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Abstract

It is well known that a tree model does not always admit a finite-state machine (FSM) representation

with the same (minimal) number of parameters. Therefore, known characterizations of type classes for

FSMs do not apply, in general, to tree models. In this paper, the type class of a sequence with respect

to a given context tree T is studied. An exact formula is derived for the size of the class, extending

Whittle’s formula for type classes with respect to FSMs. The derivation is more intricate than in the FSM

case, since some basic properties of FSM types do not hold in general for tree types. The derivation also

yields an efficient enumeration of the tree type class. A formula for the number of type classes with

respect to T is also derived. The formula is asymptotically tight up to a multiplicative constant and also

extends the corresponding result for FSMs. The asymptotic behavior of the number of type classes, and

of the size of a class, are expressed in terms of the so-called minimal canonical extension of T , a tree

that is generally larger than T but smaller than its FSM closure.
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Fig. 1. A tree T1 over A = {0, 1}. For conciseness, we use the labels A,B,C,D for the leaves 0, 100, 101, 11, respectively

I. INTRODUCTION

In the method of types [1] the set of sequences of a given length n over a finite alphabet A is partitioned

into type classes, where two sequences belong to the same class if and only if every probability distribution

in a certain family P assigns both sequences the same probability.1 For a parametric family P , a type

class comprises all the sequences that are equiprobable under any value of the model parameter, e.g., all

the sequences that yield the same vector of state-conditioned empirical distributions for a given finite-state

machine (FSM) [3]. Applications of the method in hypothesis testing, channel coding, source coding,

rate-distortion theory, and other areas are surveyed in [2]. Although the seminal reference [1] focuses

on memoryless models, type classes and their applications have been studied for a variety of statistical

models, such as finite memory (Markov) models (cf. [4], [5], [2], [6]) and FSM models (cf. [7]).2 More

recently, applications of the method of types to universal simulation for finite parametric models were

presented in [8], and generalizations of the notion of type that preserve statistics, in an asymptotic sense,

simultaneously for every Markov order k were presented in [9], [10].

Tree models [11], [12], [13] have also been extensively studied, as valuable tools in data compression

and other applications in information theory and statistics (cf. [11], [12], [13], [14], [15], [16]). Roughly

speaking, a tree model 〈T, pT 〉 consists of a full α-ary (context) tree T ,3 where α is the size of the finite

1Type classes were defined in terms of empirical distributions for memoryless models in [1]. The more general definition

of type class used here was introduced in [2, Sec. VII], where extensions of the method of types to wider model families are

considered.
2We make the distinction between finite memory Markov models of a given order k and the more general FSM models, whose

state sequences are Markov chains, but which do not necessarily have the finite-memory property with respect to the original

sequence alphabet [3].
3We say that an α-ary tree T is full if every internal node of T has exactly α children.
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alphabet A, and a set pT of conditional probability distributions on A, one associated with each leaf

of the tree. Each edge of the tree is labeled with a symbol from A. Every sufficiently long string, xi,

determines a unique leaf in the tree by descending from the root, matching the labels of the edges with

the symbols in the string, starting from the last symbol and progressing in reverse order, until a leaf is

reached. The probability of the next symbol of the string, xi+1, given all the past, xi, is determined by

the conditional probability distribution associated to that leaf. The set of leaves of T , denoted ST , is

referred to as the set of states of the model. In the tree T1 of Figure 1, all strings ending with the symbol

0 select the state A, while strings ending with 001 select the state B. By the model definition, the type

class of a sequence xn with respect to a tree is the set of sequences that have the same state-conditioned

symbol occurrence counts as xn (with an appropriate convention for the initial states).

In this paper, we study type classes for context trees. We derive a precise formula for the cardinality

of a given class, and an asymptotic estimate (tight up to a multiplicative constant) of the number of

classes. The derivation also yields an efficient enumeration scheme for type classes with respect to a tree

T . This enumeration enables applications of tree models in enumerative source coding [17] and universal

simulation [10]. In the former application, a sequence is encoded by first describing the type class it

belongs to and then the index of the sequence within its type class according to an enumeration scheme.

Thus, the number of type classes is related to the first part of the code, while the size of a class is

related to the second part. In the case of universal simulation, as proposed in [10], a simulated sequence

is generated by selecting at random from the type class of a training sequence, for which, again, an

efficient enumeration scheme of type classes is instrumental. The logarithm of the size of a type class

determines, in this case, the conditional entropy of the simulator output given the training sequence.

We say that a tree defines a next-state function if for every sufficiently long sequence xi, the state

selected by xi−1, together with the symbol xi, uniquely determine the state selected by xi. We refer to

such a tree also as an FSM tree, since it defines a (deterministic) finite-state machine [3]. For example,

a tree whose leaves are all at the same depth k (corresponding to a Markov model of order k), is FSM.

For FSM trees (and, in fact, for the significantly broader class of Markov chains defined on an arbitrary

FSM), the size of a type class is given precisely by Whittle’s formula [18]. Given the set of states S

of a Markov chain, and a sequence of states s = s0, s1, . . . , sn, let (NS)s,s′ denote the number of times

there is a transition from s to s′ in s, and let (NS)s∗ =
∑

s′∈S(NS)s,s′ . Also, let N̂S denote the matrix

obtained by normalizing each non-zero row of NS (regarded as an |S| × |S| matrix) so that the row’s

entries sum to one. Consider the set TS(s) of state sequences that yield the same transition counts as s.

3
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Whittle’s formula expresses the cardinality of TS(s) as

|TS(s)| = MS

∏
s∈S(NS)s∗!∏

s,s′∈S(NS)s,s′ !
, (1)

where MS denotes a well defined cofactor of I−N̂S , with I denoting the |S|×|S| identity matrix. Clearly,

when S corresponds to the set of states of an FSM tree T , and s is the state sequence obtained as the

string of symbols xn drives transitions in T , the set TS(s) is in one-to-one correspondence with the type

class of xn with respect to T . Formula (1) was also derived, using different methodologies, in [19] and

[20].

It is well known, however, that arbitrary trees do not always define a next-state function, and Whittle’s

formula may not be directly applicable for general trees. For example, in the tree T1 of Figure 1, the

occurrence of symbol 1 in state A does not determine whether the next state will be B or C; we say that

there is loss of context in state A. A characterization of FSM trees, and of the smallest FSM extension

of a tree (called its FSM closure), is presented in [14], [15]. Generally, the type class of a sequence with

respect to the FSM closure of T (whose size can be computed directly by means of Whittle’s formula),

will be smaller than the type class with respect to T , so the FSM closure does not provide a direct

solution to the problem at hand.

Loss of context is of crucial importance when determining the size of a tree type class, as it limits the

freedom to “rearrange” state transitions while remaining in the same type class. To illustrate this effect,

we first observe (through application of Stirling’s approximation to Whittle’s formula) that the size of

the type class of xn relative to an FSM model behaves asymptotically as 2nĤF (x
n) for every sequence

xn,4 where ĤF (xn) is the normalized empirical entropy of xn with respect to the FSM F underlying

the model.5 For a tree T , 2nĤT (xn) is still an upper bound on the size of the type class (since the total

probability of the type class with respect to its ML distribution is upper-bounded by 1), but the bound is

not always asymptotically tight, as shown in Example 1 below. On the other hand, as mentioned above,

the size of the type class with respect to T is lower-bounded by the size of the type class with respect

to the FSM closure, TF , of T , which does behave asymptotically as 2nĤTF
(xn).

4 All explicit and implicit logarithms are taken to base 2.
5 The normalized empirical entropy of xn with respect to an FSM F with set of states SF is ĤF (xn) =∑
s∈SF

p̂(s)H(p̂(·|s)), where p̂(·|s) is the probability distribution over A defined as p̂(a|s) = (nF )
(a)
s /(NF )s∗, with (nF )

(a)
s

denoting number of emissions of symbol a in state s and (NF )s∗ denoting the total number of symbols emitted in state s, and

where p̂(s) = (NF )s∗/n. The normalized empirical entropy ĤT (xn) with respect to a tree T is similarly defined, relative to

the state set ST . In either case, the normalized empirical entropy is equal to − 1
n

log P̂ML(xn), where P̂ML(xn) is the maximum

likelihood probability of xn with respect to the structure, F or T , of interest.

4
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Example 1: Consider the tree T1 in Figure 1. The normalized empirical entropy of the sequence

xn = 001 001 . . . 001 with respect to T1 is ĤT1
(xn) = 2

3h(12) where h is the binary entropy function.

The factor h(12) in ĤT1
(xn) arises from state A, where half of the occurring symbols are 0 and half are

1 (we write h(12) unevaluated to emphasize this fact). On the other hand, in order to reach state si = B,

we must have xi−2 = xi−1 = 0 and, hence, A→A→B is a state sequence that must be followed to reach

B. Therefore, to preserve conditional counts, a sequence in the same type class as xn must follow the

fixed state transition cycle A→A→B→A→A→B→ . . . , and, thus, the type class of xn is just {xn}. The

FSM closure, TF , of T , is obtained by extending state A to states 00 and 01. It is readily verified that,

in this case, we have ĤTF
(xn) = 0.

Example 1 can be seen as an extreme case of restrictions on state transitions that may, in general, rule

out many of the state sequences that could be obtained by picking the next symbol at each state freely,

according to the prescribed counts of the type class. Such freedom is already limited to some extent in

the FSM case, as expressed by the cofactor MS in (1). This cofactor, however, is polynomial in n, and

thus negligible with respect to the main factor of the formula. As shown in the example, the reduction

may be far more significant in the case of non-FSM trees, where the restrictions are more intricate. Thus,

when studying the size of type classes with respect to arbitrary trees, instead of dealing only with (and

counting) state transitions, we define, in Section II-B, a set of pseudo states, S̃T , which includes and

generally extends the original set of states ST . Pseudo-states preserve some of the context information

that is lost in the state transitions. Just as xn uniquely determines a state sequence with respect to T , it

will also uniquely determine a pseudo-state sequence, which, however, may be of length greater than n

(as there may be pseudo-state transitions that are not associated with the emission of symbols in xn).

With these tools on hand, we present, in Section II-C, our main result on size and enumeration of

context tree type classes. We state this result (Theorem 1) for a restricted notion of type classes, which we

call close-ended. We establish an explicit bijection between the close-ended type class of xn and the set

of sequences over S̃T that yield the same transition counts as the pseudo-state sequence of xn, regarded

as a realization of a Markov chain over S̃T . The size of the type class in terms of Whittle’s formula,

and an efficient enumeration, then follow by application of the classical results on this Markov chain.

When T is FSM, the pseudo-state sequence is the same as the state sequence, and our result reduces to

the classical case. The proof of Theorem 1 is given in Section III. Later on, in Section IV, we show that

the result is readily generalized from close-ended to regular type classes.

It follows from the main result in Section III that the asymptotic behavior of the size of the type

class of xn with respect to T is governed by the first order empirical entropy of the corresponding

5
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pseudo-state sequence, rather than the empirical entropy of xn itself with respect to T . For the sequence

xn of Example 1, the empirical entropy of the pseudo-state sequence will be zero, consistent with our

finding that the type class consists of a single sequence, independently of n. In Section V, we study

this asymptotic behavior in more detail, and express the second order term of the logarithm of the type

class size in terms of the so-called minimal canonical extension (MCE) of a tree T . This extension of T ,

denoted Tc, is (in general, properly) included in the FSM closure of T . An asymptotic result that holds

in expectation, also relying on the MCE, was derived in [17].

Finally, in Section VI, we study the number of type classes induced by a tree T on sequences of length

n. We present an estimate, also based on the MCE of T , showing that the number of type classes is

proportional to n|Ec|−|Sc|, where Sc is the set of states of Tc, and Ec is the set of pairs (u, v) ∈ S2
c such

that some sequence over A causes a direct transition from u to v in Tc. This estimate is tight up to a

multiplicative constant. Once again, when T is FSM, we have T = Tc, |Ec|−|Sc| = (α−1)|ST |, and the

result reduces to a known result for FSMs (a lower bound is shown in [7], attributed to N. Alon, while

an upper bound follows from a linear space dimensionality argument showing the existence of a set of

(α− 1)|SF | counters that suffice to determine a type class for an FSM with a set of states SF ).

II. TREE TYPE CLASSES AND CLOSE-ENDED TYPE CLASSES

A. Notation, background, and preliminaries

We denote by Z, N, and N+ the integers, nonnegative integers, and positive integers, respectively.

All strings (or sequences) in this paper are over a finite alphabet, A, of size α ≥ 2. As usual, λ

denotes the null string (the null element for the concatenation operation), and A∗, A+, and Am, denote,

respectively, the set of finite strings, positive-length strings, and strings of length m over A. We use the

notation |z| for set cardinality or string length. For a string z, zi denotes the i-th symbol of z, 1 ≤ i ≤ |z|,

and zkj denotes the substring zjzj+1 . . . zk ∈ Ak−j+1, 1 ≤ j, k ≤ |u|. We omit the subscript when j = 1,

and we let zkj = λ whenever j > k . For z = zk, ←−z = zkzk−1 . . . z1 denotes the reverse string of z,

head(z) = z1 (or λ if k = 0), and tail(z) = zk2 . We sometimes write sequences of symbols in reverse

order, e.g., zjzj−1 . . . zk. In such cases, we interpret the sequence as the null string λ whenever j < k.

Concatenation of z and y is denoted zy, and z � y (resp. z ≺ y) denotes the prefix (resp. proper prefix)

relation.

A (context) tree T is a directed full α-ary tree, where each of the α edges departing from each internal

node is labeled with a different symbol from A, and each node is labeled with the string formed by

concatenating the edge labels on the path from the root (labeled by λ) to the node. We identify a node

6
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with its label, and a tree with its set of nodes, e.g., u ∈ T indicates that there is a node of T labeled u.

When T ⊆ T ′ we say that the tree T ′ is an extension of T . A leaf of T is called a state, and we denote

the set of states by ST . If s ∈ ST and u ∈ A+, we say that su extends s. We denote the set of internal

nodes of T by I(T ), and the depth of T by depth(T ) = max{|u| : u ∈ T}. For a sufficiently long string

x, a state selection function, denoted σT (x), assigns to x the (unique) prefix of ←−x in ST . We refer to

σT (x) as the state selected by x.

In the sequel, except when explicitly stated otherwise, we consider a fixed tree T , and we often omit

the dependence on T to lighten notation. We will also assume that T is nontrivial, i.e., |T | > 1. When

|T | = 1, the characterization of type classes reduces to a memoryless setting, which is well understood [1].

For the purpose of selecting states, we regard a sequence xn as preceded by a fixed string x0−d that selects

an initial state, s0 = x0x−1 . . . x−d, of length d+ 1 = depth(T ). Thus, xn determines a state sequence,

denoted s(xn), defined as s(xn) = s0(x
n), s1(xn), . . ., sn(xn), where si(xn) = σ(xi−d), which is well

defined for all 0 ≤ i ≤ n.6 We omit the argument xn of si and of other objects of the form f(xn) when

clear from the context. We say that xi+1 is emitted in state si, 1 ≤ i < n, and we refer to sn as the final

state of xn. More generally, we say that xi+1 is emitted in context u in xn if ←−u is a suffix of xi−d. For

s ∈ ST and a ∈ A, we denote the number of times a symbol a is emitted in state s as n(a)s (xn).

The state transition matrix of xn, denoted N(xn), is an |ST |×|ST | matrix, with rows and columns

indexed by ST , and entries

Ns,t = |{i : 1 ≤ i ≤ n, si−1 = s, si = t}|, s, t ∈ ST ,

namely, Ns,t is the number of transitions from s to t in the state sequence of xn. For a matrix L we

define Li∗ =
∑

j Li,j and L∗j =
∑

i Li,j . Thus, Ns∗ is the number of symbols in xn that are emitted in

state s, and N∗s is the total number of incoming transitions into s in the state sequence of xn. Clearly, the

number of incoming transitions must equal the number of outgoing transitions for every state s, except

possibly for the initial and final states. Therefore, N satisfies the flow conservation equations

N∗s(x
n) + δs,s0 = Ns∗(x

n) + δs,sn , s ∈ ST , (2)

where δu,v = 1 when u = v, and 0 otherwise. Notice that both the left-hand side and the right-hand side

of (2) can be interpreted as the number of positions i in the state sequence of xn, 0 ≤ i ≤ n, such that

si = s. The following lemma characterizes the support of N(xn).

6This convention simplifies the expression and the derivation of an explicit formula for the type class size, but is not essential.

The results presented here can be adapted to other conventions for the selection of the first states, as, for example, the use of

transient states in [15].
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xi = . . . 0 0

xi+1 = . . . 0 0 1

xi+2 = . . . 0 0 1 1

←−−
si+1

←−
si

←−−
si+2

Fig. 2. State transitions in the tree T1 of Figure 1. Transition si → si+1, with si = 0 and si+1 = 100, satisfies si � tail(si+1).

On the other hand, the transition si+1 → si+2, with si+2 = 11, satisfies tail(si+2) ≺ si+1.

Lemma 1: Let s, t be arbitrary states of T . There exists a string xn such that Ns,t(x
n) > 0 if and only

if s � tail(t) or tail(t) ≺ s.

Proof: By the definition of state selection in trees, a symbol xi+1, 1 ≤ i < n, causes a transition

from s to t if and only if head(t) = xi+1 and the reverse of both s and tail(t) are suffixes of xi−d , which

implies that either s ≺ tail(t), tail(t) ≺ s, or s = tail(t) (see Figure 2).

A model parameter for a tree T , denoted pT , is a set of |ST | conditional probability mass functions over

A, one associated to each state of T . The tree T and the model parameter pT define a tree model, which

we denote by 〈T, pT 〉. The tree model 〈T, pT 〉, in turn, defines a probability assignment [21] P〈T,pT 〉(·)

given by

P〈T,pT 〉(λ) = 1; P〈T,pT 〉(x
n) =

n∏
i=1

pT (xi|si−1), n ≥ 1 . (3)

For each n ≥ 0, the assignment (3) defines a probability distribution on An.

It follows from (3) that the type class of xn with respect to T , formally defined as

TT (xn) =
{
yn ∈ An : P〈T,pT 〉(y

n) = P〈T,pT 〉(x
n) for all admissible pT

}
,

takes the form

TT (xn) =
{
yn ∈ An : n(a)s (yn) = n(a)s (xn) ∀s ∈ ST , a ∈ A

}
.

We refer to TT (xn) also as the T -class of xn, as a shorthand for the type class of xn with respect to

T , and we write simply T(xn) when T is clear from the context. To derive some of our main results, it

8

Downloaded from www.VTUplanet.com



will be convenient to employ a more restricted notion of type class, which we call the close-ended type

class of xn with respect to T (or, in short, the T -class∗ of xn), defined as

T ∗(xn) = { yn ∈ T(xn) : sn(xn) = sn(yn)} .

For FSM trees, by the flow conservation equations and the existence of a next-state function, equality of

the final states is always satisfied for sequences of the same type. Therefore, in the FSM case, T -classes

and T -classes∗ are equivalent. This may not be the case for non-FSM trees.

An enumeration of a finite set S is a one-to-one mapping f : S → { 0, 1, . . . , |S|−1 }. We define an

enumeration scheme for type classes as an invertible function, g : A∗ → N|ST |×|A|+1, that assigns to

each string xn the |ST | × |A| counts n(a)s , s ∈ ST , a ∈ A, and the index f(xn) assigned to xn by an

enumeration f of the set T(xn). If for every string xn, both g and g−1 are computable in time polynomial

in n, we say that g is an efficient enumeration scheme for type classes. Analogous definitions extend to

close-ended type classes, where in this case the function g assigns to xn the counts n(a)s , s ∈ ST , a ∈ A,

a description of the final state, sn, and the index assigned to xn by an enumeration of T ∗(xn). We will

show that efficient enumeration schemes for type classes are readily derived from efficient enumeration

schemes for close-ended type classes.

B. Pseudo-states sequences

In this section we define the set of pseudo-states of a tree T , denoted S̃T , and the pseudo-state sequence

of a string xn, denoted s̃(xn). The pseudo-states will provide enough of the context lost by the states

to make counting sequences in T ∗(xn) equivalent to counting pseudo-state sequences with the same

transition counts as s̃(xn).

Definition 1: The extended context sequence of xn is u(xn) = u0, u1, . . . , un, where ←−ui , 0 ≤ i ≤ n,

is the shortest suffix of xi−d such that xjxj−1 . . . xi+1ui 6∈ I(T ) for all j, i ≤ j ≤ n (in other words, ←−ui
provides enough initial context to determine states for all j ≥ i).

Notice that, in particular, the case j = i above implies ui 6∈ I(T ), 0 ≤ i ≤ n. Also, we have u0 = s0,

un = sn, and ui+1 � xi+1ui, and we note that only depth(T )− |si| symbols beyond position i need to

be checked to determine ui.

Example 2: Consider the tree T1 of Figure 1. The sequence xn = 001101, with initial state B, defines

the state sequence illustrated in Figure 3(a),

s = B→A→A→B→D→A→C ,

9
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D

10

A

B C

1

4

5

2

3

6

(a)

D

10

A

B C
1

4

5

2

3 6

(b)

1b

Fig. 3. State sequence (a) and pseudo-state sequence (b) of xn = 001101 with respect to the tree of Figure 1. The pseudo-

states 00 and 01 are represented in (b) as dark nodes on an extension of the tree. Transitions are labeled with circled numbers,

indicating their order (Transition 1b comes after Transition 1 in (b)).

and we have

u = B→A→00→B→D→01→C , (4)

where, as in the figure, we write A,B,C,D as shorthands for 0, 100, 101, and 11, respectively. For i = 1,

we have u1 = 0, since x11 = 0 determines s1 = A, x21 = 00 determines s2 = A, and x31 = 001 determines

s3 = B. For i = 2, the suffix x22 = 0 determines the state s2 = A, but the suffix x32 = 01 does not suffice

to determine a state. Thus, u2 must be longer. The suffix x21 = 00 determines s2 = A, and x31 = 001

determines s3 = B. Thus, we have u2 = 00. Similarly, for i = 5, the suffix x55 = 0 determines the

state s5 = A, but the suffix x65 = 01 does not suffice to determine a state. Instead, the string x54 = 10

determines s5 = A, and x64 = 101 determines s6 = C. Thus, we have u5 = 01.

Definition 2: The set of pseudo-states of T is defined as

S̃T = { s|s|h : s ∈ ST , s|s|k 6∈ I(T ), 1 ≤ k ≤ h }. (5)

In words, S̃T is the set of strings u such that u is a suffix of some state s ∈ ST and neither u nor

any of the longer suffixes of s is an internal node of T . Since every state is a suffix of itself, and, by

definition, not an internal node of T , we have ST ⊆ S̃T . Notice that all extended contexts in u(xn)

belong to S̃T . Indeed, ui must be a suffix of sk for some k, i ≤ k ≤ n, for otherwise it would not be

the shortest suffix of xi−d that determines a state for all j, i ≤ j ≤ n. Also, by the definition of ui, we

have xjxj−1 . . . xi+1ui 6∈ I(T ) for all j, so ui satisfies the two conditions for membership in S̃T .

10
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When T is FSM, all suffixes of a state s are nodes of T [14], [15], implying that S̃T = ST and that the

extended context sequence, u(xn), is the same as the state sequence, s(xn). Indeed, in this case, given

ui = si, the symbols xni+1 unambiguously drive state transitions to determine the states si+1, si+2, . . . , sn,

by means of the next-state function. In general, however, ST may be a proper subset of S̃T , in which

case the latter is not prefix-free. Besides the states of T , S̃T includes all the states and, possibly, some

of the internal nodes of the FSM closure of T .

Example 3: In T1 of Figure 1, the suffixes 100, 00, 0 of state B, and the suffixes 101, 01 of state C,

are not internal nodes of T1. The only suffixes of states A and D that are not internal nodes are A and

D themselves. We then have S̃T = ST ∪ {00, 01}.

In analogy to the definition of the state selection function, σ(x), we define a pseudo-state selection

function, denoted σ̃(x), which assigns to every sufficiently long string, x, the longest pseudo-state that

is a prefix of ←−x . For u ∈ S̃T \ST , we define the parent of u, denoted ρ(u), as the longest proper prefix

of u in S̃T .

Now, notice that, since ui+1 ∈ S̃T and ui+1 � xi+1ui, we have ui+1 � σ̃(
←−
uixi+1).

Definition 3: We construct the pseudo-state sequence s̃(xn) from u(xn) by inserting, after each ui

such that ui+1 6= σ̃(
←−
uixi+1), a context-dropping sequence of pseudo-states, v1, v2, . . . , vk, where v1 =

σ̃(
←−
uixi+1), vj = ρ(vj−1) for all j, 1 < j ≤ k, and ρ(vk) = ui+1. We refer to transitions of the form

u→ρ(u) generated in this way as context-dropping transitions.

Notice that, in contrast to the defining property of the state sequence, s̃(xn) may not be the same

as {σ̃(xi)}ni=0 , and that |s̃(xn)| will be larger than n if any context-dropping transitions are actually

inserted. On the other hand, since each context symbol needed to determine future states in xn−1−d can

be dropped by at most one context-dropping transition, the total number of such transitions is at most

n+ d, and we have |s̃(xn)| ≤ 2n+ d. As mentioned, for FSM trees, we have ui = si, ui+1 = si+1, and

S̃T = ST , which implies that σ̃(
←−
uixi+1) = ui+1, for all i, yielding s̃(xn) = u(xn) = s(xn). For general

trees, we have ui+1 � σ̃(
←−
uixi+1) � σ̃(xi+1

−d ), where σ̃(xi+1
−d ) coincides with the state selected by xi+1

−d

in the FSM closure of T , which may be strictly longer than ui+1.

Example 4: For the sequence xn = 001101 of Example 2, we obtain the pseudo-state sequence

s̃ = B→01
λ→A→00→B→D→01→C , (6)

which is illustrated in Figure 3(b). In (4) we have u0 = B = 100, u1 = A = 0, and x1 = 0. Since

we have σ̃(
←−
u0x1) = 01 6= u1, we insert a sequence of pseudo-states between u0 and u1, which in this

case, since ρ(01) = A, is comprised of the single pseudo-state 01. This generates the context-dropping

11
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transition labeled with 1b in Figure 3(b) and labeled with λ in (6).

Definition 4: The pseudo-state transition matrix of a sequence xn, with pseudo-state sequence s̃(xn) =

s̃0, s̃1, . . . , s̃m, is a |S̃T |×|S̃T | matrix Ñ(xn), with rows and columns indexed by S̃T , and entries

Ñv,w = |{i : 1 ≤ i ≤ m, s̃i−1 = v, s̃i = w}|, v, w ∈ S̃T .

We denote by Ĥ(s̃) the normalized first-order empirical entropy of s̃ over S̃T , namely,

Ĥ(s̃) = − 1

m

∑
v,w∈S̃T ,Ñv,w>0

Ñv,w log
Ñv,w

Ñv∗
. (7)

Example 5: The matrix Ñ(xn) of the sequence xn = 001101 of Example 4, whose pseudo-state

sequence is given in (6), with rows and columns indexed by S̃T = {A,B,C,D, 00, 01} in this order, is

given by

Ñ(xn) =



0 0 0 0 1 0

0 0 0 1 0 1

0 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

1 0 1 0 0 0

 . (8)

C. Exact size and enumeration of close-ended type classes

With the tools developed so far, we are ready to state our main result on size and enumeration of type

classes. We provide a formula for the calculation of |T ∗(xn)| given Ñ(xn) and state the fact that T ∗(xn)

can be efficiently enumerated. The proof is presented in Section III. Later, in Section IV, we show that

these results are readily adapted also to the enumeration and calculation of the size of T(xn).

Our construction of Ñ(xn) so far has been based on the pseudo-state sequence s̃(xn) constructed in

Section II-B. As part of the proof in Section III, we show that Ñ(xn) depends on xn only through its

close-ended type class, by deriving an explicit construction of Ñ(xn) directly from the counts n(a)s (xn)

and the final state sn(xn).

We define the normalized |S̃T | × |S̃T | matrix N̂ as N̂v,w = Ñv,w/Ñv∗ if Ñv∗ > 0 and N̂v,w = 0

otherwise.

Theorem 1: The size of a close-ended type class is given by

|T ∗(xn)| = M

∏
v Ñv∗!∏

v,w Ñv,w!
, (9)

where M denotes the cofactor of entry (sn, s0) in I−N̂ , which satisfies M ≤ 1. Furthermore, there

exists an efficient enumeration scheme for T ∗(xn).

12

Downloaded from www.VTUplanet.com



Example 6: For the sequence xn = 001101 of Example 4, whose matrix Ñ is given in (8), we have

I−N̂ =



1 0 0 0 −1 0

0 1 0 − 1
2 0 − 1

2

0 0 1 0 0 0

0 0 0 1 0 −1

0 −1 0 0 1 0

− 1
2 0 − 1

2 0 0 1

 . (10)

The final state of xn is sn = C and the initial state is s0 = B. Thus, calculating the cofactor of (10) that

corresponds to the third row and the second column, we obtain M = 1
2 . Since the multinomial factor∏

v Ñv∗!∏
v,w Ñv,w!

applied to (8) equals 4, (9) yields |T ∗(xn)| = 2, and indeed, by direct counting, we obtain

T ∗(xn) = {001101, 100101} .

Example 7: For the sequence xn of Example 1, we obtain the pseudo-state sequence

s̃ = B→01
λ→A→00→B→ . . .→ B→01

λ→A→00→B .

For this sequence, we have Ĥ(s̃) = 0, which in this case coincides with ĤTF
(xn) (this needs not be the

case in general). We also obtain

Ñ =



0 0 0 0 n
4 0

0 0 0 0 0 n
4

0 0 0 0 0 0

0 0 0 0 0 0

0 n
4 0 0 0 0

n
4 0 0 0 0 0


, I−N̂ =



1 0 0 0 -1 0

0 1 0 0 0 -1

0 0 1 0 0 0

0 0 0 1 0 0

0 -1 0 0 1 0

-1 0 0 0 0 1


.

Thus, both the multinomial factor in (9) and the cofactor that corresponds to the second row and the

second column of I−N̂ evaluate to 1, in agreement with the observation in Section I that the type class

is comprised of a single sequence.

As mentioned, when T is FSM, S̃T = ST , and the pseudo-state sequence s̃(xn) coincides with the

state sequence s(xn). Thus, we have Ñ = N , and in this case, (9) reduces to Whittle’s formula on the

original state sequence. In general, however, counting state sequences compatible with N , i.e., applying

Whittle’s formula directly to N , may result in overcounting sequences in T ∗(xn). Unlike in the FSM

case, some such state sequences may not correspond to any symbol sequence, as shown in the following

example.

Example 8: The sequence xn = 001101 of Examples 2 and 4, defines the state sequence

s = B→A→A→B→D→A→C ,
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which, taking A,B,C,D as the order for rows and columns, yields the state transition matrix

N(xn) =


1 1 1 0

1 0 0 1

0 0 0 0

1 0 0 0

 . (11)

The state sequence B→A→B→D→A→A→C is compatible with N(xn), but it does not correspond to any

symbol sequence. If it were the state sequence of a string y, the first state transition, B→A, implies that

y1−d = 0010 and, therefore, the next state, s2, would not be B but C (if y2 = 1) or A (if y2 = 0).

Transitions from A to B, however, may be valid elsewhere in the sequence. The extra context provided

by the elements of the pseudo-state sequence accounts for these restrictions on state transition sequences.

III. PROOF OF THEOREM 1

To prove Theorem 1 we will define a tagging function, ω, that maps sequences of pseudo-states to

symbol sequences, and will show that ω determines, in fact, a bijection between pseudo-state sequences

starting at s0 and compatible with Ñ(xn), and sequences in T ∗(xn). As Example 8 shows, such a

one-to-one correspondence does not exist, in general, between state sequences compatible with N(xn)

and sequences in T ∗(xn), since, for an arbitrary tree, some state sequences may not correspond to any

symbol sequence. We first show, in Subsection III-A, that the above counterexample notwithstanding,

two sequences xn, yn belong to the same close-ended type class if and only if N(yn) = N(xn). Using

this result, in Subsection III-B, we describe an explicit construction of the matrix Ñ(xn) given the

close-ended type T ∗(xn) (but not necessarily the sequence xn itself). In Subsection III-C, we define the

tagging function ω, and use the fact that Ñ(xn) depends on xn only through T ∗(xn) to establish that any

sequence yn ∈ T ∗(xn) can be obtained by tagging a pseudo-state sequence starting at s0 and compatible

with Ñ(xn), namely, the pseudo-state sequence of yn. Moreover, we prove that the tagging of any two

different such sequences of pseudo-states yields different symbol sequences, establishing, therefore, the

fact that ω is bijective. The proof of Theorem 1 will then follow straightforwardly, by application of

Whittle’s formula to Ñ(xn).

A. State transition counts and close-ended type classes

The following lemma connects sequences in T ∗(xn) and state transition counts, as collected in the

state transition matrix N(xn).

Lemma 2: For sequences xn, yn ∈ An, and a tree T , we have yn ∈ T ∗(xn) if and only if N(yn) =

N(xn).

14
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Proof: Clearly, since a state transition si−1 → si uniquely determines the symbol xi = head(si)

that is emitted in state si−1, the equality N(yn) = N(xn) implies that yn ∈ T(xn). Moreover, by the

flow conservation equations (2), the final state of a sequence is uniquely determined by the initial state

s0 and the state transition matrix. Thus, if N(yn) = N(xn), then we must have sn(yn) = sn(xn) and

therefore yn ∈ T ∗(xn).

To prove the “only if” part, we recall that, by Lemma 1, a state transition s → t is possible if and

only if either s � tail(t) or tail(t) ≺ s. In the former case, all the transitions into state t originate from

s, while in the latter case, all the transitions from s to t are driven by an emission of the symbol head(t)

in s. Thus, from the flow conservation equations (2), we have

Ns,t(x
n) =


∑

b∈A n
(b)
t (xn) + δt,sn(xn) − δt,s0 , if s � tail(t) ,

n
(a)
s (xn), where a = head(t), if tail(t) ≺ s ,

(12)

which implies that N(xn) depends on xn only through its close-ended type T ∗(xn).

B. General construction of Ñ(xn)

To calculate Ñ(xn) from T ∗(xn) we first establish necessary conditions for entries of Ñ(xn) to be

positive. These conditions are analogous to (albeit, at this point, weaker than) the conditions established

in Lemma 1 for entries of N(xn).

Lemma 3: If Ñv,w(xn) > 0 for some sequence xn, then the pseudo-states v, w must satisfy one of the

following conditions:

v ∈ S̃T \ ST , v = tail(w) , (13)

v ∈ ST , w = σ̃(
←−
v head(w)) , (14)

w = ρ(v) , tail(v) ∈ T . (15)

Proof: We show that any two consecutive pseudo-states in s̃(xn) satisfy one of (13)–(15). Consider

consecutive pseudo-states ui and ui+1 in the extended context sequence, u(xn), defined in Section II-B

(Definition 1). We have ui+1 � xi+1ui. If ui+1 = xi+1ui, since no context-dropping transitions are

inserted between ui and ui+1 when constructing s̃(xn) in this case, ui and ui+1 are consecutive in s̃(xn)

and satisfy (13) or (14). Otherwise, if ui+1 ≺ xi+1ui, by the definition of the extended context sequence,

si must depend on the last symbol of ui, implying ui = si. Thus, the pseudo-state following ui in

s̃(xn) will be σ̃(
←−
uixi+1), as in (14), either because it coincides with ui+1 or because it is inserted as the

first pseudo-state in a context-dropping sequence v1, v2, . . . , vk. If such an insertion takes place, since
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v1 = σ̃(
←−
uixi+1) � xi+1ui = xi+1si, then, for all h = 1 . . . k, tail(vh) � si (thus, it belongs to T ), so

that the context-dropping transitions are of the form (15).

The conditions (13)–(15) are, in general, loose, in the sense that there may exist pairs of pseudo-states

(v, w) that satisfy one of (13)–(15), but such that Ñv,w(xn) = 0 for all sequences xn. This gap does not

affect our ongoing derivations, and will be closed in Section V, when we focus on a subset of context

trees for which (13)–(15) are both necessary and sufficient.

In the proof of the following lemma we show, explicitly, how Ñ(xn) can be calculated from T ∗(xn).

Lemma 4: For every sequence xn, Ñ(xn) depends on xn only through its close-ended type T ∗(xn).

Proof: By Lemma 2, it suffices to show that Ñ(xn) depends on xn only through N(xn).

Given w ∈ S̃T such that tail(w) ∈ S̃T \ ST , consider the set Sw of states s such that w is a suffix of

s, none of the longer suffixes of s are in I(T ), and s does not contain as proper suffix a state with those

properties (by the definition of S̃T the set Sw is nonempty). Now, notice that by the definition of the

extended context sequence u(xn), for a pseudo-state ui 6∈ ST we have ui+1 = xi+1ui. Therefore, there

exists k ≥ i such that sk ∈ Sui
, implying that every transition of the form (13) occurs in conjunction

with a state in Sw. Moreover, the exclusion from Sw of states which have a suffix in Sw guarantees that

each such transition is counted only once. Thus,

Ñtail(w),w =
∑
s∈Sw

N∗s −
∑

wz∈S̃T ,z∈A+

Ñtail(wz),wz , (16)

where the summation subtracted in (16) accounts for states s′ having a state s ∈ Sw as a proper prefix

of one (or more) of its suffixes. When such a state s′ occurs in a state sequence, say sj = s′, we must

have si = s for some i < j, and this occurrence of s will not be associated to the occurrence of the

pseudo-state w but to a longer pseudo-state wz (since a longer context is required to determine sj = s′).

Notice that (16) defines a recursion, since wz is strictly longer than w, and that N∗s can be derived from

symbol counts by (12).

For v, w of the form (14), with b = head(w), we have

Ñv,w = n(b)v −
∑

bvz∈S̃T ,z∈A+

Ñvz,bvz . (17)

This formula gives the number of positions in u(xn) in which the extended context ui is si = v and

the next symbol is xi+1 = b. In all these cases, the next pseudo-state in s̃(xn) will be σ̃(
←−
v b), either

because it coincides with ui+1 or because it is the starting point for a context-dropping sequence inserted

between ui and ui+1, as defined in Section II-B (Definition 3). Notice that all terms in the summation

of (17) can be calculated from (16).
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Finally, a transition of the form (15), i.e., v → ρ(v), occurs as a result of the insertion of a context-

dropping sequence for each index i such that v � σ̃(
←−
uixi+1) and ui+1 ≺ v (and only in those cases).

The first condition occurs if and only if there is a transition from v′ to w′ of the form (13)-(14) with

v � w′, whereas the second condition occurs if and only if there is a transition of the same form with

v′ ≺ v. It then follows that

Ñv,ρ(v) =
∑

v′,w′∈S̃T ,

v�w′,w′ 6≺v′

Ñv′,w′ −
∑

v′,w′∈S̃T ,

v′≺v,w′ 6≺v′

Ñv′,w′ .

C. Pseudo-state transition counts and close-ended type classes

In this subsection we establish a connection between symbol sequences and sequences of pseudo-states,

by means of a tagging function ω. Specifically, given a sequence of pseudo-states, s̃ = v0, v1, . . . , vm,

we tag each transition vi → vi+1 with a string

ω(vi, vi+1) =

 λ, vi+1 ≺ vi,

head(vi+1), otherwise .
(18)

We then define ω (s̃) as the string obtained by concatenating the transition tags, in the order in which they

appear. Notice that for the pseudo-state sequence of xn, since head(ui+1) = xi+1, we have ω (s̃(xn)) =

xn. For completeness, we define ω (s̃) = λ when s̃ is comprised of a single pseudo-state v0.

Lemma 5: Let s̃ = v0, v1, . . . , vm and s̃′ = v′0, v
′
1, . . . , v

′
m′ be sequences of pseudo-states such that all

pseudo-state transitions v → w satisfy one of (13)–(15). Then,

(i) ←−vm is a suffix of ←−v0ω (s̃), and

(ii) if v0 = v′0, vm = vm′ = s ∈ ST , and ω (s̃) = ω (s̃′), then s̃ = s̃′.

Proof: We prove (i) by induction on m. For m = 0, the claim is trivial. Assume it is true for m− 1

and consider the last transition, vm−1 → vm. If vm = ρ(vm−1) (as in (15)), then the transition is tagged

with λ. Thus,←−vm, which is a suffix of←−−−vm−1, is also a suffix of←−v0ω (s̃). If the transition is of type (13) or

of type (14), then it is tagged with head(vm) and tail(vm) � vm−1. Hence, by the induction hypothesis,
←−
vm is a suffix of ←−v0ω (s̃), which proves (i).

To prove (ii), let j be the largest index such that vi = v′i for all i ≤ j (j ≥ 0). If j = min{m,m′} then,

either m = m′, in which case the lemma is proved, or all remaining transitions in the longest sequence

must be tagged with λ, i.e., must be of the form (15), contradicting the fact that vm = v′m. Thus, we can

assume j < min{m,m′}. Let bk1 = ω(vj , vj+1, . . . , vm). By the definition of j, and since ω (s̃) = ω (s̃′),

we must also have bk1 = ω(v′j , v
′
j+1, . . . , v

′
m).
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Letting vj = v′j = v, one of vj+1 and v′j+1 must be ρ(v), for otherwise they would coincide, because

the next pseudo-state in a transition of any the forms (13)-(14) must be σ̃(
←−
v b1). Hence, v 6∈ ST , which

discards a transition of the form (14) from v, and we must have, with no loss of generality, vj+1 = b1v

and v′j+1 = ρ(v).

Notice that, by an application of (i) to the subsequence of s̃′ starting at pseudo-state v′j+1, the remaining

pseudo-states in s̃′ are all prefixes of bibi−1 . . . b1ρ(v), 1 ≤ i ≤ k. As a result, bibi−1 . . . b1v 6∈ ST for all

i, 0 ≤ i ≤ k. We further claim that vj+i = bibi−1 . . . b1v, 0 ≤ i ≤ m − j, implying that vj+i 6∈ ST , in

contradiction with vm = s (note also that this claim implies k = m−j). We prove the claim by induction

on i. For i = 1, we already established that vj+1 = b1v and vj = v. Assume now that the claim holds

for i − 1 and i − 2. We have vj+i−1 = bi−1bi−2 . . . b1v 6∈ ST , excluding a transition vj+i−1 → vj+i of

type (14). Moreover, tail(vj+i−1) = vj+i−2 6∈ T , excluding also a transition of type (15). Therefore, the

only possible transition is of type (13), implying vj+i = bibi−1 . . . b1v.

Lemma 5(ii) states that two different pseudo-state sequences that start and end at the same pseudo-state

yield two different symbol sequences through the tagging function ω. Lemma 6 below makes use of this

fact to show that, in fact, the sequences in T ∗(xn) and the sequences of pseudo-states starting at s0 and

compatible with Ñ(xn) are in one to one correspondence.

Lemma 6: Let xn be a sequence in An. The function ω defines a bijection between T ∗(xn) and the

set of pseudo-state sequences starting at s0 and compatible with Ñ(xn).

Proof: By the definition of ω and of the pseudo-state sequence of a string, we have ω (s̃(yn)) = yn

for every sequence yn and, if yn ∈ T ∗(xn), by Lemma 4, we have Ñ(yn) = Ñ(xn). Thus, every

sequence in T ∗(xn) is the image, under the tagging function, of a sequence of pseudo-states that starts

at s0 and is compatible with Ñ(xn).

Now, let ṽ = v0, v1, . . . , vm be an arbitrary sequence of pseudo-states, with v0 = s0, compatible with

Ñ(xn). Let also s̃(xn) = s̃0, s̃1, . . . , s̃m. Since s̃(xn) and ṽ share the same pseudo-state transition counts,

there exists a permutation i 7→ i′ of the indexes i, 0 ≤ i < m, so that vi = s̃i′ and vi+1 = s̃i′+1, for all

i, 0 ≤ i < m. Thus, by Lemma 5(i), ω (v0, v1, . . . , vi) selects the same state as ω (s̃0, s̃1, . . . , s̃i′), and

ω (v0, v1, . . . , vi+1) selects the same state as ω (s̃0, s̃1, . . . , s̃i′+1), for all i, 0 ≤ i < m. As a consequence,

ω (s̃(xn)) and ω (ṽ) share the same state transition matrix, implying, by Lemma 2, that ω (ṽ) belongs

to T ∗(xn). Moreover, if ṽ′ = v′0, v
′
1, . . . , v

′
m is a different sequence of pseudo-states, with v′0 = s0, that

is also compatible with Ñ(xn), then, by the flow conservation equations (2) on Ñ(xn), we must have

vm = v′m, implying, by Lemma 5(ii), that ω (ṽ′) 6= ω (ṽ).

Example 9: The pseudo-state sequence s̃ = B→01
λ→A→00→B→D→01→C, from Example 4, is illus-
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trated in Figure 3(b), following the transitions in order 1, 1b, 2, 3, 4, 5, 6. Notice that in s̃ the state B is

preceded by 00, which in turn is preceded by A. This pseudo-state sequence, A→00→B, is associated

to the emission of the string 01 starting from A, which causes the state sequence A→A→B. Thus, no

permutation of the pseudo-state transitions of s̃ generates the invalid sequence B→A→B mentioned in

Example 8. Other permutations of pseudo-state transitions, however, give valid strings in the type class

of xn. The tagging of the sequence of pseudo-states obtained by following the transitions in the order

4, 5, 1b, 2, 3, 1, 6 in Figure 3(b) gives the string yn = 100101, which, as observed in Example 6, belongs

to T ∗(xn). In fact, xn and yn are the only two strings in T ∗(xn).

Proof of Theorem 1: Whittle’s formula (1) applied to Ñ(xn) gives the number of sequences of

pseudo-states starting at s0 and compatible with Ñ(xn), which, by Lemma 6, are in bijective correspon-

dence with the elements of T ∗(xn), yielding (9). Moreover, since the multinomial factor in (9) is a trivial

upper bound on the number of such sequences of pseudo-states, we must have M ≤ 1 as claimed. Now,

given xn, one can compute s̃(xn) in linear time (regarding T as fixed), as in Section II-B. Computing

ω (s̃) given the pseudo-state sequence s̃ of a string yn can be done in time proportional to the length of s̃,

which we recall, from Section II-B, that is upper-bounded by 2n+ d. Hence, by Lemma 6, enumerating

sequences in T ∗(xn) is equivalent to enumerating sequences of pseudo-states compatible with Ñ(xn).

The latter, in turn, can be done polynomially in n by recursive application of Whittle’s formula, similarly

to the enumeration of Markov type classes in [22].

IV. CONNECTIONS BETWEEN CLOSE-ENDED TYPE CLASSES AND TYPE CLASSES

We study connections between close-ended type classes and type classes, which show that the problem

of enumerating sequences in T ∗(xn) is essentially equivalent to that of enumerating sequences in T(xn).

These connections also provide the means to apply (9) to calculate |T(xn)|.

We start by stating the following relationship between the final states of any two sequences in the

same T -class.

Lemma 7: Let yn ∈ T(xn). If sn−1(xn) and xn determine sn(xn), then we have sn(xn) = sn(yn).

Otherwise, we must have sn−1(xn) = sn−1(y
n), and xn = yn.

Notice that when T is FSM, in which case sn−1(xn) and xn always determine sn(xn), Lemma 7 states

that we must have sn(xn) = sn(yn) whenever yn ∈ T(xn). Indeed, this fact is a trivial consequence of

the flow conservation equations (2) and the existence of a next-state function. The proof of Lemma 7 for

general trees is deferred to Appendix A. It follows from standard arguments based on the definition of

the state selected by a sequence, and the flow conservation equations. The following theorem connects
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T ∗(xn) with T(xn), enabling the application of (9) to the calculation of |T(xn)|, and, moreover, it states

that efficient enumeration schemes for type classes are readily derived from efficient enumeration schemes

for close-ended type classes.

Theorem 2: (i) For a sequence xn, we have T(xn) = T ∗(xn) if sn−1(xn) and xn determine sn(xn),

or T(xn) = {yn−1xn : yn−1 ∈ T ∗(xn−1)} otherwise. Thus, we have |T(xn)| = |T ∗(xr)|, with

either r = n or r = n− 1.

(ii) Given an efficient enumeration scheme for close-ended type classes, g, we can construct an efficient

enumeration scheme for type classes, g′, such that the computations of g′ and its inverse for

sequences of length n take O(n) additional operations with respect to the computations of g and

g−1, respectively.7

Proof: (i) If sn−1(xn) and xn determine sn(xn), then, by Lemma 7 and the definition of T ∗(xn),

we have T(xn) = T ∗(xn). Suppose now that sn−1(xn) and xn do not determine sn(xn), and consider

the subsequence xn−1. For all states s and all symbols a, we have

n(a)s (xn−1) = n(a)s (xn)− δs,sn−1(xn)δa,xn
.

Similarly, for an arbitrary string zn ∈ T(xn), we have

n(a)s (zn−1) = n(a)s (zn)− δs,sn−1(zn)δa,zn .

Since, by Lemma 7, we must have sn−1(z
n) = sn−1(x

n) and zn = xn, we conclude that zn−1 ∈

T ∗(xn−1). Thus, the string zn belongs to the set {yn−1xn : yn−1 ∈ T ∗(xn−1)}. Conversely, if we

append the symbol xn to the end of a string yn−1 ∈ T ∗(xn−1), we get

n(a)s (yn−1xn) = n(a)s (yn−1) + δs,sn−1(yn−1)δa,xn
, for all s ∈ ST , a ∈ A .

Since n
(a)
s (yn−1) = n

(a)
s (xn−1) and sn−1(y

n−1) = sn−1(x
n−1) by the definition of T ∗(xn−1), we

conclude that n(a)s (yn−1xn) = n
(a)
s (xn) for all states s and all symbols a, and, therefore, yn−1xn ∈ T(xn).

(ii) The result is straightforward for the computation of g′(xn), which amounts to computing the counts

n
(a)
s and, by (i), the index assigned by g to either xn or xn−1. We focus on the inverse computation,

i.e., given the counts n(a)s and the index assigned by g′ to xn, reconstruct xn. For this case, the claim

follows if we can efficiently perform the following computational tasks: decide whether sn−1 and xn

determine sn (in which case we just need to apply g−1) or not, and in the latter case, find the values

of sn−1 and xn (from which the counts n(a)s (xn−1), needed to apply g−1, are obtained readily from the

7Asymptotics are with respect to n, with A and T given.
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counts n(a)s (xn)). To this end, let S′T = {s ∈ ST : s = aw, a ∈ A, w ∈ T}. Clearly, sn−1 and xn

determine sn if and only if sn ∈ S′T . For states s = aw ∈ S′T , we can compute the number of incoming

transitions into s as
∑

v:wv∈ST
n
(a)
wv , and we can determine if s is the final state by checking whether∑

v:wv∈ST
n
(a)
wv + δs,s0 >

∑
b∈A n

(b)
s . The test can be done for all s ∈ S′T and if sn is not found in S′T ,

then sn−1 and xn do not determine sn. In this case, we must have sn = auv, with a ∈ A, u ∈ ST , and

v ∈ A+. For each internal node au of T with u ∈ ST , we can determine if the final state is of the form

auv by comparing n(a)u +
∑

v:auv∈ST
δauv,s0 with

∑
v:auv∈ST

∑
b∈A n

(b)
auv. The two quantities will differ

for one and only one such node au, yielding xn = a, and sn−1 = u.

V. CANONICAL EXTENSIONS AND ASYMPTOTIC BEHAVIOR

Using Stirling’s approximation, it follows from Theorem 1 that the size of TT (xn) is exponential in

the first-order empirical entropy of s̃(xn) over S̃T . In this section, we study this asymptotic behavior in

more detail, and show that its second-order term is related to a special extension of the tree T , which

may generally be different from either T or its FSM closure, and which will also be crucial for the results

of Section VI. We start by defining this extension and studying its properties.

Definition 5: We say that a state s of T is forgetful if as ∈ I(T ) for all a ∈ A, namely, s does not

have sufficient context for any transition. A tree with no forgetful states is called canonical.

For a tree to be canonical we require that for every state s, there exist at least one symbol a, such

that the emission of a in state s unambiguously determines the next state. On the other hand, in an FSM

tree, for every state s and every symbol a, the emission of a in state s unambiguously determines the

next state. Therefore, FSM trees are, a fortiori, canonical.

Example 10: In the binary tree T of Figure 4, the next state following the emission of symbol 0 from

s = 01 can be any of 00100, 00101, 0011, and the next state can be any of 1010, 1011 after the emission

of symbol 1. Since neither 0 nor 1 determine the next state from s, s is forgetful and, thus, T is not

canonical.

A single extension of a state s of T consists of extending T with a full complement of children of

s. Consider the following procedure applied to a tree T that is not canonical: select a forgetful state s,

and singly extend it; continue until no forgetful states remain. Since states of length depth(T ) − 1 or

above are never forgetful, the procedure must stop after a finite number of steps, resulting in a canonical

tree. The next lemma shows that this extension is unique and independent of the order in which forgetful

states are selected for extension. We call it the minimal canonical extension (MCE) of T , and denote it

by Tc.
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Fig. 4. A non-canonical tree T over A = {0, 1} and its MCE Tc. Nodes added in Tc with respect to T are highlighted.

Lemma 8: Let T ′ and T ′′ be two extensions of T , each obtained by a finite sequence of single extension

steps on forgetful states. If T ′ and T ′′ are both canonical, then T ′ = T ′′.

Proof: Suppose T ′ 6= T ′′ and, without loss of generality, suppose T ′\T ′′ is not empty. Let v1, v2, . . . , vm

be the sequence of forgetful states extended in the process of constructing T ′ from T . There must be

some node in this sequence that was not extended in T ′′ (otherwise we would have T ′ ⊆ T ′′). Let vj

be the first such node in the sequence. We must have vj ∈ T ′′, either because vj was originally in T , or

because it was created by extension of some vi with i < j, which was also extended in T ′′. Moreover, vj

must be a leaf of T ′′, since it was not extended in that tree, and it could not have been an internal node

of T since it was selected for extension in T ′. Let T ′j be the tree in the sequence of extensions leading

to T ′ at the time vj was chosen for extension. Clearly, T ′j ⊆ T ′′, and since vj is forgetful in T ′j , it must

also be forgetful in T ′′, contradicting the assumptions of the lemma. Hence, we must have T ′ = T ′′.

Example 11: In the tree T of Figure 4 the state s = 01 is forgetful and the tree Tc on the right, which

is obtained by extending s, is its MCE. Indeed, no state in Tc is forgetful. Notice that the states 010 and

011 (highlighted nodes in Tc), which result from extending s, unambiguously determine the next state

for symbol 1, although symbol 0 does not determine the next state from state 010, which can be either

00100 or 00101. Thus, Tc is not FSM.

Next, we show that a tree T induces essentially the same close-ended type classes as its MCE Tc,

which is reflected in the fact that our asymptotic results here and in Section VI will depend on parameters

of Tc rather than T . For succinctness, we denote the type class of xn with respect to Tc as Tc(xn).

We start by studying how extending a forgetful state of T affects type class partitions.
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Lemma 9: Let s be a forgetful state of T , and let T ′ be the tree obtained from T by a single extension

of s. If two sequences belong to the same T -class∗, they belong to the same T ′-class.

Proof: Consider arbitrary symbols a, b ∈ A and the symbol count n(a)sb , where the latter is with

respect to the state sb of T ′. Since s is forgetful, as ∈ I(T ) and, therefore, asb ∈ T . Thus, the emission

of a in state sb causes a transition to a state (of both ST ′ and ST ) of the form asbu, u ∈ A∗, implying

that n(a)sb is the total number of occurrences of states asbu. The latter, in turn, by the flow conservation

equations (2) applied to T , is determined by the final state with respect to T and the total number of

symbols emitted in states asbu, which is constant among all sequences in the same T -class∗.

Corollary 1: If xn and yn are sequences in the same T -class that share the same final state with

respect to Tc, then they belong to the same Tc-class∗.

Proof: The claim is an immediate consequence of Lemma 9 and the sequential construction of Tc,

noting that if xn and yn share the same final state with respect to Tc, then they also share the same final

state in T and all the intermediate trees constructed on the way to Tc.

For a tree T , we define the state transition support, denoted ET , as the set of pairs (s, t) ∈ S2
T such

that there is a transition from s to t in the state sequence of some string xn. In view of Lemma 1, we

have

ET = { (s, t) ∈ S2
T : s � tail(t) or tail(t)≺s } . (19)

The following theorem presents a pointwise asymptotic tight estimate of the logarithm of the size of a

T -class, provided all normalized pseudo-state transition counts are bounded away from zero. The second

order term of the estimate is expressed in terms of the MCE Tc.

Theorem 3: Let xn be a sequence with pseudo-state sequence s̃, of length m, with respect to an

arbitrary context tree T . Then,8

log |T(xn)| = mĤ(s̃)− |ETc
| − |STc

|
2

log n+O(1) , (20)

provided the pseudo-state sequence of xn with respect to Tc satisfies Ñv,w > εn for all v, w ∈ S̃Tc
of

one of the forms (13)–(15), for some fixed positive constant ε.

When T is FSM, it is also canonical, we have |ET | = α|ST |, and the pseudo-state sequence s̃(xn)

coincides with the state sequence, which implies that Ĥ(s̃) is equal to the normalized empirical entropy

8We use standard asymptotic notation: f(n) = O(g(n)) if and only if |f(n)| ≤ κ|g(n)| for some positive number κ and

sufficiently large n, f(n) = Ω(g(n)) if and only if g(n) = O(f(n)), and f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and

f(n) = Ω(g(n)).
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of xn with respect to T . Thus, in this case, (20) is a standard consequence of well known facts for FSMs.

We present the proof of Theorem 3 at the end of this section, following a few auxiliary lemmas. First,

we recall some notions from graph theory, which we will rely upon in the sequel.

A (directed) graph is a pair G = (V,E) where V is a finite set of vertices (or nodes) and E is a

subset of V × V . For an edge e = (u, v) we call u the source of e, and v its destination. Both u and v

are called endpoints of e. A path is a sequence of vertices, v0, v1, . . . , vm, such that (vi, vi+1) ∈ E for

all i, 0 ≤ i < m. We allow an arbitrary single vertex to represent an empty path. A path is closed if

it starts and ends at the same vertex and it is simple if no edge (vi, vi+1) appears twice. A circuit is a

closed simple path. We say that a (directed) graph is strongly connected if for any two vertices, u,w,

there exists a path from u to w.

Definition 6: The state transition support graph of T , denoted GT , is the graph with set of vertices

ST and set of edges ET , defined in (19).

Definition 7: The pseudo-state transition support graph of T is a graph G̃T = (S̃T , ẼT ), where a pair

of pseudo-states (v, w) belongs to ẼT if and only if there exists a sequence xn that yields Ñv,w(xn) > 0.

Notice that the state sequence of a string xn, s(xn), defines a path over the state transition support

graph of T , and, analogously, the pseudo-state sequence of xn, s̃(xn), defines a path over the pseudo-state

transition support graph of T .

Lemma 10: If T is canonical and (v, w) is a pair of pseudo-states satisfying one of (13)–(15), then

there exists a fixed string y(v,w) such that for every sequence xn that contains y(v,w), i.e., xn = zy(v,w)z
′

for some z, z′ ∈ A∗, we have Ñv,w(xn) > 0.

Proof: First, observe that given s ∈ ST , for all i ≥ 0, there exists a string ai ∈ Ai such that

aiai−1 . . . a1s 6∈ I(T ). Indeed, proceeding by induction on i, the claim for i = 1 follows from the fact

that s is not forgetful, so a symbol a1 such that ←−s a1 selects a state can be found; similarly, for i > 1,

the claim follows from the fact that the state selected by ←−s ai−1 is well defined and not forgetful, so an

appropriate ai can be found.

Now, given (v, w) satisfying (13), let s ∈ ST denote a state satisfying (5) for the pseudo-state w

(namely, in (5), s|s|h = w), choose i = d + 1, the depth of T , and consider the string y(v,w) =
←−
s ad+1,

so that xn = z
←−
s ad+1z′. Assume xj = z

←−
s . Clearly, by the definition of an extended context and the

selection of s and ad+1, we have uj−|s|+|v| = v and uj−|s|+|v|+1 = w, proving the claim for transitions

of type (13) since no context-dropping transitions are inserted between these two extended contexts.

Next, consider (v, w) satisfying (14). Since vhead(w) 6∈ I(T ), for s = v ∈ ST we can choose

a1 = head(w). Let y(v,w) =
←−
v head(w)ad+1

2 and consider again xj = z
←−
v . Clearly, uj = v and either
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uj+1 = w (with no context-dropping sequence inserted), or a context-dropping sequence starting with w

is inserted after uj . In either case, the claim is proven for transitions of type (14).

Finally, consider (v, w) satisfying (15), let t denote a descendant of tail(v) in ST , and let s =

σ(
←−
t head(v)) ∈ ST . Clearly, s is well defined, with s ≺ v (by the existence of ρ(v)). Now, consider

xn = z
←−
t head(v)ad+1

1 z′ with xj = z
←−
t . It is then easy to see that uj+1 = s and uj = t. Since

σ̃(
←−
ujxj+1) = σ̃(

←−
t head(v)), of which v is a prefix, and uj+1 ≺ v, a context-dropping sequence including

the transition (v, ρ(v)) is inserted.

We recall from Lemma 3 that a necessary condition for Ñv,w(xn) > 0 is that the pseudo-state transition

v → w is of one of the forms (13)–(15). However, in general, the condition is not sufficient for the

existence of xn such that Ñv,w(xn) > 0. Lemma 10 states the sufficiency of the condition for canonical

trees. It also follows from the lemma that if 〈T, pT 〉 is a tree model such that T is canonical and all

conditional probabilities are positive, then all pseudo-state transitions v → w satisfying one of (13)–(15)

occur with positive probability. In particular, in this case, the assumptions of Theorem 3 hold with high

probability.

It is well known that the state transition graph of a tree T is strongly connected. Lemma 10 allows us

to establish, through the following corollary, that the same is true for the pseudo-state transition graph.

Corollary 2: The pseudo-state transition graph, G̃T , of a tree T , is strongly connected.

Proof: Since every pseudo-state is either a state or the tail of a pseudo-state, for every v ∈ S̃T

there exists w ∈ S̃T such that there is a transition from v to w satisfying either (13) or (14). Thus, by

Lemma 10, there exists a corresponding outgoing edge in G̃T . Similarly, for every w ∈ S̃T there exists an

incoming edge (v, w) in G̃T with v = tail(w) (satisfying either (13) or (14)), except if tail(w) ∈ I(T ),

in which case there must exist t ∈ ST such that tail(w) ≺ t and therefore an incoming edge (v, w)

satisfying (14) (if w = σ̃(
←−
t head(w)) ) or (15) (a context-dropping sequence initiated in σ̃(

←−
t head(w)) ).

Now, given v, w ∈ S̃T , let e be an edge with source v, and e′ be an edge with destination w. Clearly,

the pseudo-state sequence s̃(yeye′), with ye and ye′ as in Lemma 10, defines a path from v to w in G̃T .

Therefore, G̃T is strongly connected.

Lemma 11: For a canonical tree T , we have |ẼT | − |S̃T | = |ET | − |ST | .

We defer the proof of Lemma 11 to Appendix B, and proceed directly to the proof of the theorem.

Proof of Theorem 3: By Corollary 1, we can equivalently bound the maximum of |T ∗c (yn)| among

all sequences yn ∈ T(xn). Now, let u = u0, u1, . . . , un and u′ = u′0, u
′
1, . . . , u

′
n be the extended context

sequences of an arbitrary sequence yn with respect to T and Tc, respectively. We claim that u′ and u

must coincide, except, if un is a forgetful state of T , for the last r extended contexts, where r ≤ d and
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we recall that d = depth(T )−1. By the sequential construction of Tc from T , it suffices to show that the

claim is true when u′ is the extended context sequence of yn with respect to a tree T ′ obtained from T

by a single extension of a forgetful state s. Clearly, since T ′ is an extension of T , we must have ui � u′i,

for all i, 0 ≤ i ≤ n. If ui ≺ u′i, then, by the definition of extended context sequence (Definition 1),

we must have yjyj−1 . . . yi+1ui ∈ I(T ′) \ I(T ) = {s} for some j ≥ i. By the Definitions 1 and 5, a

forgetful state can only be an extended context uj if j = n. Thus, we must have ynyn−1 . . . yi+1ui = s,

which, since |s| ≤ d because s is forgetful and |ui| ≥ 1, implies that i > n− d.

By the claim above, for all v, w ∈ S̃T ∪ S̃Tc
, the number of occurrences of a transition v → w in the

pseudo-state sequence of a string yn with respect to T and Tc differ in O(1). In addition, if yn ∈ T(xn),

by Theorem 2(i), we have either yn ∈ T ∗(xn) or yn−1 ∈ T ∗(xn−1). Therefore, by Lemma 4 and the

fact that all but at most d of the last extended contexts of u(xn) are determined by xn−1, the pseudo-

state transition counts of yn and xn with respect to T also differ in O(1). As a consequence, since all

normalized pseudo-state transition counts of xn with respect to Tc are bounded away from zero, the

logarithm of the multinomial factors in (9) for the pseudo-state sequences of xn with respect to T and

yn with respect to Tc differ by O(1). Furthermore, the cofactor M in (9) satisfies M ≤ 1, and it can

be lower-bounded by a positive constant, as in the proof of [7, Lemma 3] (in our case, relying on the

strong connectivity of G̃T to satisfy the conditions of [7, Lemma A.1], and on the fact that all non-

zero normalized counts are bounded away from zero). Thus, the claim follows by applying Stirling’s

approximation to (9) with respect to Tc and the fact, established in Section II-B, that m ≤ 2n+ d.

VI. THE NUMBER OF TYPE CLASSES

We study the number of type classes induced by a tree T on sequences of length n, which we denote

by NT . The following theorem presents the main result of the section, which determines the rate of

growth of NT tightly, up to a multiplicative constant.

Theorem 4: Let T be a tree and let Tc be its MCE. Then,

NT = Θ
(
n|ETc |−|STc |

)
. (21)

Once again, when T is FSM, we have T = Tc, |ETc
| − |STc

| = (α−1)|ST |, and (21) reduces to a

known result for FSMs, as mentioned in Section I.

Let N ∗T denote the number of T -classes∗ induced by T . Clearly, NT ≤ N ∗T ≤ |ST |NT . Thus,

N ∗T = Θ(NT ) , (22)
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and, for the purposes of Theorem 4, counting T -classes is equivalent to counting T -classes∗. We will

switch freely between the two partitions of An. Furthermore, in view of Corollary 1, and what needs to

be proved in Theorem 4, for the remainder of the section we assume, without loss of generality, that T

is canonical.

By Lemma 2, there are at most as many close-ended type classes as different state transition matrixes

compatible with sequences of states (not necessarily corresponding to any sequence of symbols). Thus,

the upper bound part of (21) follows immediately by applying the analogous result for Markov chains,

regarding state transitions in T as transitions in a Markov chain over ST . Proving the lower bound,

however, is more involved since some sequences of states may not correspond to a valid symbol sequence

(as in Example 8). For completeness, we provide independent proofs of both the lower and upper bound

parts of Theorem 4. For the lower bound, we will count the number of different matrixes Ñ(xn) that

arise as xn varies in An. We note that for sequences xn, yn in different type classes, the summation

of all entries in Ñ(xn) may be different from the summation over Ñ(yn), depending on the number of

context-dropping transitions in the pseudo-state sequences s̃(xn) and s̃(yn). Therefore, this problem is

not equivalent to determining the number of first order Markov type classes over S̃T , and will require

additional tools to handle context-dropping transitions.

We define an assignment of counters for G as a vector in N|E|, indexed by elements of E. The

assignment η is said to be cyclic if and only if it satisfies the flow conservation equations
∑

u:e=(u,v) ηe =∑
w:e=(v,w) ηe for all v ∈ V ; η is said to be connected if eliminating edges e with ηe = 0 from E (while

retaining all the vertices in V ) results in a strongly connected graph. A weight function for G, ψ, assigns

a nonnegative integer weight to each edge of G. We extend a weight function ψ to paths by defining the

weight of a path as the sum of the weights of its edges, and to assignments of counters η by defining

ψ(η) =
∑

e∈E ψ(e)ηe.

Notice that weight functions and assignment of counters are similar objects, as both assign a nonnegative

integer to each edge of a graph. We distinguish between them, however, since they are intended for

conceptually different purposes. We will regard weight functions as fixed objects defined on a given tree

T . On the other hand, we will associate different cyclic assignments of counters on a certain graph to

different T -classes∗, and we will be interested in counting them to prove Theorem 4.

Lemma 12: Let G = (V,E) be a strongly connected graph and ψ a fixed weight function for G such

that G has no circuits of weight zero and at least one circuit of weight one. Then,

(i) The number of cyclic connected assignments of counters of weight n for G is Ω
(
n|E|−|V |

)
as

n→∞.
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(ii) A cyclic assignment of counters η, of weight n, is fully determined by the values ηe for a set E∗

of |E| − |V | edges.

To avoid disrupting the flow of arguments leading to the proof of Theorem 4, we defer the proof

of Lemma 12 to Appendix C. We notice that the proof of Theorem 4 for FSMs only requires a trivial

weight function, in which ψ(e) = 1 for all edges e. A more general function ψ will allow us to deal with

context-dropping transitions. The following lemma proves the upper bound part of Theorem 4, applying

Lemma 12 to GT , the state transition support graph of T defined in Section V.

Lemma 13: Let T be a canonical tree. Then, NT = O
(
n|ET |−|ST |

)
.

Proof: Let ψ be a weight function for GT , with ψ(e) = 1 for all edges e of GT . Clearly, GT is

strongly connected, and it has no circuits of weight zero. Pick an arbitrary symbol b ∈ A. The tree T has

a state of the form b`, ` ≥ 1, which transitions to itself with the symbol b. Therefore, there is a circuit

of weight one in GT , and the graph satisfies the assumptions of Lemma 12. Now, for each state s of

T , let γs be a fixed path from s to s0 in GT . Consider a string xn with final state sn in T . Let η be

an assignment of counters for GT defined as η(u,v) = Nu,v(x
n) for all u, v ∈ ST and, similarly, let the

assignment of counters η′ count transitions in the path γsn . The assignment of counters η′′ = η + η′ is

cyclic by construction. Hence, by Lemma 12(ii), η′′ can be fully described by the values η′′e for a set of

|ET |−|ST | edges. Given sn, γsn is fixed, and therefore this is equivalent to describing the values ηe for

the same set of edges. Thus, η can be fully described by giving the final state sn in T , which determines

γsn , and the values ηe for a set of |ET |−|ST | edges. Since each value ηe is at most n, and there are a

constant number of states in T , we have N ∗T = O
(
n|ET |−|ST |

)
, and, by (22), NT = O

(
n|ET |−|ST |

)
.

As to the lower bound part of Theorem 4, as before, it suffices to show that N ∗T = Ω
(
n|ET |−|ST |

)
. For

an FSM tree, this amounts simply to apply Lemma 12(i) to GT . In general, as mentioned, the proof is

more involved since some closed paths in GT may not correspond to a valid state sequence (in analogy

to Example 8). Instead, we will apply Lemma 12 to the pseudo-state transition support graph of T ,

G̃T = (S̃T , ẼT ). We make use of the following auxiliary lemma.

Lemma 14: Let η be a cyclic connected assignment of counters for a graph G = (V,E) and let v0 ∈ V

be an arbitrary vertex. Then, there exists a closed path, v = v0, v1, . . . , vr, whose edge occurrence counts

are given by η.

Proof: Consider a directed multigraph, i.e., a graph allowed to contain multiple copies of the same

edge, with set of vertices V and edges taken from E, with ηe copies of each edge e. By the definition

of cyclic connected assignment, it follows from well known results (see, e.g., [23]), that this multigraph

contains an Eulerian circuit, i.e., a path that traverses each edge e as many times as the number of copies
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of the edge. Moreover, since η is connected, the circuit visits all vertices and, thus, we can assume that

the initial (and final) vertex is v0. The claim then follows by letting v be one of such paths.

Next, we apply Lemma 12 to G = G̃T with ψ(e) = |ω (e) |, where we extend the definition of the

tagging function ω, defined in Section III-C, to edges of G̃T , assigning to an edge (v, w) the same tag

as a transition v → w in a sequence of pseudo-states. We are interested in cyclic connected assignments

of counters of weight n in G̃T , and we show in the proof of the following lemma that the number of

such assignments of counters lower bounds N ∗T . This provides the last argument needed for the proof of

Theorem 4, which follows immediately after the lemma.

Lemma 15: For a canonical tree T we have N ∗T = Ω
(
n|ẼT |−|S̃T |

)
.

Proof: First, we recall from Corollary 2, that G̃T is strongly connected. Let ψ be the weight function

for G̃T defined by ψ(e) = |ω (e) |. Since there are no circuits formed by edges of the form (v, ρ(v)) in

G̃T , by the definition of ω, there are no circuits of weight zero in G̃T . Also, for b ∈ A and the state

v = b`, ` ≥ 1, of T , there is a circuit of weight one starting from v. Indeed, either vb 6∈ S̃T , in which case

v, v is a single-edge circuit of weight one or, by Lemma 10, (v, σ̃(
←−
v b)) is an edge of G̃T (of type (14)).

In the latter case, v = ρ(bv) and therefore, by Lemma 10, (bv, v) is an edge of ẼT , of type (15), with

weight zero. Hence, the assumptions of Lemma 12 hold for G̃T .

Let Φ be the set of cyclic connected assignments of counters of weight n for G̃T , and let N ◦T denote

the number of close-ended type classes for sequences of length n with final state sn = s0. We claim

that N ◦T ≥ |Φ|. Let η ∈ Φ and, by Lemma 14 applied to G̃T , let ṽ be a sequence of pseudo-states

starting and ending at s0 with transition counts given by η. The sequence of pseudo-states ṽ defines,

via the tagging function ω, a string xn = ω (ṽ), which is of length n by the definitions of ψ and ω. By

Lemma 5(i), the final state of xn is s0, the final pseudo-state of ṽ. In addition, ω (s̃(xn)) = xn and the

last pseudo-state of s̃(xn) is also s0, which implies, by Lemma 5(ii), that s̃(xn) = ṽ. Thus, for every

η ∈ Φ, there exists a string xn with pseudo-state transition matrix Ñ(xn) = η, where by the latter we

mean Ñv,w(xn) = η(v,w) for all (v, w) ∈ ẼT . Now, if η′ ∈ Φ, with η′ = Ñ(yn), and η′ 6= η, then we

must have T ∗(xn) 6= T ∗(yn) since, by Lemma 4, Ñ(xn) is determined by T ∗(xn). Thus, N ◦T ≥ |Φ|, as

claimed. The claim of the lemma now follows, since N ∗T ≥ N ◦T and, by Lemma 12(i), which holds for

G̃T , we have |Φ| = Ω
(
n|ẼT |−|S̃T |

)
.

Proof of Theorem 4: Recall that by Corollary 1, we have NT = NTc
. The upper bound NTc

=

O
(
n|Ec|−|Sc|

)
follows from Lemma 13. The lower bound NTc

= Ω
(
n|Ec|−|Sc|

)
follows from Lemma 15

and Lemma 11, recalling also that NTc
= Θ(N ∗Tc

).
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APPENDIX A

PROOF OF LEMMA 7

We first show that if sn−1(xn) and xn determine sn(xn), then sn(yn) = sn(xn). Notice that sn−1(xn)

and xn determine sn(xn) if and only if tail(sn(xn)) ∈ T . Consider a state s such that tail(s) ∈ T , and

let u = tail(s), a = head(s). By Lemma 1, all state transitions into s are of the form uv → s, v ∈ A∗,

and, by the definition of state selection in trees, the emission of symbol a from a state uv generates a

transition to state s. Hence,

N∗au(xn) =
∑
uv∈ST

n(a)uv (xn) =
∑
uv∈ST

n(a)uv (yn) = N∗au(yn) .

Also, by the flow conservation equations (2) on the transition matrices, we have

N∗au(xn) = Nau∗(x
n) + δau,sn(xn) − δau,s0

N∗au(yn) = Nau∗(y
n) + δau,sn(yn) − δau,s0 .

Since the total number of symbols emitted from au in xn and yn is the same, we have Nau∗(x
n) =

Nau∗(y
n), and therefore δau,sn(xn) = δau,sn(yn), which proves the claim.

As a consequence of the claim above, if sn(xn) 6= sn(yn), we must have sn(xn) = auv with a ∈ A,

u ∈ ST , and v ∈ A+. Notice that au is therefore an internal node of T . Now, by Lemma 1, all state

transitions into a state of the form auw, w ∈ A+, originate from state u and, by the definition of state

selection in trees, the emission of symbol a from a state u generates a transition to a state of the form

auw. Hence,

n(a)u (xn) =
∑

auw∈ST

N∗auw(xn)

=
∑

auw∈ST

[
Nauw∗(x

n) + δauw,sn(xn) − δauw,s0
]
,

and also,

n(a)u (yn) =
∑

auw∈ST

[
Nauw∗(y

n) + δauw,sn(yn) − δauw,s0
]
.

Since n(a)u (yn) = n
(a)
u (xn), and the total number of symbols emitted from auw in xn and yn is the same,

we have, ∑
auw∈ST

δauw,sn(yn) =
∑

auw∈ST

δauw,sn(xn) = 1 .

We conclude that the final state of yn has the form auw. Thus, sn−1(xn) = sn−1(y
n) = u, and also

xn = yn = a, as claimed. �
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APPENDIX B

PROOF OF LEMMA 11

We describe a procedure to transform the graph GT into the graph G̃T and we show that each

intermediate graph in the transformation, G = (V,E), satisfies |E| − |V | = |ET | − |ST |. By Lemma 3

and Lemma 10, ẼT contains all edges (v, w) with v, w of the form (13)–(15), and, by Lemma 1, all

edges (s, t) of ET are either of the form s � tail(t) or tail(t) ≺ s. For each edge (s, t) ∈ ET of the form

s � tail(t), let µ1, . . . , µ` be the longest sequence of consecutive suffixes of t, ending at µ` = t, such that

all these suffixes are pseudo-states (hence, tail(µ1) ∈ I(T )). Notice that, since s � tail(t), tail(t) = µ`−1

and we must have ` > 1. If none of these pseudo-states, other than t itself, are vertices of the graph

under construction, insert the edges (µj−1, µj), 1 < j ≤ `, together with the vertices µj , 1 ≤ j < `.

In addition, since, under these assumptions, µ1 6∈ ST , insert the edges (v1, v2), (v2, v3), . . . , (vk−1, vk),

together with the vertices v2, . . . , vk−1, that comprise a context-dropping sequence from µ1 = v1 to the

first vertex, vk, that already belongs to the graph constructed so far (vk is well defined because some state

must be a prefix of µ1, and all states belong to the initial set of vertices ST ). Finally delete the original

edge (s, t). Clearly, accounting for the number of vertices and edges that were added, and the edge that

was deleted, the quantity |E| − |V | remains unchanged. Otherwise, if some µj other than t is already a

vertex of the graph constructed so far, let µi be the last such vertex in the sequence µ1, . . . , µ`. Suppress

the edge (s, t) and add the edges (µj−1, µj), i < j ≤ `, together with the vertices µj , i < j < `. We

claim that none of these edges could have been added before. Indeed, if i < `− 1, at least one endpoint

of the edge did not belong to the graph. If, instead, i = ` − 1, then a previous insertion of the edge

(µ`−1, t) would have required t to be a pseudo-state in a sequence µ′1, . . . , µ
′
`′ = t′ for some t′ ∈ ST ,

and the vertex associated with t to not belong to the graph, in contradiction with t ∈ ST . Thus, again,

the quantity |E| − |V | is preserved by this transformation.

After having replaced all edges (s, t) of the form s � tail(t), by the definition of S̃T in (5), all pseudo-

states have been added to the set of vertices and, by Lemma 3, all edges (v, w) of G̃T , of the form

v = tail(w) and of the form w = ρ(v) with tail(v) ∈ I(T ), have been added to the set of edges. To

complete the construction of G̃T it remains to add edges (v, ρ(v)) with tail(v) ∈ ST , as well as edges

(v, w) satisfying (14) with v 6= tail(w). We add these edges next, in replacement of edges (s, t) of ET of

the form tail(t) ≺ s. Let (s, t) be one such edge of ET and let b = head(t). If bs ∈ S̃T we replace (s, t)

by an edge (bs, ρ(bs)), which is well defined since t ≺ bs, and satisfies tail(bs) ∈ ST . If, otherwise,

σ̃(
←−
s b) 6= bs, we replace the edge (s, t) by an edge (v, w) = (s, σ̃(

←−
s b)) (where t and w may coincide),
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where we notice that (v, w) satisfies (14) and v 6= tail(w). The replacement of all edges (s, t) of ET

of the form tail(t)≺s, as described, completes the construction of G̃T . Indeed, each edge (v, ρ(v)) with

tail(v) ∈ ST has been inserted in replacement of the edge (s, t) of ET , where s = tail(v) and t = σ(
←−
v ),

which is of the form tail(t) ≺ s and, since v = head(t)s, satisfies bs ∈ S̃T , where b = head(t). Similarly,

each edge (v, w) satisfying (14) with v 6= tail(w) has been inserted in replacement of the edge (s, t)

of ET , where s = v and t = σ(
←−
w ), which is of the form tail(t) ≺ s and satisfies σ̃(

←−
s b) 6= bs, where

b = head(t). Since, clearly, these substitutions do not alter the value of |E|−|V |, the lemma is proved. �

APPENDIX C

PROOF OF LEMMA 12

Before we proceed to the proof of Lemma 12, we review some additional graph-theoretic tools. We

loosely follow [24]. Consider a directed graph G = (V,E). A chain is an alternating sequence of vertices

and edges v1, e1, v2, e2, . . . , vm, em, vm+1 satisfying either ei = (vi, vi+1) or ei = (vi+1, vi). A chain is

closed if v1 = vm+1, it is simple if ei 6= ej for i 6= j, and it is elementary if all vertices are different,

except possibly for v1 and vm+1, which may coincide. The number of edges in a chain is called the

length of the chain. A cycle is a closed simple chain. Notice that a path corresponds to a chain where

every edge is traversed in the forward direction, i.e., ei = (vi, vi+1) for all i = 1, . . . ,m (for a path the

alternation of vertices between edges is unnecessary for disambiguation and, thereby, omitted). Similarly,

a circuit is a cycle where every edge is traversed in the forward direction.

We say that a graph is connected if for any two vertices, u,w, there exists a chain that joins u with

w, i.e., a chain of the form u = v1, e1, v2, e2, . . . , vm, em, vm+1 = w. In this setting, a tree is a graph

that is connected and has no cycles.9 A spanning tree of G = (V,E) is a tree, G′ = (V,E′), with the

same set of vertices as G and with E′ ⊆ E. A sink of a tree T is a vertex u ∈ T such that there exists

a path from v to u for all v ∈ T (a tree can have at most one sink; if we reverse the direction of all the

tree edges, a sink becomes a root and vice versa).

9For conciseness, and with a slight abuse of terminology, so far we had used the term ‘tree’ as shorthand for context tree,

which includes a tree as defined here, with some additional properties such as the existence of a root, and the labeling of the

branches. We will continue to use the term ‘tree’ in these two senses, with the meaning being clearly determined by the context

and the notation. Also, notice that since the direction of an edge is not relevant for the construction of a chain or a cycle, the

notions of connected graph and tree coincide with the usual definitions for non-directed graphs. Our derivations, however, will

still be based on directed graphs.
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We define a function ζ mapping each chain γ = v1, e1, . . . , vr, er, vr+1 in G to a vector ζ(γ) ∈ Z|E|,

indexed with elements from E, and defined by

ζ(γ)e = |{i = 1, . . . , r : e = (vi, vi+1)}| − |{i = 1, . . . , r : e = (vi+1, vi)}| .

We denote by R the set of real numbers. The subspace of R|E| spanned by {ζ(γ) : γ is a cycle } is

called the cycle space of G and it is known to have dimension |E| − |V | + 1 for strongly connected

graphs [24]. A circuit basis for the cycle space is a basis formed by vectors ζ(ci) where every ci is an

elementary circuit.

Proposition 1 ([24]): Every strongly connected graph has a circuit basis.

Notice that if ζ(ci) is a vector in a circuit basis for G, then ζ(ci) defines a cyclic assignment of counters

for G.

Proof of Lemma 12: Let c′ be a circuit of G of weight one. Exactly one edge of c′ has weight one,

and the rest, if any, have weight zero. Hence, c′ must be elementary, since otherwise it could be split

into two circuits, one of which would be of weight zero, in contradiction with the assumptions of the

lemma. Since ζ(c′) belongs to the cycle space of G, we can assume, without loss of generality, that it is

one of the elements in a circuit basis, C = {ζ(c1), . . . , ζ(c|E|−|V |+1)}, of G, with, say c1 = c′.

Consider arbitrary vertices u, v ∈ V . Since G is strongly connected, there exists a circuit γ that passes

through u and v. Now, since ζ(γ) belongs to the cycle space of G, we can expand it in terms of the

basis C as ζ(γ) =
∑|E|−|V |+1

i=1 αiζ(ci), with αi ∈ R. Thus, the set of edges of γ is a subset of the

union of the set of edges of all circuits ci. Let η =
∑|E|−|V |+1

i=1 kiζ(ci) be any linear combination with

coefficients ki ∈ N+. Clearly, η defines a cyclic assignment of counters for G, since each basis element

ζ(ci) does. Moreover, since from the set of all edges in the circuits ci we can construct a circuit γ that

passes through u and v for any pair of vertices u, v, the cyclic assignment η is also connected. Now, C is

a basis of the cycle space of G, so different linear combinations must generate different cyclic connected

assignments of counters for G. Thus, since ψ(η) =
∑|E|−|V |+1

i=1 ψ(ci)ki, there are at least as many cyclic

connected assignments of counters of weight no greater than n, as compositions of ` = bn/maxi ψ(ci)c

of the form

` =

|E|−|V |+1∑
i=1

ki . (23)

Each assignment η obtained in this way can be completed to an assignment η′ of weight n by replacing

k1 with k1 + n− ψ(η), since c1 is a circuit of weight one. Specifically, if η =
∑

i kiζ(ci), we take

η′ = (k1 + n− ψ(η))ζ(c1) +
∑
i>1

kiζ(ci) .

33

Downloaded from www.VTUplanet.com



This way, different linear combinations with coefficients ki satisfying (23) generate different connected

assignments of counters of weight exactly n. Thus, we have at least as many cyclic connected assignments

of counters of weight n, as compositions of ` in |E| − |V | + 1 positive summands. The proof of (i) is

completed by recalling that the number of such compositions is
(

`−1
|E|−|V |

)
, which, since |E| − |V | is a

constant, is Ω
(
`|E|−|V |

)
, and also Ω

(
n|E|−|V |

)
, since ` = Θ(n).

We now turn to (ii). Let γ = e1, e2, . . . , er be an elementary circuit of weight one in G, with ψ(er) = 1,

and ψ(ei) = 0 for i = 1, . . . , r − 1. We construct a spanning tree, T, of G, as follows:

1. Set T to the set of edges {e1, . . . , er−1}, with their r distinct adjacent vertices.

2. If there are vertices of G that are not in T, choose an edge e such that the destination of e is in

T, but the source is not in T. Such an edge must exist, since G is strongly connected. Add e to T.

3. Repeat Step 2 until all vertices in G are also in T.

It can readily be verified that T is a spanning tree of G with a sink at the source of er, and with a set

of edges ET ⊇ {e1, . . . , er−1}. We will show that the values of ηe for e ∈ ET ∪ {er} can be computed

from the remaining values, which we regard as given. Let Vγ be the set of vertices of γ, and for v ∈ V ,

let d(v) be the distance in T from v to Vγ , i.e., the length of the unique path in T from v to a vertex

in Vγ . For each v ∈ V \ Vγ we show how to compute ηev for the unique edge ev, with source v, which

belongs to ET. Take all the vertices v ∈ V \ Vγ in decreasing order of d(v). For each edge e = (u, v)

with destination v, either e 6∈ ET, or d(u) = d(v) + 1. In any case, the value ηe is known, either because

it is given, or, since we take vertices in decreasing order of d(v), because it has already been computed.

Since the value ηe is known for all edges e 6= ev with source v, we can compute ηev from the flow

conservation equation
∑

u:e=(u,v) ηe =
∑

w:e=(v,w) ηe. After finishing this process, we know ηe for all

edges e except for those in γ, the unique circuit of ET ∪ {er}. Since ψ(e1) = . . . ψ(er−1) = 0, we can

now compute ηer as n −
∑

e∈E\{e1,...,er} ηeψ(e) and continue calculating ηe for e=e1, . . . , er−1, using

the flow conservation equations.
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Eds. Tampere: Tampere University of Technology, Tampere International Center for Signal Processing, 2008, pp. 93–116.

[18] P. Whittle, “Some distribution and moment formulae for the Markov chain,” J. Roy. Statist. Soc. Ser. B, vol. 17, no. 3, pp.

235–242, 1955.

[19] P. Billingsley, “Statistical methods in Markov chains,” Annals Math. Stat., vol. 32, pp. 12–40, 1961.

[20] L. Goodman, “Exact probabilities and asymptotic relationships for some statistics from m-th order Markov chains,” Annals

of Mathematical Statistics, vol. 29, pp. 476–490, 1958.

[21] J. Rissanen and G. G. Langdon, “Universal modeling and coding,” IEEE Trans. Inform. Theory, vol. IT-27, pp. 12–23,

Jan. 1981.

[22] T. M. Cover, “Enumerative source encoding,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 73–77, Jan. 1973.

[23] S. Even, Graph Algorithms. Potomac, Maryland: Computer Science Press, 1979.

[24] C. Berge, Graphs. Amsterdam: North-Holland, 1985.

35

Downloaded from www.VTUplanet.com


