiment classification is an important
technology for opinion mining over the large amount of user
generated text on the internet, such as on-line forums, blogs,
review web sites and tweets. Most previous research treated
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sentiment classification as a supervised machine learning
problem, applying text classification algorithms such as naive
Bayes, maximum entropy models and support vector machines
[21], which typically require a large amount of labeled data to
train a model with high accuracy. While there are some genres
for which sentiment labels are easy to collect (e.g., reviews
with user ratings), there are many others for which there is little
user-rated data and thus a potential to benefit from active and
semi-supervised learning. Our experiments with two datasets
comprising five domains show that the proposed graph-based
framework combining active and semi-supervised learning
consistently outperforms the use of either approach alone.
The rest of this paper is organized as follows. Section II gives

a brief overview of the infrastructure of the proposed graph-
based active learning framework, including the maximum en-
tropy model, the graph representation and label propagation.
Section III presents details of the proposed active learning query
strategies, and experimental results are presented in Section IV.
Section V compares our algorithms and results to closely related
work, and questions for future studies are outlined in Section VI.

II. INFRASTRUCTURE OF THE ACTIVE LEARNING FRAMEWORK

The infrastructure of the proposed graph-based active
learning framework consists of three major components, the
maximum entropy model, the instance-feature bipartite graph
representation and label propagation. The word-based features
used here are widely used for sentiment classification. Many
models work well on this task [21]; we build on the maximum
entropy model because it is widely used for many text classifi-
cation problems.

A. Maximum Entropy Model

The maximum entropy model is a discriminative classifica-
tion model [16], formulated as:

(1)

where is the -th feature of the model, and is the
model parameter associated with it.
In this work, we use unigram and bigram occurrences as fea-

tures for the maximum entropy model. We filter out unigrams
and bigrams with frequency smaller than a given threshold
in the corpus, and remove stopwords. To handle negations, we
use the heuristic proposed in [21], where a “NOT ” prefix is
added to all unigrams occurring between a negation word and
the closest punctuation following it. Parameters of the max-
imum entropy model are estimated using gradient ascent with
regularization.

B. Bipartite Graph Representation

In the proposed active learning framework, we use a bipartite
graph to capture the instance-feature relationship in the corpus
[9]. As shown in Fig. 1, the left side nodes represent instances,
the right side nodes represent features. If a feature occurs in an
instance, an edge is added between them. The edge weight can
be set in a way to suit specific text classification tasks. For ex-
ample, for topic classification, the edge weight can be set as

Fig. 1. An example of a bipartite graph representing the instance-feature oc-
currence relationship.

the inverse document frequency of the features. In the senti-
ment classification experiments presented in this paper, we set
the edge weight as 1 without prior knowledge of the feature’s
discriminative power. Assuming there are instances and
unique features in the corpus, the graph can be represented by
an adjacency matrix. Due to the bipar-
tite structure, two blocks in this matrix will have zero values as
shown below.

(2)

where is an matrix representing the connection weight
from instances to features. Note that the feature set used
to construct the bipartite graph need not be the same as the one
used for the maximum entropy model. In this paper, we use only
unigram word features to construct the instance-feature graph
for sentiment classification, in order to control the graph size
due to limits of computational resources.

C. Label Propagation

Label propagation [7], [8] is a graph-based semi-supervised
learning strategy, which has been studied in a number of works
for various machine learning problems [22]–[26]. Graph-based
data representations have been studied extensively in pre-
vious work on label propagation as a semi-supervised learning
method [7], [8]. Early work was based on homogeneous graphs,
where only instances are represented in the graph according
to their nearest-neighbor relations. Later studies applied it on
bipartite graphs for various applications, including Youtube
video recommendation (user-video graph) [23] and query clas-
sification (query-link graph) [25], [26]. The instance-feature
bipartite graph data representation used in our work is inspired
by these studies and other work on semi-supervised sentiment
classification [9].
Given the instance-feature bipartite graph, according to label

propagation, each node has an adjustable class “likelihood”
vector (for an instance node) or (for a feature node), where
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each element and is a non-negative real number that
when normalized gives the posterior probability of a node be-
longing to class . Let denote a matrix with the -th row as
and as the class prior used to initialize , and similarly for

, and . The label propagation process can then be de-
fined as shown in Algorithm 1, where
is the normalized adjacency matrix from the instance nodes to
feature nodes and is a diagonal matrix with its element
equal to the sum of the -th row of . According to this algo-
rithm, in each iteration and are updated as a weighted
sum of the propagation from the node’s neighbors
and its prior. This is an efficient computation that is convenient
to implement in a system for parallel programming.

Algorithm 1 Label Propagation

Initialize and ;

repeat

;

;

until

Normalize and output the sentiment posterior
probability for each instance node.

D. Regularizing Label Propagation With Prior Knowledge

As shown by [8], the label propagation defined in Algorithm 1
will converge to the optimum result by minimizing the objective
function

where represents node ’s class likelihood vector (i.e., it is
for an instance node and for a feature node). The first term in
this objective function is the smoothness constraint, preferring
a result that does not change too much between neighboring
nodes. The second term can be seen as a regularization term; it
prefers a result that does not deviate too far from its prior. With
proper priors, this regularization can help prevent propagating
errors through the graph [25].
In sentiment classification experiments, we use the maximum

entropy model result and lexicon sentiment knowledge to reg-
ularize the label propagation. The two types of nodes in the bi-
partite graph (instances and words) are treated differently when
setting the priors for label propagation:
For the instance nodes, the label propagation is regularized by

the maximum entropy model. Specifically, if the instance is un-
labeled, its prior is set to be the posterior sentiment dis-
tribution produced by the maximum entropy model;
otherwise, it is set as their label indicator vector .
For the word (feature) nodes, the setting of their priors

provides a chance to introduce an outside source of lexicon
sentiment information. The word node’s prior can either be set

with a knowledge-based strategy, using a polarity lexicon from
a human-edited sentiment dictionary, or with a data-driven
strategy, using a polarity lexicon obtained by mining on-line
resources [27]. In this work, we adopt the knowledge-based
strategy. We use the Inquirer1 sentiment lexicon list, which
contains 1 915 positive words (Inquirer Positiv category) and
2 291 negative words (Inquirer Negativ category). For words
on this list, we set the prior as their sentiment label indicator
vector. For words outside this list, they are initialized with the
uniform distribution and then updated with the label propaga-
tion posterior obtained in the previous active learning iteration.

III. ACTIVE LEARNING QUERY STRATEGIES

Most traditional uncertainty-based query strategies are opti-
mized for selecting one instance at a time, ideally the model
should be retrained after querying every single instance. How-
ever, this will lead to too many active learning iterations (a

cycle), which is usually not practical
in application scenarios. First, many machine learning models
do not support on-line training or perform less effectively under
on-line training settings, and frequently retraining the model
with all labeled data can be expensive. Second, small sample
active learning iterations may pose difficulties for managing an-
notator working hours. Hence, in our proposed framework, the
active learning is carried on in a batch mode, where a group of
instances are queried at each active learning iteration.
Let be the labeled set of instances, be the unlabeled in-

stance pool, be the maximum entropy model and be the
graph representation. The batch mode active learning will select
a batch set for human labeling from according to a query
strategy . We assume that the batch size at each al-
gorithm set is . The overall active learning process is
described in Algorithm 2. We propose two graph-based query
strategies within this framework: i) maximum gradient length,
and ii) batch network gain, the latter is specifically optimized
for this batch mode active learning. Label propagation based
semi-supervised learning is incorporated in the query strategy
when the maximum gradient length approach is used. It can also
be used in the testing stage for either approach with the max-
imum entropy model providing regularization.

Algorithm 2 Graph-based Active Learning Framework

Given: the initial labeled set , the unlabeled set , the
graph , the query strategy , and batch size ;

repeat

// train maximum entropy model

;

// find according to the query strategy

;

;

until meet the labeling budget

// Train model with labeled samples

1http://www.wjh.harvard.edu/~inquirer
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A. Maximum Gradient Length Query

This query strategy incorporates label propagation as a
graph-based semi-supervised learning method to leverage large
amounts of unlabeled data to help select the most informative
instances for the maximum entropy model. It is based on the
assumption that instances resulting in the largest changes to the
current model in training tend to improve it most. For the max-
imum entropy model, parameters are estimated by maximizing
the log likelihood with gradient
ascent, thus the gradient length of one instance brought to the
current model can be used as measure of the informativeness
of labeling that instance. The gradient of the maximum entropy
model induced by instance is computed as

(3)

where is the empirical distribution of the data and
denotes expectation with respect to distribution . Thus

(4)

where is the label indicator of instance . Then we can
use the gradient length to evaluate the change
brought by instance to the current model .
However, for unlabeled instances, we do not know their true

labels to estimate the empirical distribution .
Here we propose to approximate with the
empirical distribution of predicted labels according to the label
propagation output . Let be the
classification decision indicator vector of label propagation to
replace in (4):

(5)

This approach makes a hard decision on the label, but one could
also imagine using the distribution directly as a soft
decision to replace in (4):

(6)

Note that computed with (6)’s approximation
corresponds to the expected gradient length used in [28], with
the exception of using the label propagation distribution in-
stead of the current maximum entropy model posterior. With
the estimated gradient length , we can select
the top- instances with maximum gradient length to query
for their labels according to algorithm 3, i.e.,

.

Algorithm 3 Maximum gradient length query strategy

Given: labeled set , unlabeled set , and batch size

// Run regularized label propagation over

;

// Map unlabeled samples to soft or hard labels

or ;

;

B. Maximum Batch Network Gain Query

The maximum batch network gain query is a query strategy
optimized for the batch mode active learning; it combines
representativeness and diversity criteria with the traditional
uncertainty criterion. Representativeness and diversity are
two complementary criteria to the uncertainty criterion, which
take into account the interdependence between instances in
the corpus. For example, an instance with high classification
uncertainty can also be an outlier point, in which case labeling
it will give little help for classifying other instances. Hence,
we would like the labeled instance to be representative in
the corpus, i.e., choosing an instance located in an area of
the feature space with densely distributed instances. In batch
mode active learning, we also want to increase the instance
diversity in the queried batch to reduce labeling redundancy.
The proposed maximum batch network gain query incorporates
the two criteria and selects the batch set by maximizing the
network gain associated with labeling instances in the batch,
leveraging the bipartite graph representation.
For each unlabeled instance in , the individual gain from

querying its label can be evaluated by the entropy:

(7)

where is ’s label distribution produced by the max-
imum entropy model.
Inspired by label propagation, we approximate the gain of

querying a batch by propagating the individual gain of querying
instances in it through the graph to other unlabeled instances.
We compute the effective weights between instances

, where is the normalized adjacency matrix from
the instance nodes to feature nodes. In other words, sums all
normalized paths from queried instance to unlabeled instance
in the bipartite graph, incorporating all features they have in
common. Computing is analogous to one step of label prop-
agation, as shown in Fig. 2.
The effective weights between instances can be used to eval-

uate their relatedness. With this idea, we define the batch net-
work gain as:

(8)

where the first term represents the impact of the information
gain from querying the batch on the rest of the unlabeled set,
and the second term compensates for the redundancy between
nodes in the batch with penalty term . For experiments in this
paper, we set . The batch network gain criterion integrates
uncertainty (through the use of the node entropy term )
with representativeness (via the first term) and diversity (via the
second term).
In each active learning iteration, we select the batch with

maximum to query for their labels, i.e.,
. To solve this maximizing problem, we can see

as an adjacency matrix of a new graph consisting of only
the instances nodes, then maximizing the first term of (8) is
equivalent to maximize the graph cut between and
given ’s size. This is a submodular problem [29], which can
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Fig. 2. Propagate information gain through the bipartite graph.

be solved near-optimally with a greedy algorithm [30]. Simi-
larly, (8) is also submodular, therefore we can select the active
learning batch with the following greedy algorithm 4.

Algorithm 4 Maximum batch network gain query

Given: unlabeled set , batch size

Initialize ;

repeat

until

IV. EXPERIMENTS

To assess the effectiveness of the proposed active learning
framework, we applied it using two sentiment review datasets,
including the document-level Amazon product review dataset
that includes multiple domains, and the sentence-level movie
review dataset. In all domains, the initial training set is roughly
10% of the total data available for that domain, and active
learning batch sizes are approximately 5% of the full data set.
Two sets of experiments were run to study different configu-
rations of the two proposed graph-based query strategies. For
conciseness, only results on the most difficult task (Amazon
book reviews) are presented. Then we present trends for the
proposed system compared to several contrasting cases over
various domains from the two sentiment review datasets.

A. Data

1) Amazon Product Reviews: The Amazon product review
dataset is the “Multi-domain sentiment dataset v2.0” introduced

Fig. 3. Performance using maximum gradient length query with soft decisions
vs. hard decisions compared to the random baseline.

in [31]. This dataset consists of Amazon product reviews from 4
domains, including books, dvds, electronics, and kitchen. Each
domain contains 5 k–6 k user reviews with balanced positive/
negative classes. In our experiments, we conducted a 5-fold
cross validation for each of the 4 domains. In each fold, we di-
vided the domain dataset into a test set (1/5 of the dataset doc-
uments), an initial training set (500 documents), and an active
learning instance pool with the rest of documents in this corpus.
The batch size for each active learning iteration is 250.
2) Movie Reviews: Themovie review dataset is the “sentence

polarity dataset v1.0” introduced in [32]. This dataset consists of
sentences extracted from http://www.rottentomatoes.com/ user
reviews. It has two tasks, the positive/negative classification
task and the subjective/objective classification task, each has
10 k sentences with balanced classes. In our experiments, we
performed a 5-fold cross-validation for each of the two tasks. In
each fold, we divided the task dataset into a test set (1/5 of the
dataset sentences), an initial training set (1 k sentences), and an
active learning instance pool with the rest of sentences in this
corpus. The batch size for each active learning iteration is 500.
The label propagation prior weight for all data sets was tuned

with the dev data of the movie review dataset (polarity task)
to maximum the label propagation accuracy only, without in-
volving active learning. The label propagation accuracy did not
appear to be sensitive to the prior weight.

B. Maximum Gradient Length Query: Settings for Estimating
Gradient Length

For the maximum gradient length query proposed in
Section III.A, we compare there possible settings to estimate
the gradient length in this query strategy: soft decisions (6),
hard decisions (5), and maxent prob which is to use the pos-
terior distribution produced by the current maximum entropy
model instead of label propagation to estimate the gradient
length.
The results on the positive/negative task in the Amazon book

review domain are presented in Fig. 3, with a comparison to
random selection as a baseline. Fig. 3 shows that the maximum
gradient length query strategy based on label propagation with

Downloaded from www.VTUplanet.com



WU AND OSTENDORF: GRAPH-BASED QUERY STRATEGIES FOR ACTIVE LEARNING 265

Fig. 4. Bias of posterior probability produced by label propagation.

hard decisions achieves slightly better performance than the ex-
pected gradient length query strategy using the maximum en-
tropy model posterior distribution. This is probably because the
former combines the outputs from both the label propagation
and maximum entropy model, while the latter only uses the
output from the maximum entropy model alone. However, we
also find that the soft-decision approach using the label propa-
gation distribution is not effective, with performance sometimes
below the random baseline.
To study the reason for the failure of the label propagation soft

decision, we analyzed the label propagation results from the first
active learning iteration. Let denote the pos-
terior probability of positive sentiment produced by label prop-
agation. In Fig. 4, we show the relative frequency of positive
sentiment labels for different bins of the posterior

. An unbiased posterior would have relative frequencies
that match the diagonal line. We see that label propagation tends
to converge with distributions that are not confident and thus bi-
ased, leading to poor estimates of the gradient length, possibly
due to tuning label propagation for decision accuracy rather than
some measure of goodness of the posterior distributions and/or
due to tuning on a different domain. The bias is such that the de-
cisions associated with these posteriors are more often correct
than the posteriors would predict, which may explain why hard
decisions are more effective than soft decisions.
Hence, in subsequent experiments, we only present results

using the maximum gradient length query with a hard decision.

C. Maximum Graph-Cut vs. Maximum Batch Network Gain

Recall that themaximum batch network gain query integrates
the uncertainty criterion with the representativeness and diver-
sity criteria in the query strategy by propagating the individual
instance gain through the graph (8). If we modify (8) set-
ting to be 1 for all instances in the queried batch, we elim-
inate the uncertainty component of the criterion and obtain a
simple “diversity and density” criterion that is the counterpart of
themaximum graph-cut query [30] in the general text classifica-
tion setting. Fig. 5 compares these two methods on the Amazon
book review data, together with the random selection baseline.

Fig. 5. Performance of maximum batch network gain and maximum graph-cut
queries, compared to a random baseline.

As expected, the addition of the uncertainty component leads to
improved results. The maximum graph-cut query alone does no
better than the random baseline, indicating that relying on graph
structure alone is not effective for active learning for this task
where the graph is determined by feature co-occurrence.

D. Comparison Across Different Domains

In this section, we systematically evaluate the proposed query
strategies for active learning over different domains, including
two tasks in the movie review dataset, and the four domains
from the Amazon product review dataset. For each domain, we
conducted six active learning iterations, which used 10%–40%
of the data to train the model.
1) Comparison of Query Strategies: We first made a direct

comparison of the different query strategies. In our experiment,
the following four systems are compared, which are all based
on the maximum entropy model and use its outputs as the final
decisions:
• Random query [Baseline]
This system uses random selection to choose instances to
label in each iteration. This is a standard baseline for active
learning; building on uninformed labeling of data is essen-
tially not using active learning.

• Uncertainty query [ActiveEnt]
This system applies the widely used uncertainty query,
specifically the variation based on entropy (7), which is
equivalent to the least confident and marginal sampling
query strategies for binary classification problems.

• Maximum gradient length query [ActiveMGL]
This system applies the maximum gradient length query
with a hard decision based on label propagation results.

• Maximum batch network gain query [ActiveBNG]
This system applies the maximum batch network gain
query with redundancy penalties as in (8).

Table I summarizes the average absolute accuracy gain
and relative error reduction of the three other systems over
the [Random] baseline system in the first six active learning
batches. Both the proposed maximum gradient length and
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TABLE I
AVERAGE CLASSIFICATION ACCURACY GAIN (ABSOLUTE) AND ERROR REDUCTION (RELATIVE) IN THE FIRST 6 ACTIVE LEARNING BATCHES
(USING 10%–40% TRAINING DATA) OVER THE [BASELINE] FOR DIFFERENT ACTIVE LEARNING STRATEGIES. ( SIGNIFICANT ON 0.001;

SIGNIFICANT ON 0.01; SIGNIFICANT ON 0.05; OTHERS, NOT SIGNIFICANT ON 0.05)

Fig. 6. Performance on Amazon product review (books).

maximum batch network gain queries outperform the random
query baseline. By leveraging the larger dataset through label
propagation, the maximum gradient length query obtains better
performance than uncertainty query on all domains except on
the Amazon electronics domain. The maximum batch network
gain query consistently outperforms the uncertainty query,
which does not account for interdependence between indi-
vidual instances in the batch. It also outperforms maximum
gradient length on all the tested domains except the Amazon
book domain, for which none of the differences are significant.
2) Classification Enhanced With Label Propagation: In this

section, we integrate label propagation into the sentiment classi-
fication process to enhance the performance of the four systems
described above, and compare different query strategies under
this new setting. Specifically, we apply the regularized label
propagation after obtaining the maximum entropy posterior, and
use the label propagation result as the final system output. The
random query system with label propagation corresponds to
semi-supervised learning alone, i.e., without active learning.
The four semi-supervised systems are again compared to the
baseline system (random query without label propagation).
Figs. 6–11 present the experimental results in each domain

respectively. The horizontal dash line in each figure represents
the random query baseline system’s performance after the sixth
active learning iteration, which corresponds to roughly 40%
of the training data (2000 samples for the Amazon data sets
and 4000 samples for the movie reviews). Table II summa-
rizes the average absolute accuracy gain and relative error re-

Fig. 7. Performance on Amazon product review (dvd).

duction of the four other systems over the [Random] baseline
system in the first six active learning batches. Compared with
results in Table I, systems with all query strategies get a per-
formance boost with the label propagation. With label propaga-
tion, both maximum gradient length and maximum batch net-
work gain queries significantly outperform the baseline across
all domains. With one exception, all strategies combining ac-
tive learning and semi-supervised learning improve over semi-
supervised learning alone. The maximum batch network gain
query has relatively stable performance, which consistently out-
performs all other systems on the tested domains, except for the
maximum gradient length query on the Amazon book domain.
The maximum batch network gain not only benefits the max-
imum entropy model (indicated by the results in Table I), but
also label propagation by choosing well-connected instances in
the “key” paths of the label propagation.
The improvement margin associated with integrating label

propagation is relatively larger on the movie review dataset than
the other four domains from the Amazon review dataset. This is
because the movie review data is on the sentence-level, which
on average has a much smaller number of features as clues
for sentiment judgment per instance, thus the data sparseness
problem is more severe for this dataset. Hence, leveraging the
unlabeled data with label propagation can bring more “mileage”
to this dataset than the Amazon review dataset, which is on the
document-level.
Fig. 12 compares the percentage of the required training

data amount relative to the random query [Baseline] system for
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TABLE II
AVERAGE CLASSIFICATION ACCURACY GAIN (ABSOLUTE) AND ERROR REDUCTION (RELATIVE) IN THE FIRST 6 ACTIVE LEARNING BATCHES
(USING 10%–40% TRAINING DATA) OVER THE [BASELINE] FOR DIFFERENT ACTIVE LEARNING STRATEGIES. ( SIGNIFICANT ON 0.001;

SIGNIFICANT ON 0.01; SIGNIFICANT ON 0.05; OTHERS, NOT SIGNIFICANT ON 0.05)

Fig. 8. Performance on Amazon product review (electronics).

Fig. 9. Performance on Amazon product review (kitchen).

the other 4 compared systems to reach the performance of the
[Baseline] system on the 6th iteration. It is shown that the both
the [ActiveMGL LProp] and [ActiveBNG LProp] systems
need only 50%–75% of the data required by the [Random]
baseline system to reach its performance on the 6th iteration;
and they also require less training data than the other systems
to achieve this goal on most of the tested domains.

Fig. 10. Performance on movie review (positive/negative task).

Fig. 11. Performance on movie review (subjective/objective task).

V. RELATED WORK

As mentioned earlier, other work has proposed combining
semi-supervised and active learning [11], [12], [14], [15]. A key
difference in our work is the particular combination of two dif-
ferent learning models (supervised maximum entropy modeling
and semi-supervised label propagation) as a new type of model
combination within the active learning framework. Our use of
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Fig. 12. Percentage of the required training data relative to the [Random] base-
line system for [Random LProp], [ActiveEnt LProp], [ActiveMGL LProp]
and [ActiveBNG LProp] to reach the baseline system’s performance on the
6th iteration.

multiple models here also differs from approaches that com-
bine multiple classifiers leveraging semi-supervised learning in
queries based on co-testing or query-by-committe [13], [33] in
that the different models in our work are combined via regular-
ization rather than in a committee-based query.
Within this overall framework, two new query strategies are

proposed that leverage interdependence of samples in different
ways. Our proposed maximum gradient length query strategy is
inspired by [25] which uses the maximum entropy model to reg-
ularize label propagation for query intent classification. In con-
trast to [25], which designs a co-training based semi-supervised
learning strategy, we are aiming for an active learning frame-
work. This query strategy is related to the expected gradient
length query proposed for a conditional random field (CRF) in
[28]. The latter uses the posterior probability produced by the
CRF to compute the expectation of the gradient length for the
CRF itself, while we take advantage of the framework that com-
bines the maximum entropy model and label propagation, and
use the label propagation result to estimate the gradient length.
Our proposed maximum batch information gain query

strategy is designed for batch-mode active learning settings.
Methods for reducing redundancy or increasing diversity of
samples have been previously explored in batch-mode active
learning [17]–[19]. Different from this work, our approach uses
a graph-based corpus representation, which makes it easier
to be incorporated with label propagation or extended for
parallel computation. Lin and Bilmes [30] also studied batch
mode active learning with submodular graph functions for the
problem of training hidden Markov models for speech recog-
nition. In addition to differences in the structure of the graph
(associated with differences in the applications), our approach
differs in that it incorporates uncertainty, representativeness
and diversity criteria as compared to the approach in [30] which
is mainly designed for representativeness. Diversity, density
and relevance (analogous to uncertainty) are all incorporated in
a query criterion by Xu et al. [20], but the approach is to simply
interpolate three scores with two empirically-tuned weights.
Tuning weights for active learning is more challenging in a real
scenario than for classification accuracy.

Sentiment classification is a well-studied topic, with related
work falling into two groups that leverage polarity lexicons
[34]–[36], [27] vs. machine learning [21], [37]. This work falls
into the second group. Previous research on machine-learning-
based sentiment classification have explored features [38]–[41],
classifiers [9], [42], [43], and domain adaptation [44], [45]. Our
work focuses on active learning.
Other researchers have applied both semi-supervised and

active learning to sentiment classification over the Amazon
product review dataset, using an SVM [46] and Active Deep
Network [47]. We obtain higher accuracy, but the results are not
directly comparable since their work is on an early (smaller)
version of that data set. While their work did obtain larger
relative gains due to active learning, our work starts with a
much better baseline (as well as consistently higher final perfor-
mance). We claim that starting from a better baseline provides
a stronger result. On the Amazon review dataset, our baseline
achieves comparable performance with the result presented in
[31], when the same amount of training data are used.
Finally, we note that our experimental work is on labeling

instances, rather than features as in [12], [48], but the algorithms
could easily be applied to features for applications where this
makes sense.

VI. CONCLUSION

In this paper, we have proposed a graph-based active learning
framework that integrates label propagation based semi-super-
vised learning with a maximum entropy model. Based on this
framework, we design two active learning query strategies that
aim to account for interdependence between samples through
a bipartite graph structure. One method uses label propagation
through the graph to improve the evaluation of usefulness of in-
dividual samples. The other method uses the graph to incorpo-
rate diversity and representativeness into the selection criterion
referred to as batch network gain. Experiments with and without
label propagation in the testing stage are presented in order to
understand the impact of semi-supervised learning. The success
of the batch network gain method in both cases suggests that
it is not semi-supervised learning per se that is leading to the
performance gains, but rather the representation of interdepen-
dence between samples. This finding would support investiga-
tion of different graph structures for this and other tasks, as well
as tight integration of semi-supervised learning into the network
gain model.
While this work has included several alternative approaches

for comparision, the focus has been on graph-based models that
leverage simple word-based features. It would be of interest
to compare the results to alternative learning frameworks that
incorporate more complex features, such as Co-EM [49], [50],
which also effectively leverages multiple models. A challenge
in making a direct comparison is that prior work in this frame-
work [13], [33] has involved very different query strategies
(committee-based).
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