
Online Result Cache Invalidation for Real-time Web Search

Xiao Bai
Yahoo! Research
Barcelona, Spain

xbai@yahoo-inc.com

Flavio P. Junqueira
Yahoo! Research
Barcelona, Spain

fpj@yahoo-inc.com

ABSTRACT
Caches of results are critical components of modern Web
search engines, since they enable lower response time to fre-
quent queries and reduce the load to the search engine back-
end. Results in long-lived cache entries may become stale,
however, as search engines continuously update their index
to incorporate changes to the Web. Consequently, it is im-
portant to provide mechanisms that control the degree of
staleness of cached results, ideally enabling the search en-
gine to always return fresh results.

In this paper, we present a new mechanism that identifies
and invalidates query results that have become stale in the
cache online. The basic idea is to evaluate at query time
and against recent changes if cache hits have had their re-
sults have changed. For enhancing invalidation efficiency,
the generation time of cached queries and their chronolog-
ical order with respect to the latest index update are used
to early prune unaffected queries. We evaluate the proposed
approach using documents that change over time and query
logs of the Yahoo! search engine. We show that the pro-
posed approach ensures good query results (50% fewer stale
results) and high invalidation accuracy (90% fewer unnec-
essary invalidations) compared to a baseline approach that
makes invalidation decisions off-line. More importantly, the
proposed approach induces less processing overhead, ensur-
ing an average throughput 73% higher than that of the base-
line approach.

1. INTRODUCTION
Large-scale Web search engines rely on one or more

cache elements of previously computed results to serve user
queries. Frequent queries issued to a search engine are di-
rectly served from its result cache, reducing both the aver-
age query response latency and the overall workload of the
search backend. The cache hit ratio, as shown in the litera-
ture, reaches around 50% [2], depending on cache strategies,
and even the classical cache strategy ensures a hit ratio of

.

30% [17]. As such, result caching has been used as an im-
portant optimization step in modern Web search engines.

An underlying assumption of using cache in search en-
gines is that the same query, once repeated, always results
in the same result. In practice, however, this is not the case.
Modern Web search engines update their index periodically
to incorporate changes to the Web. As a result, the search
result of a query may change accordingly as the corpus of a
search engine evolves.

Search engines can update their index in batch mode, in-
cremental mode, or real-time mode, according to the fresh-
ness requirements for the search results. In batch mode,
when documents are added, modified, or deleted, the search
engine produces a new version of the index and rolls out this
new version, superseding the previous one. The interval to
produce a new version is often related to the size of the doc-
ument collection, and typically varies from hours to days.
Incremental mode is often used when it is desirable to bring
down the time to introduce documents into the index to min-
utes or hours. With incremental indexing, we merge changes
to the live index periodically, and each subsequent batch of
documents is an increment to the previous index. When a
search node finishes processing a new increment, it is used
to produce a small index. This small index is then merged
back into the live index. With real-time mode, a search
node receives a continuous stream of individual documents
and introduces them into the index in an online fashion to
reduce the latency between fetching a document and making
it searchable. The main difference between incremental and
real-time modes according to our terminology is whether we
merge the index on a per document basis.

It has been recently argued that, if the index is updated
incrementally in a search engine using large result cache,
the freshness of cached results becomes an issue since stale
results potentially hurt user satisfaction [5, 8]. This issue
might become even more severe for applications that re-
quire real-time index updates. Specifically, for applications
like news search and social media search, new content (e.g.,
news articles and tweets) are generated continuously, result-
ing in frequent change of query results. Moreover, in such
applications, users are likely to issue same queries related
to emerging events within short periods, increasing the hit
ratio of the cache and thus the risk of serving stale results
to users.

To highly benefit from real-time index updates, result
caches are ideally managed in such a way that only the
queries whose results do not change with respect to index
update are served from the cache, and the queries whose

Downloaded from www.VTUplanet.com

results have changed are invalidated from the cache and re-
evaluated against the updated index.

A simple approach to invalidate cached queries is to rely
on their time-to-live in the cache [8]. A result is consid-
ered stale only if its time-to-live has expired. This approach
makes its invalidation decisions independently of index up-
date and results in a large number of stale results served to
users. Alternatively, another approach, called CIP (Cache
Invalidation Predictor) [5], invalidates cached queries when-
ever there are changes to the index. CIP is document-driven.
It first generates for each new (or modified) document a syn-
opsis, composed of a list of terms it contains as well as their
TF-IDF (or BM25) scores. It then computes the relevance
of this document to every query in the cache. A query is
invalidated if its relevance to the new (or modified) docu-
ment is larger than the least relevant document in its cached
result. This approach is effective to ensure the freshness of
the served results but is impractical to implement since each
index update requires intensive computation that is linear
to the cache size. Moreover, the high fraction of unnecessary
invalidations increases the workload on the search engine by
processing redundant queries against its index.

Contributions. In this paper, we propose online cache
invalidation, a practical solution to invalidate cached queries
with respect to real-time index update. More concretely,

• We propose a query-driven cache invalidation frame-
work. An invalidation decision occurs only when there
is a cache hit, which is key to its efficiency since no
redundant invalidations occur for queries that are not
issued any more. Basically, recent changes occurred in
the index are consistently maintained in a subindex to
evaluate the queries that lead to cache hits. A query
is invalidated if its result from the subindex is more
relevant than its cached result.

• We propose a pre-judgment mechanism for early prun-
ing unaffected queries from invalidation, which limits
the negative impact of online cache invalidation on
query response time. To this end, we maintain the
generation time of cached queries and the update time
of the posting lists in the index. Only queries that have
been inserted in the cache for a long time and whose
related inverted lists have changed after their insertion
to the cache are evaluated against subindex.

• We evaluate the online invalidation approach in a re-
alistic setting. Different from the evaluation of CIP
[5] where a static cache was used against a synthetic
workload, we apply a dynamic cache over real docu-
ment and query streams submitted to the Yahoo! News
search engine during several weeks. The experimental
evaluation conveys the efficiency of the online invalida-
tion approach. Despite its overhead on search latency
upon cache hits and memory usage, it improves the
overall throughput by 73% and reduces the redundant
invalidations and the stale results by 90% and 50%
respectively with well-selected parameters.

Roadmap. The remainder of the paper is organized as
follows. Section 2 details the proposed online cache invali-
dation approach. Section 3 discusses the experimental setup
and reports the results. Section 4 surveys related work and
Section 5 concludes the work.

Web Crawler Document
collection

Crawling node

Indexer

Query
processor

Index

Search node

Broker node

Online
Invalidator

Query
broker

Result
cache

Figure 1: Search system model.

2. ONLINE CACHE INVALIDATION

2.1 System model
Fig. 1 illustrates the search systems that we assume in

this work. Generally, a crawler continuously updates the
document collection of the search engine by discovering and
fetching new and modified documents from the Web, and
deleting documents that are no longer available. A search
node is in charge of indexing a subset of documents from
the entire document collection, i.e., document-based parti-
tion of index, and processing queries over the local index
it possesses. When a user issues a query, the query broker
inside a broker node first checks if the query result is avail-
able in the cache. If it is the case, the result is immediately
returned to the user. Otherwise, the query broker forwards
the query to the corresponding search nodes, merges the lo-
cal results from those nodes to form the final result, and add
the query and its final result to the cache. The use of cache
enables a short average latency for query processing and re-
duce workload imposed on the backend query processors.

The index, however, evolves in real time as new documents
are fetched and old documents are modified or deleted.
Cached results consequently become stale, since they no
longer reflect the most recent document collection of the
search engine. More specifically, a query result is stale if its
top-k relevant documents after an index update are differ-
ent from those before the index update. As a consequence,
to keep the freshness of results served from the cache, the
search engine needs to effectively and efficiently detect the
stale queries and invalidate them from the cache.

In this work, we use a component, called online inval-
idator, to perform invalidations. The online invalidator is
inside the broker node. This design choice is the same as
that for CIP [5], and we also assume that indexer within
each search node is able to communicate with the online
invalidator about the latest changes in the index. With on-
line invalidator, an invalidation occurs upon a cache hit and
cache hits considered stale at query time are forwarded to
the query processors. We detail in the following the mech-
anisms of online invalidator to invalidate stale query results
from the cache.

2.2 Cache invalidator architecture
In this work, a query result is considered stale if its top-

k relevant documents differ from those in the cache in ei-
ther document IDs or in their ranking order [1]. In fact,
document additions, modifications or deletions may make a
cached result stale:

• When a document is added, if it is more relevant than

Downloaded from www.VTUplanet.com

the kth document in a query’s top-k result, it should
enter the result of that query.

• When a document is modified, if it contains more
terms after the modification, it may become relevant to
a query for which the terms no overlap with the terms
of the document. If a document contains fewer terms
after the modification, it may become not relevant to
a query for which it was previously in the top-k re-
sults. In fact, modifications also change the frequency
of terms in a document and consequently the ranking
of the document even if it remains in the top-k results
of some queries.

• When a document is deleted, if it is in the top-k result
of a query, it needs to be replaced by other relevant
document in the result of that query.

We assume a basic scoring function that solely relies on
content-based features like TF-IDF or BM25, to rank the
top-k result of each query. A document is relevant to a
query only if it contains all the query terms. This is to keep
our design and experiments comparable with those in [5]. To
efficiently detect the staleness caused by the above reasons
and invalidate queries to keep the freshness of results, the
online invalidator maintains four data structures (Fig. 2):

• The first data structure (1©) maintains, for each
deleted document, its document ID d and the times-
tamp T (d) when it is deleted, in the form of pair
〈d, T (d)〉. This is necessary to make invalidation deci-
sions upon document deletion.

• The second data structure (2©) is a subindex of docu-
ments that are added to or modified in the main search
index in the search nodes. This index is used to esti-
mate if the top-k result of a query has changed due to
the addition or modification of some documents in the
system and will be detailed in Section 2.4.

• The third data structure (3©) maintains, for each term
t in the subindex, the timestamp T (t) corresponding to
the latest update of its posting list in the main search
index, in the form of pair 〈t, T (t)〉. This information is
used to eliminate unnecessary detection of stale results
over the subindex.

• The last data structure (4©) maintains, for each added
or modified document, its document ID d and the lat-
est timestamp T (d) when it is added or modified, in
the form of pair 〈d, T (d)〉. This information is used to
control the size of the subindex.

Fig. 2 illustrates the architecture of the online invalida-
tor. The online invalidation is made upon cache hit. For
each cache hit, a triple 〈q, T (q), R(q)〉 is transmitted to the
online invalidator. T (q) indicates when query q is added to
the cache and R(q) is the top-k result of q. This triple is
first passed to the pre-judgment component that estimates
the likelihood of a hit result to be fresh, relying on the age of
this triple in the cache and the update time of the subindex.
If the hit result is likely to be stale, the triple is passed to
the final judgment component that evaluates the impact of
index change on R(q) through the presence of all the top-k
documents and the appearance of new relevant documents.
A query is forwarded to the backend query processors only if
it is considered stale after the final judgment. The invalida-
tion process is detailed in Section 2.3. The synopsis of all the
added and modified documents are transmitted to the query
broker, but it is impractical and unnecessary to keep all of

t1 T(t1)

t2 T(t2)

... ...

3

Pre-judgment

d4 T(d4)

d5 T(d5)

... ...

1

t2t1

d1 S(d1)

d2 S(d2)

...

d2 S(d2)

d3 S(d3)

...

...

2

Final judgment

d1 T(d1)

d2 T(d2)

...

4

Subindex management

Indexer

Online invalidator

Stale

Likely

stale

Likely fresh

Query

processor

Result

cache

Hit

Query

Result Fresh

Result

Document synopsis

Miss

Figure 2: Online cache invalidation architecture.

them in the subindex. Therefore, only a limited number of
documents are maintained in the subindex by the subindex
management component as we will see in Section 2.4.

2.3 Invalidation strategy
As seen in Fig. 2, the online cache invalidation is ac-

complished in two steps. The pre-judgment makes a pre-
selection of queries and only passes the queries whose results
in the cache are likely to be stale to the final judgment based
on the following two observations:

• The top-k results of a query are likely to remain the
same if the query is resubmitted within short time pe-
riods, denoted as δT .

• The top-k results of a query remains the same if not
all the posting lists corresponding to the query terms
have been updated since its last cache hit.

Algorithm 1 depicts the online invalidation process with
its pseudo-code. In the pre-judgment, when there is a hit on
query q at time Ti(q), if Ti(q)−T (q) < δT , the cached set of
top-k results R(q), obtained at T (q), is considered fresh and
returned to user. This operation has O(1) complexity. Oth-
erwise, for each query term, the update time of its posting
list T (tj) (maintained in 3©) is compared to Ti(q). If there
exists a term tj in q, T (tj) < T (q), R(q) has certainly not
changed. This is because a document can impact a query
result only if it contains all the query terms, resulting in
T (tj) > T (q) for all tj in q. Otherwise, the final judgment
is performed. This operation has O(|q|) complexity, where
|q| is the number of terms q contains.

Note that we may return stale results to users with the
first pre-judgment that compares the query time to its time
in the cache. Returning stale results in this case is a conse-
quence of the decision being independent of the index. Any
change to the index during this time interval may change the
set of results. The second pre-judgment, however, is accu-
rate in the sense that only the cached results that are indeed
fresh are returned to users. This argument comes from the
observation that a query result does not change if not all
posting lists affecting the query have changed.

In the final judgment, the invalidator first examines if the
set R(q) has changed due to the deletion of some documents
it contains. In this step, we check if each document in R(q)
is in the list of deleted documents (1©). If there is such a
document, and it has been deleted after R(q) is computed
(i.e., T (d) ≥ T (q)), R(q) is invalidated from the cache and
q is forwarded to the backend query processors as a cache
miss. Otherwise, query q is processed against the subindex
using the same ranking function as the query processors in
the search nodes to obtain the top-k’ result in the subindex

Downloaded from www.VTUplanet.com

Algorithm 1 Online cache invalidation process

Input: query q issued at Ti(q) &
its cached top-k result R(q) computed at T (q)

Output: Invalidation decision on q

Pre-judgment:
if Ti(q)− T (q) < δT then

return invalidation ← false
for each t in q do

if T (t) < T (q) then
return invalidation ← false

Final judgment:
for each d in R(q) do

if d is deleted & T (d) ≥ T (q) then
return invalidation ← true

process q against subindex and obtain top-k’ result R′(q)
for each d′ in R′(q) do

if d′ /∈ R(q) & Score(q, d′) > Score(q, dk) then
return invalidation ← true

return invalidation ← false

R′(q). If there is a document d′ in R′(q) that is not in R(q)
and its relevance score to q (Score(q, d′)) is larger than that
of the kth document in R(q) (Score(q, dk)), d′ (or another
document that is more relevant to q than d′) should be in-
cluded in the top-k results of q instead of the original kth

document dk. R(q) is thus considered stale and invalidated
from the cache. Then query q is forwarded to the query
processors.

The invalidation due to document deletion in the final
judgment is accurate and can be achieved in O(k).The query
processing using the subindex in the worst case is linear
on the total length of the query related posting lists, i.e.,
O(|q| × L), where L is the maximum length of the posting
lists. The comparison of R′(q) and R(q) requires at most k2

operations. The query processing on the subindex thus dom-
inates the time required for making invalidation. However,
the invalidation time can be controlled by limiting the num-
ber of documents maintained in the subindex. Moreover, as
we show in Section 3.3, the lightweight pre-judgment signifi-
cantly improves search performance by reducing the number
of cache hits that require final judgment and thus the query
response latency.

2.4 Subindex management
We describe in this section how we build and maintain the

subindex. This is a process running in the backend, indepen-
dent of query processing. The subindex is built in the same
way as the main search index and is also updated in real
time when the online invalidator receives a document syn-
opsis from the indexer (Fig. 2). The synopsis of a document
is generated as in the CIP work [5] and it consists of pairs of
the form 〈t, S(d)〉, where t is a term in the document d and
S(d) is the relevance score of d for t. Since we focus on basic
ranking functions (e.g. TF-IDF and BM25) to compute the
query results, S(d) is also a TF-IDF or BM25 score.

In the subindex, for each term, an inverted posting list is
maintained. Each posting in the list of term t corresponds
to a document that contains t and its relevance score to t
(TF-IDF or BM25). The postings are ranked in descending
order of relevance scores. An arriving synopsis can be easily
inserted to the relevant posting lists and ranked accordingly
using the same mechanisms of the indexer. If a received syn-
opsis corresponds to a document deletion, the document is

0

0.2

0.4

0.6

0.8

1.0

0 24 48 72 96 120 144 168

Fr
ac

tio
n

of
 in

va
lid

at
io

ns

Delay between document addition and cache invalidation (Hours)

(a) Distribution of cache invalidation delay.

kentucky derby race time

kentucky derby post time

2010 kentucky derby odd

derby odd

kentucky derby

20.5 21.0 21.5 22.0 22.5

Hours (since the start)

(b) Example of cache invalidation delay.

Figure 3: Rationale behind limiting subindex size.

inserted to the list of deleted documents with the timestamp
when it is deleted (1©). The update time of the correspond-
ing posting lists are updated with this timestamp (3©). If
a received synopsis corresponds to a document addition or
modification, the timestamp when the operation occurs is
updated for each term appearing in the document (3©).

The subindex cannot grow without bounds. Documents
that are less likely to have impact on the results of future
queries should be evicted from the subindex to keep its size
moderate. One natural choice here is to fix the size of the
subindex by keeping only the documents that are recently
added or modified. Intuitively, if a document has been added
or modified a long time ago, it is likely that the queries
that include this document in their top-k results have been
processed against the index, and thus have fresh cached re-
sults. Fig. 3 illustrates the intuition underlying our design
choice. Fig. 3(a) depicts the distribution of necessary time
for a query to be invalidated from the cache after a rele-
vant document is added to the search index. (The setup
of this experiment is detailed in Section 3.1.). We observe
that more than 80% of queries can be timely invalidated if
each document is maintained in the subindex for 24 hours.
Therefore, we only keep in the subindex the S document
that are newly added or modified.

To make the eviction of documents from the subindex ef-
ficient, when a document is added to the index, it is added
to the list of added and modified documents with the cor-
responding timestamp (4©). When a document is modified,
its timestamp in the list is updated. When a document is
deleted, it is removed from the list. This list is kept sorted
in ascending order of timestamps. Once the size of the
subindex becomes larger than the pre-defined size S after
an insertion, the document in the head of the list is removed
from subindex. This operation does not affect the update
time of posting lists (3©) and the latter are only updated
when the main search index changes.

Limiting the size of subindex may lead to stale results.
Consider the example in Fig. 3(b), where a document is
added to the search index in the 21st hour of the experiment
(vertical line) and each point in a horizontal line represents
the occurrence time of a query. The point pointed to by

Downloaded from www.VTUplanet.com

10
0

10
1

10
2

10
3

10
4

10
5

0 24 48 72 96 120 144 168

N
u
m

b
e
r

o
f
o
p
e
ra

ti
o
n
s

Hours

Addition
Modification
Deletion

Figure 4: Document dynamics.

arrow on a horizontal line (i.e., the first point on the right
of the vertical line) shows the time when a query is inval-
idated due to the addition of this document. We observe
that more frequent queries require less time to incorporate
a new document into its result set. As a result, if a query
is rarely issued, when a document that impacts its result is
removed before a new query occurrence, the cache invalida-
tor is unable to realize the change to the main search index.
A solution around this problem is to use a TTL-based in-
validation [8] prior to our online invalidation. We discuss
further the impact of the size of the subindex in Section 3.2.

3. EVALUATION
We report in this section the performance of the online

cache invalidation with respect to accuracy, efficiency, and
its overall impact on the search engine. Section 3.1 details
the setup of our experiments. Section 3.2 and Section 3.3
qualitatively and quantitatively evaluate the online cache in-
validator through comparison with the state-of-the-art CIP
approach [5]. In the experiments, we implement CIP with
its best-case setting, i.e., entire synopsis (η = 1) and score
thresholding (1s = true).

3.1 Experimental setup
Dataset. In the experiments, we use a sample of the doc-

ument history and query logs from the Yahoo! News search
engine obtained in May 2010. We used the documents sam-
pled from the first 3 weeks of this period to build the search
engine index. This collection contains roughly 1.4M unique
documents. The documents and queries sampled from the
last week of this period are used to emulate the update of
index and the arrival of queries.

In the document set, there are 488,441 (97.1%) additions,
13,562 (2.7%) modifications and 881 (0.2%) deletions. The
amount of additions dominates the changes to the collection.
Fig. 4 depicts the arrival rate of document changes during
the experiment. We observe that the arrival rate of doc-
ument additions remains relatively stable and occasionally
presents spikes due to emerging events. Document modifica-
tion mainly occurs in the first two days, following a weekly
recurring pattern that we do not show in this figure. This is
due to the periodically re-crawl of existing pages in the in-
dex. Document deletion rarely happens and they are spread
over time.

The queries we use in the experiments is a sample of
queries searching for news articles extracted from the query
logs of the Yahoo! search engine. The resulted query set con-

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

F
ra

c
ti
o

n
 o

f
q

u
e

ri
e

s

Query frequency

(a) Query frequency distribution.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

0 24 48 72 96 120 144 168

N
u

m
b

e
r

o
f

q
u

e
ri
e

s
Hours

(b) Query dynamics.

Figure 5: Query characteristics.

tains 113, 943 queries, out of which 34, 121 are unique and
their frequency follows a power-law distribution (Fig. 5(a)).
Fig. 5(b) illustrates the arrival rate of these queries in the
search engine. We observe that the arrival of queries fol-
lows a periodic pattern and the peak area corresponds to
the daytime of each evaluation day.

Setup. We build the search system on top of a propri-
etary platform for vertical search developed in Yahoo!. Two
servers with Quad-core 2.4GHz CPU, 48G RAM and four
1.8T disks are used and they are inter-connected through a
local area network of 1Gbp/s speed. One server acts as the
search node: it hosts the main search index and processes
the queries. The index is created and updated in real time
so that any change to the document collection is reflected
into the index in an online fashion. The other server acts as
the query broker node: it is in charge of managing the cache,
making invalidation decisions, and forwarding queries to the
search node in case of cache misses. The subindex used by
the online invalidator is also maintained in the query broker
node.

3.2 Qualitative performance
Methodology and metrics. We examine the cache inval-

idation strategies over a dynamic cache of unlimited size in a
much finer grained manner than that used in the evaluation
of CIP [5]. Neither admission nor eviction is necessary and
a query is removed from the cache only upon invalidation.
Instead of generating a new index periodically and evaluat-
ing the same queries repeatedly against different versions of
the index, we preserve the full arrival history of documents
and queries, and replay them in parallel according to their
original timestamps. Note that we only preserve the relative

Downloaded from www.VTUplanet.com

Table 1: Impact of results retrieved from subindex.

Online
CIP top-1 top-5 top-10

Stale ratio 0.0055 0.0089 0.0025 0.0003
False positive ratio 0.0356 0.0048 0.0048 0.0048

order of arrival. The documents and queries are processed
at the maximum speed the system admits.

The index is updated in real time once a document is
added, modified, or deleted. Once a search engine returns
results for a query, we process the same query against the
main search index to obtain the ground truth (its ideal set
of results).

With our online cache invalidation strategy, we execute
an invalidation procedure upon every hit. This decision is
accurate if a stale query result is correctly invalidated or a
fresh query result is returned to the user without forwarding
it to the backend query processors (i.e., the search node).
A decision may be false positive, indicating that a query
is invalidated while its result in the cache is still fresh. A
decision may also be false negative, indicating that a query
result is considered fresh but it has changed due to updates
to the index. A false negative leads to a stale query and
hurts result quality. A false positive has no impact on result
quality, but it requires forwarding the query to the backend
and processing it against the search index, which induces a
higher load against the backend nodes. Consequently, we
target lower rates of both false negatives and false positives
with the invalidation process. After we process each query
q, we evaluate whether its top-10 results are stale or the
invalidation is a false positive by comparing this result set
against the ideal top-10 obtained from the main search in-
dex. The stale ratio and false positive ratio are measured
after each query as the cumulative fraction of stale queries
and the cumulative redundantly processed queries over all
the queries that have been answered.

Impact of subindex size. We start by evaluating the
results obtained with different sizes of the subindex in the
online invalidator to quantify its impact. In this experiment,
we do not use pre-judgment in the online cache invalidation
process to assess the stale ratio due to the final judgment
step alone.

In the final judgment step, we first use different values of
k′ to obtain top-k′ results from the subindex to make invali-
dation decisions. Table 1 compares the quality of the online
invalidation through the stale ratio and the false positive
ratio obtained at the end of the experiment. We observe
that as we increase the number of results retrieved from
the subindex, the number of stale results served to users
drops, which is a consequence of the following. For a given
k′ (≤ k), when all the top-k′ results from the subindex are
present in the cached top-k results, then the cached top-k
result set is considered fresh. The cached result set is not
fresh in the case, for example, of a new document ranked
in the k′ + 1 position of the subindex being more relevant
than the kth result in the cache. A larger value of k′ implies
that fewer relevant documents are omitted by the online in-
validator. Increasing the number of retrieved results from
the subindex, however, has negligible impact on the false
positive ratio. In the following experiments, we retrieve the
top-10 results from subindex in the final judgment step to
guarantee the best result quality.

10
-6

10
-5

10
-4

10
-3

10
-2

0 3⋅10
4

6⋅10
4

9⋅10
4

1.2⋅10
5

S
ta

le
 r

a
ti
o

Number of queries

CIP
Online, S=25K
Online, S=50K
Online, S=100K
Online, S=200K
Online, S=∞

(a) Stale ratio.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 3⋅10
4

6⋅10
4

9⋅10
4

1.2⋅10
5

F
a
ls

e
 p

o
s
it
iv

e
 r

a
ti
o

Number of queries

CIP
Online, S=25K
Online, S=50K
Online, S=100K
Online, S=200K
Online, S=∞

(b) False positive ratio.

Figure 6: Impact of subindex size on invalidation.

Fig. 6 illustrates the quality of the online invalidation us-
ing stale ratio and false positive ratio. The values for each
metric are displayed with respect to the number of queries
that have been returned. The size of subindex is denoted by
S; S = ∞ corresponds to the ideal case where all the up-
dates on the search index are maintained in the subindex.

Generally, fewer results are stale if the online invalidation
is used (Fig. 6(a)). A small size of the subindex leads to a
high stale ratio as we have discussed in Section 2.4. However,
even if only 25K documents are maintained in the subindex,
accounting for 5% of all the index updates, the stale ratio
is still lower than CIP at the early stage of the experiment
and is very similar toward the end. Note that the stale ratio
is not zero for S = ∞, since invalidations are based upon
the existence of more relevant documents in the subindex,
ignoring order. Further comparison between the top-k in the
cache and that in the subindex can ensure a stale ratio of
zero, but imposes additional computation and the size of the
subindex cannot be unlimited. Note that compared to CIP,
our online cache invalidation strategy significantly decreases
the false positive ratio (Fig. 6(b)). Only 0.5% of queries are
processed redundantly with the online cache invalidation,
where it increases to 3.6% with CIP. As we see in Section
3.3, this is key to efficiency.

As we have seen, the size of subindex has almost no impact
on the false positive ratio, and the subindex of 100K doc-
uments guarantees a fairly good stale ratio. Consequently,
we focus on a subindex of 100K documents for the following
experiments.

Impact of pre-judgment. The pre-judgment of the on-
line cache invalidation is used to reduce the number of cache
hits that require query processing over the subindex. We

Downloaded from www.VTUplanet.com

10
-6

10
-5

10
-4

10
-3

10
-2

0 3⋅10
4

6⋅10
4

9⋅10
4

1.2⋅10
5

S
ta

le
 r

a
ti
o

Number of queries

CIP
Online, δT=0, 1u=false
Online, δT=0, 1u=true
Online, δT=30s, 1u=false
Online, δT=30s, 1u=true
Online, δT=60s, 1u=false
Online, δT=60s, 1u=true
Online, δT=120s, 1u=false
Online, δT=120s, 1u=true

(a) Stale ratio.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 3⋅10
4

6⋅10
4

9⋅10
4

1.2⋅10
5

F
a
ls

e
 p

o
s
it
iv

e
 r

a
ti
o

Number of queries

CIP
Online, δT=0, 1u=false
Online, δT=0, 1u=true
Online, δT=30s, 1u=false
Online, δT=30s, 1u=true
Online, δT=60s, 1u=false
Online, δT=60s, 1u=true
Online, δT=120s, 1u=false
Online, δT=120s, 1u=true

(b) False positive ratio.

Figure 7: Impact of pre-judgment on invalidation.

first evaluate its impact on search result quality and invali-
dation accuracy in this section and then its impact on search
efficiency in Section 3.3.

As we have explained in Section 2.3, the pre-judgment
comprises two mechanisms. The first mechanism makes the
judgment according to the recency of a query. A cached
result is returned to the user if it is issued within the time
interval δT . The second mechanism makes the judgment ac-
cording to the update time of the posting lists corresponding
to query terms, for a given query. Fig. 7 compares the per-
formance of the online cache invalidation with each of the
mechanisms as well as their combinations. We use 1u to in-
dicate if the second mechanism of pre-judgment is applied.
δT = 0 means the first mechanism is not applied. Otherwise,
the value of δT is measured in seconds.

We observe from Fig. 7(a) that using the first mechanism
increases the stale ratio. A larger value of δT gives us a
higher stale ratio. The differences are only significant at the
early stage of the experiments, though, and become negli-
gible as more queries are processed. We also observe from
Fig. 7(a) that the second mechanism has no impact on the
stale ratio. This confirms our analysis in Section 2.3 that it
ensures only skipping results that indeed have not changed
from final judgment.

Fig. 7(b) depicts the evolutions of false positive ratio with
different pre-judgment mechanisms. Using larger δT and
setting 1u = true reduce the false positive ratio as more
queries are eliminated from final judgment. This ensures
the false positive ratio is always lower than with CIP.

In the above experiments, we assume that once a query
result is added to the cache, it is only removed upon an
invalidation. Considering that the CIP approach can be

0

2.0⋅10
-4

4.0⋅10
-4

6.0⋅10
-4

8.0⋅10
-4

1.0⋅10
-3

1.2⋅10
-3

1.4⋅10
-3

1.6⋅10
-3

0 0.02 0.04 0.06 0.08 0.10 0.12

S
ta

le
 r

a
ti
o

False positive ratio

TTL=6h

TTL=12h

TTL=18h

TTL=24h

CIP
Online, δT=0, 1u=false
Online, δT=30s, 1u=true
Online, δT=60s, 1u=true
Online, δT=120s, 1u=true

Figure 8:Impact of pre-judgment wrt. different TTL.

augmented with an age-based strategy, we also compare the
performance of the online cache invalidation in this context.
More specifically, each query in the cache is associated with
an expiration period (TTL) and its result is considered stale
at the end of this period. The invalidation decision of the
online invalidator is only made upon cache hits with respect
to TTL.

Fig. 8 illustrates the impact of pre-judgment through the
relationship between stale ratio and false positive ratio with
respect to various TTL values. The ratios are obtained at
the end of each experiment. For the sake of presentation,
only the cases using both mechanisms for pre-judgment are
shown as the differences on stale ratio and false positive ra-
tio between using and not using the second mechanism are
negligible (Fig. 7). In Fig. 8, the points on the same curve
from left to right correspond to decreasing TTL values. In
all cases, a small value of TTL results in low stale ratio and
high false positive ratio, since a large number of queries are
invalidated independent of the changes to the index. For
instance, when TTL is set to 24 hours, compared to the
case where no TTL is used, the stale ratio decreases by 83%
for CIP and 86% for online invalidation with δT = 60 sec-
onds and 1u = true, but the false positive ratio increases by
67% for CIP and 500% for online invalidation with the same
setting. Compared to CIP, our online invalidation strategy
consistently outperforms it in both false positive ratio and
stale ratio, with TTL values not smaller than 12 hours. The
trade-off between search result quality and search efficiency
can be controlled through carefully tuning the value of δT
with the online invalidation.

3.3 Quantitative performance
We have seen that the online cache invalidation outper-

forms the CIP approach in both search result quality (wrt.
stale ratio) and invalidation accuracy (wrt. false positive
ratio). Since a primary goal of this work is to derive a prac-
tical scheme for cache invalidation, we further compare the
efficiency of the online invalidation against CIP and discuss
their memory consumption in this section.

Methodology and metrics. A key difference between
the online invalidation and CIP is the underlying procedure
to make invalidations. In the online invalidation approach,
we perform invalidation lazily, only upon a cache hit. This
invalidation scheme increases the response time in case of a
cache hit. It enables fresher results by decreasing the stale
ratio as we have seen in Section 3.2. When the index is
updated, referring to a document addition, modification or

Downloaded from www.VTUplanet.com

0

0.5

1.0

1.5

2.0

2.5

3.0

0 1⋅10
5

2⋅10
5

3⋅10
5

4⋅10
5

5⋅10
5

6⋅10
5

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

m
s
)

Number of events

CIP
Online, 1u=false
Online, 1u=true

Figure 9: Efficiency of document processing.

deletion, only the four data structures described in Section
2.2 need to be updated accordingly. In the CIP approach, no
additional time is needed upon a cache hit. Once the index
is updated, however, it performs invalidations eagerly. This
process requires extensive computation on query and docu-
ment pairs to identify all the cached queries whose results
may have changed. In our experiment, we implement the
CIP approach with an inverted index of the cached queries
to make this process efficient [6]. We measure the efficiency
of these approaches through the average latency to process
a document synopsis, the average latency to respond to a
query and the average throughput of the search engine.

Document processing efficiency. Fig. 9 shows the aver-
age latency for processing an index update (i.e., a document
synopsis) as a function of the number of incoming events, in-
cluding both queries from users and document synopses from
indexers. The reason for considering both kinds of events is
that the latency of CIP depends on the number of queries
in the cache while the latency of online invalidation depends
on the number of documents in the subindex.

We observe that the latency of invalidations with CIP in-
creases linearly with the number of arriving events. With
CIP, each index update requires scanning all the queries in
the cache that contain at least one term in the document,
and consequently latency increases with the cache size. On
average, 2.8 milliseconds are required after 600K events are
issued to the query broker. In contrast, with the same num-
ber of events, only 0.6 milliseconds are enough to make the
necessary processing according to an index update with on-
line invalidation. The latency for online invalidation con-
verges and remains stable after 200K events. Once the size
of subindex reaches its limit (100K in this experiment), the
latency for updating the subindex with a document does
not vary much. This figure also shows the latency when
the second mechanism of pre-judgment is not used. As the
invalidator does not need to maintain the update time of
each posting list in the subindex (i.e., data structure 3© in
Section 2.2), the latency is about 30% less than if it is used.

Search efficiency. Fig. 10 compares the average latency
for answering a query with online invalidation against that
of CIP. Since this latency depends on the size of the subindex
with online invalidation, we also show its value as a function
of the number of incoming events. We observe that if no
pre-judgment is used (δT = 0 and 1u = false), the latency
with online invalidation is up to 20% more than that with
CIP. Pre-judgment, however, enables a significantly drop of

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 1⋅10
5

2⋅10
5

3⋅10
5

4⋅10
5

5⋅10
5

6⋅10
5

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

m
s
)

Number of events

CIP
Online, δT=0, 1u=false
Online, δT=0, 1u=true
Online, δT=60s, 1u=false
Online, δT=60s, 1u=true
Online, δT=120s, 1u=false
Online, δT=120s, 1u=true

Figure 10: Efficiency of query processing.

0

0.2

0.4

0.6

0.8

1.0

δT=0, 1
u =false

δT=0, 1
u =true

δT=60s, 1
u =false

δT=60s, 1
u =true

δT=120s, 1
u =false

δT=120s, 1
u =true

CIP
F

ra
c
ti
o

n
 o

f
q

u
e

ri
e

s

Hit
Hit upon pre-judgement
Hit upon final judgement
Miss

Hit
Hit upon pre-judgement
Hit upon final judgement
Miss

Figure 11: Distribution of query status.

the query processing time by reducing the number of hits
that need final judgment. For instance, with online invali-
dation, δT = 60 seconds and 1u = true, the average latency
for processing a query is about 5% less compared to CIP.
Increasing the value of δT further reduces latency.

Fig. 11 depicts the fraction of queries that are served from
the cache after pre-judgment (cache hit upon pre-judgment),
served from the cache after final judgment (cache hit upon
final judgment) and processed against the main search index
(cache miss). We observe that online invalidation produces
fewer cache misses than CIP, since there are fewer false pos-
itives (Fig. 7(b)). Moreover, the use of pre-judgment sig-
nificantly reduces the number of queries that require final
judgment. In online invalidation with δT = 60 seconds and
1u = true, only 41% of cache hits need final judgment to
make the invalidation decision. These observations explain
the efficiency of online invalidation for query processing.

Throughput. As we have explained in Section 2.1
(Fig. 1), the cache invalidator resides in the query broker
node. Therefore, the query broker node is in charge of both
processing queries and making invalidation decisions. We fi-
nally measure the overall performance of the online invalida-
tion approach through the average throughput of the query
broker node. In other words, we are interested in the number
of events, including incoming queries and document synopsis
that the query broker node can handle per second.

Fig. 12 reveals that the online invalidation consistently
outperforms CIP by coping with more events per second.
Moreover, the difference in throughput increases as more
events arrive in the system. This is due to the computation-
ally intensive invalidation steps of CIP (Fig. 9). The query

Downloaded from www.VTUplanet.com

10
2

10
3

10
4

10
5

0 1⋅10
5

2⋅10
5

3⋅10
5

4⋅10
5

5⋅10
5

6⋅10
5

E
v
e
n
ts

 p
e
r

s
e
c
o
n
d

Number of events

CIP
Online, δT=0, 1u=false
Online, δT=0, 1u=true
Online, δT=60s, 1u=false
Online, δT=60s, 1u=true
Online, δT=120s, 1u=false
Online, δT=120s, 1u=true

200

300

400

500

5.9⋅10
5

6.0⋅10
5

Figure 12: Throughput of query broker.

broker node running the online invalidation with δT = 60
seconds and 1u = true can processes more than 73% events
than that running CIP after 600K events arrive.

Memory footprint. The online cache invalidator main-
tains four data structures to make invalidation decisions
(Section 2.2). In our experiments, the subindex of 100K
documents maintains 214K inverted lists with 19.4M post-
ings. As a document ID is 16 bytes and a relevance score is
4 bytes, the subindex requires 388M memory. Maintaining
the update time of each posting list (i.e., data structure 3©
in Section 2.2) requires 856K memory as a timestamp is 4
bytes. Maintaining the timestamp for each document in the
subindex (4©) requires 2M memory. The memory consump-
tion for deleted documents (1©) is negligible compared to
other data structures due to the limited number of deleted
documents (Fig. 4). With CIP, the index of cached queries
consumes 2.2M with 16K per term list of queries where the
average length of a query is 20 bytes. Online cache invali-
dation requires much more memory than CIP to maintain
its subindex. Yet, this accounts for less than 1% of 48G
RAM of a modern server. To convey the scalability of the
online invalidation, we conduct a separate experiment that
replays the same documents and one time more queries as
in the previous experiments, resulting in a cache with twice
the original size. With a subindex of 100K documents, the
stale ratio and false positive ratio remain stable, i.e., 0.0024
and 0.0037 respectively with respect to 0.0025 and 0.0047 in
the original setting (Fig. 6). This experiment confirms that
the online invalidation is practical to implement in a search
engine as increasing the size of cache does not require larger
subindex to fit in memory.

Our experimental evaluation shows that with carefully se-
lected parameters, e.g., δT = 60 seconds and 1u = true,
the proposed online cache invalidation ensures higher result
quality (wrt. 50% lower stale ratio) and makes more accu-
rate invalidation (wrt. 90% lower false positive ratio) than
the state-of-the-art CIP approach. The online invalidation
is also practical to implement in a Web search engine, given
its moderate memory use and efficiency, which guarantees
high throughput.

4. RELATED WORK
Caching has been widely used in Web search engines to

shorten the average query response time and reduce the
workload on search servers. Generally, both search results
[4, 11, 12, 17] and posting lists [16, 19] can be cached with
different trade-offs [3]. A seminal work on result caching in

search engines has been the one of Markatos [17] comparing
several basic cache replacement policies. Followup work has
addressed issues including eviction [11, 17, 18], admission [4]
and pre-fetching [12, 13, 15], to optimize either hit ratio or
computational cost.

This body of work is based on a common assumption that
the cache has limited capacity and thus queries in the cache
have to be well selected to ensure good performance. How-
ever, modern search engines might store their cache entries
on disk, enabling a very large cache [8]. In such cases, main-
taining the freshness of cached results becomes very impor-
tant.

A search engine index is not static and is continuously
updated according to document additions, modifications,
and deletions on the Web that are gradually captured by
crawlers. Such changes may lead to inconsistencies between
results in the cache and results computed on an updated
index. Basically, there are three ways to update a search
index [14]: in-place update, index merging, and complete re-
build. The complete re-build approach periodically builds a
new index with all the available documents and replaces the
live index once the new index is ready. The index merging
approach (incremental indexing) [10, 5], generates delta in-
dexes with the changes regarding to the previous index and
merges them to the live index within short periods. The
in-place update approach (real-time indexing) directly per-
forms changes to the live index in an online manner to make
the new documents searchable shortly after being crawled.
We focus in our work on real-time indexing as it ensures best
freshness of the search index that is important for applica-
tions like news and social media search.

One way to keep the freshness of query results is to an-
ticipate the future occurrence of cached queries and refresh
them before they are issued to the search engine again. In
[9], several cache refreshment policies are proposed based on
either recency or frequency of cached queries. This work
confirms the findings in [7] that frequency-based policies
significantly improve the fraction of fresh hits compared to
recency-based policies. A more recent work that follows this
research line was proposed in [8]. In this work, the frequency
of access is combined with the age of an entry in the cache
to selectively refresh the cached results, and it is shown to
achieve higher hit rate compared to recency-based refresh.

Another way to keep the freshness of query results is to
simply invalidate results that have changed from the cache
without refreshing. This is mainly motivated by the fact
that issuing queries to the back end query processors with-
out explicit user requests may incur unnecessary computa-
tional cost. An existing approach to invalidate cached re-
sults in search engines is CIP [5]. CIP invalidates queries
upon updates to the index. Once a document d is added
to or modified in the index, its relevance to every query in
the cache is computed and queries for which top-k results
are less relevant than d are invalidated. This approach is
computationally expensive since the cost for computing the
relevance is linear with the size of the cache. To make the in-
validation more efficient, in the work of Bortnikov et al. [6],
cached queries are organized as an index of query terms, and
a document update is processed as a query against this in-
dex to identify the queries to invalidate. Another approach
that reduces the computational cost of CIP was proposed
by Alici et al. [1]. The basic idea of this work is to maintain
and compare the generation time of query results against

Downloaded from www.VTUplanet.com

the update time of the search index to decide if query re-
sults need to be invalidated. Despite being efficient, this
approach degrades the freshness of the served results due to
the approximation made at invalidation time, and requires
up to 20 times more backend communication compared to
CIP. In our work, we make cache invalidation at query time
as in the work of Alici et al.. Our online cache invalidation
strategy achieves better invalidation accuracy compared to
CIP without inducing a high communication overhead to
the backend as the approach of Alici et al.. In fact, the
same amount of backend communication as CIP is enough
for making our online cache invalidation.

5. CONCLUSION
Real-time indexing in Web search engines makes it chal-

lenging to keep the freshness of query results served from
their cache. In this work, we propose a practical approach
that relies on a subindex of recent changes to the search in-
dex to invalidate the stale cached queries. A pre-judgment
based on generation time of cached queries and update time
of search index is applied before the evaluation of queries
against the subindex to improve the efficiency of invalida-
tion. Through a realistic evaluation on top of a search engine
implementation, we show that our approach ensures higher
result quality and invalidation accuracy compared to CIP,
a previous approach to invalidation, as it results in lower
stale ratio and lower false positive ratio. We show that our
approach is efficient, which is an important step towards a
practical implementation in commercial search engines.

Our approach in this paper relied upon term-based rank-
ing functions that require periodic updates of global statis-
tics to ensure the accuracy of invalidation. We leave for fu-
ture work the investigation of cache invalidation approaches
that use advanced ranking functions leveraging link-based
features like PageRank.

6. REFERENCES
[1] S. Alici, I. S. Altingovde, R. Ozcan, B. B.

Cambazoglu, and O. Ulusoy. Timestamp-based result
cache invalidation for web search engines. In
Proceedings of the 34th international ACM SIGIR
conference on research and development in
Information Retrieval, pages 973–982, 2011.

[2] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri. The impact of caching
on search engines. In Proceedings of the 30th annual
international ACM SIGIR conference on research and
development in information retrieval, pages 183–190,
2007.

[3] R. Baeza-Yates, A. Gionis, F. P. Junqueira,
V. Murdock, V. Plachouras, and F. Silvestri. Design
trade-offs for search engine caching. ACM Trans. Web,
2:1–28, October 2008.

[4] R. Baeza-Yates, F. Junqueira, V. Plachouras, and
H. F. Witschel. Admission policies for caches of search
engine results. In Proceedings of the 14th international
conference on string processing and information
retrieval, pages 74–85, 2007.

[5] R. Blanco, E. Bortnikov, F. Junqueira, R. Lempel,
L. Telloli, and H. Zaragoza. Caching search engine
results over incremental indices. In Proceedings of the
19th international conference on World Wide Web,
pages 1065–1066, 2010.

[6] E. Bortnikov, R. Lempel, and K. Vornovitsky. Caching
for realtime search. In Proceedings of the 33rd
European conference on advances in information
retrieval, pages 104–116, 2011.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenke.
Web caching and zipf-like distributions: Evidence and
implications. In Proceedings of the 18th Annual Joint
Conference of the IEEE Computer and
Communications Societies, pages 126–134, 1999.

[8] B. B. Cambazoglu, F. P. Junqueira, V. Plachouras,
S. Banachowski, B. Cui, S. Lim, and B. Bridge. A
refreshing perspective of search engine caching. In
Proceedings of the 19th international conference on
World Wide Web, pages 181–190, 2010.

[9] E. Cohen and H. Kaplan. Refreshment policies for web
content caches. Comput. Netw., 38:795–808, April
2002.

[10] D. Cutting and J. Pedersen. Optimization for dynamic
inverted index maintenance. In Proceedings of the 13th
annual international ACM SIGIR conference on
research and development in information retrieval,
pages 405–411, 1990.

[11] Q. Gan and T. Suel. Improved techniques for result
caching in web search engines. In Proceedings of the
18th international conference on World Wide Web,
pages 431–440, 2009.

[12] R. Lempel and S. Moran. Predictive caching and
prefetching of query results in search engines. In
Proceedings of the 12th international conference on
World Wide Web, pages 19–28, 2003.

[13] R. Lempel and S. Moran. Optimizing result
prefetching in web search engines with segmented
indices. ACM Trans. Internet Technol., 4:31–59,
February 2004.

[14] N. Lester, J. Zobel, and H. E. Williams. In-place
versus re-build versus re-merge: index maintenance
strategies for text retrieval systems. In Proceedings of
the 27th Australasian conference on computer science,
volume 26, pages 15–23, 2004.

[15] H. Li, W.-C. Lee, A. Sivasubramaniam, and C. L.
Giles. A hybrid cache and prefetch mechanism for
scientific literature search engines. In Proceedings of
the 7th international conference on Web engineering,
pages 121–136, 2007.

[16] X. Long and T. Suel. Three-level caching for efficient
query processing in large web search engines. In
Proceedings of the 14th international conference on
World Wide Web, pages 257–266, 2005.

[17] E. Markatos. On caching search engine query results.
Computer Communications, 24(2):137–143, 2001.

[18] P. C. Saraiva, E. Silva de Moura, N. Ziviani,
W. Meira, R. Fonseca, and B. Riberio-Neto.
Rank-preserving two-level caching for scalable search
engines. In Proceedings of the 24th annual
international ACM SIGIR conference on research and
development in information retrieval, pages 51–58,
2001.

[19] Y. Tsegay, A. Turpin, and J. Zobel. Dynamic index
pruning for effective caching. In Proceedings of the
sixteenth ACM conference on information and
knowledge management, pages 987–990, 2007.

Downloaded from www.VTUplanet.com

