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Abstract—Record linkage is the process of matching records from several databases that refer to the same entities. When applied on

a single database, this process is known as deduplication. Increasingly, matched data are becoming important in many application

areas, because they can contain information that is not available otherwise, or that is too costly to acquire. Removing duplicate records

in a single database is a crucial step in the data cleaning process, because duplicates can severely influence the outcomes of any

subsequent data processing or data mining. With the increasing size of today’s databases, the complexity of the matching process

becomes one of the major challenges for record linkage and deduplication. In recent years, various indexing techniques have been

developed for record linkage and deduplication. They are aimed at reducing the number of record pairs to be compared in the matching

process by removing obvious nonmatching pairs, while at the same time maintaining high matching quality. This paper presents a

survey of 12 variations of 6 indexing techniques. Their complexity is analyzed, and their performance and scalability is evaluated within

an experimental framework using both synthetic and real data sets. No such detailed survey has so far been published.

Index Terms—Data linkage, data matching, entity resolution, index techniques, blocking, experimental evaluation, scalability.
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1 INTRODUCTION

AS many businesses, government agencies, and research
projects collect increasingly large amounts of data,

techniques that allow efficient processing, analyzing, and
mining of such massive databases have in recent years
attracted interest from both academia and industry. One task
that has been recognized to be of increasing importance in
many application domains is the matching of records that
relate to the same entities from several databases. Often,
information from multiple sources needs to be integrated
and combined in order to improve data quality, or to enrich
data to facilitate more detailed data analysis. The records to
be matched frequently correspond to entities that refer to
people, such as clients or customers, patients, employees, tax
payers, students, or travelers.

The task of record linkage is now commonly used for
improving data quality and integrity, to allow reuse of
existing data sources for new studies, and to reduce costs and
efforts in data acquisition [1]. In the health sector, for
example, matched data can contain information that is
required to improve health policies, information that
traditionally has been collected with time consuming and
expensive survey methods [2], [3]. Linked data can also help
in health surveillance systems to enrich data that are used for
the detection of suspicious patterns, such as outbreaks of
contagious diseases.

Statistical agencies have employed record linkage for
several decades on a routinely basis to link census data for

further analysis [4]. Many businesses use deduplication and
record linkage techniques with the aim to deduplicate their
databases to improve data quality or compile mailing lists,
or to match their data across organizations, for example, for
collaborative marketing or e-Commerce projects. Many
government organizations are now increasingly employing
record linkage, for example within and between taxation
offices and departments of social security to identify people
who register for assistance multiple times, or who work and
collect unemployment benefits.

Other domains where record linkage is of high interest are
fraud and crime detection, as well as national security [5].
Security agencies and crime investigators increasingly rely
on the ability to quickly access files for a particular individual
under investigation, or cross-check records from disparate
databases, which may help to prevent crimes and terror by
early intervention.

The problem of finding records that relate to the same
entities not only applies to databases that contain informa-
tion about people. Other types of entities that sometimes
need to be matched include records about businesses,
consumer products, publications, and bibliographic cita-
tions, web pages, web search results, or genome sequences.
In bioinformatics, for example, record linkage techniques can
help find genome sequences in large data collections that are
similar to a new, unknown sequence. In the field of
information retrieval, it is important to remove duplicate
documents (such as web pages and bibliographic citations)
in the results returned by search engines, in digital libraries
or in automatic text indexing systems [6], [7]. Another
application of growing interest is finding and comparing
consumer products from different online stores. Because
product descriptions are often slightly varying, matching
them becomes challenging [8].

In situations where unique entity identifiers (or keys) are
available across all the databases to be linked, the problem of
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matching records at the entity level becomes trivial: a simple
database join is all that is required. However, in most cases
no such unique identifiers are shared by all databases, and
more sophisticated linkage techniques are required. These
techniques can be broadly classified into deterministic,
probabilistic, and learning-based approaches [4], [9], [10].

While statisticians and health researchers commonly
name the task of matching records as data or record linkage
[11] (the term used in this paper), the computer science and
database communities refer to the same process as data or
field matching [12], data integration [13], data scrubbing or
cleaning [14], [15], data cleansing [16], duplicate detection
[17], [18], information integration [19], entity resolution [20],
[21], [22], reference reconciliation [23], or as the merge/purge
problem [24]. In commercial processing of business mailing
lists and customer databases, record linkage is usually seen
as a component of ETL (extraction, transformation, and
loading) tools. Two recent surveys have provided overviews
of record linkage and deduplication techniques and chal-
lenges [4], [18].

1.1 The Record Linkage Process

Fig. 1 outlines the general steps involved in the linking of two
databases. Because most real-world data are dirty and
contain noisy, incomplete, and incorrectly formatted infor-
mation, a crucial first step in any record linkage or
deduplication project is data cleaning and standardization
[25]. It has been recognized that a lack of good quality data
can be one of the biggest obstacles to successful record
linkage [2]. The main task of data cleaning and standardiza-
tion is the conversion of the raw input data into well defined,
consistent forms, as well as the resolution of inconsistencies
in the way information is represented and encoded [15], [25].

The second step (“Indexing”) is the topic of this survey,
and will be discussed in more detail in Section 2. The indexing
step generates pairs of candidate records that are compared in
detail in the comparison step using a variety of comparison
functions appropriate to the content of the record fields
(attributes). Approximate string comparisons, which take
(typographical) variations into account, are commonly used
on fields that, for example, contain name and address details

[12], while comparison functions specific for date, age, and
numerical values are used for fields that contain such data
[26]. Several fields are normally compared for each record
pair, resulting in a vector that contains the numerical
similarity values calculated for that pair.

Using these similarity values, the next step in the record
linkage process is to classify the compared candidate record
pairs into matches, nonmatches, and possible matches,
depending upon the decision model used [9], [27]. Record
pairs that were removed in the indexing step are classified as
nonmatches without being compared explicitly. The majority
of recent research into record linkage has concentrated on
improving the classification step, and various classification
techniques have been developed. Many of them are based
on machine learning approaches [10], [20], [28], [29], [30], [31].
If record pairs are classified into possible matches, a clerical
review process is required where these pairs are manually
assessed and classified into matches or nonmatches. This is
usually a time-consuming, cumbersome, and error-prone
process, especially when large databases are being linked or
deduplicated. Measuring and evaluating the quality and
complexity of a record linkage project is a final step in the
record linkage process [9].

1.2 Contributions

While various indexing techniques for record linkage and
deduplication have been developed in recent years, so far no
thorough theoretical or experimental survey of such techni-
ques has been published. Earlier surveys have compared four
or less indexing techniques only [32], [33]. It is therefore
currently not clear which indexing technique is suitable for
what type of data and what kind of record linkage or
deduplication application. The aim of this survey is to fill this
gap, and provide both researchers and practitioners with
information about the characteristics of a variety of indexing
techniques, including their scalability to large data sets, and
their performance for data with different characteristics.

The contributions of this paper are a detailed discussion of
six indexing techniques (with a total of 12 variations of them),
a theoretical analysis of their complexity, and an empirical
evaluation of these techniques within a common framework
on a variety of both real and synthetic data sets.

The reminder of this paper is structured as follows: in the
following Section 2 the indexing step of the record linkage
process is discussed in more detail. The six indexing
techniques are then presented in Section 3, followed by their
experimental evaluation in Section 4. The results of these
experiments are discussed in Section 5. An overview of
related work is then provided in Section 6, and the paper is
concluded in Section 7 with an outlook to future challenges
and work in this area.

2 INDEXING FOR RECORD LINKAGE AND

DEDUPLICATION

When two databases, A and B, are to be matched, potentially
each record from A needs to be compared with every record
from B, resulting in a maximum number of jAj � jBj
comparisons between two records (with j � j denoting the
number of records in a database). Similarly, when dedupli-
cating a single database A, the maximum number of possible
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Fig. 1. Outline of the general record linkage process. The indexing step
(the topic of this survey) generates candidate record pairs, while the
output of the comparison step is vectors containing numerical similarity
values.
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comparisons is jAj � ðjAj � 1Þ=2, because each record in A
potentially needs to be compared with all other records.

The performance bottleneck in a record linkage or
deduplication system is usually the expensive detailed
comparison of field (attribute) values between records [9],
[32], making the naı̈ve approach of comparing all pairs of
records not feasible when the databases are large. For
example, the matching of two databases with 1 million
records each would result in 1012 (one trillion) possible record
pair comparisons.

At the same time, assuming there are no duplicate records
in the databases to be matched ( i.e., one record in A can only
be a true match to one record in B and vice versa), then the
maximum possible number of true matches will correspond
tominðjAj; jBjÞ. Similarly, for a deduplication the number of
unique entities (and thus true matches) in a database is
always smaller than or equal to the number of records in it.
Therefore, while the computational efforts of comparing
records increase quadratically as databases are getting larger,
the number of potential true matches only increases linearly
in the size of the databases.

Given this discussion, it is clear that the vast majority of
comparisons will be between records that are not matches.
The aim of the indexing step is to reduce this large number of
potential comparisons by removing as many record pairs as
possible that correspond to nonmatches. The traditional
record linkage approach [4], [11] has employed an indexing
technique commonly called blocking [32], which splits the
databases into nonoverlapping blocks, such that only records
within each block are compared with each other. A blocking
criterion, commonly called a blocking key (the term used in this
paper), is either based on a single record field (attribute), or
the concatenation of values from several fields.

Because real-world data are often dirty and contain
variations and errors [34], an important criteria for a good
blocking key is that it can group similar values into the same
block. What constitutes a “similar” value depends upon the
characteristics of the data to be matched. Similarity can refer
to similar sounding or similar looking values based on
phonetic or character shape characteristics. For strings that
contain personal names, for example, phonetic similarity can
be obtained by using phonetic encoding functions such as
Soundex, NYSIIS, or Double-Metaphone [35]. These func-
tions, which are often language or domain specific, are
applied when the blocking key values (BKVs) are generated.

As an example, Table 1 shows three different blocking
keys and the resulting BKVs for four records. The first one is
made of Soundex (Sndx) encoded givenname (GiN) values
concatenated with full postcode (PC) values, the second
consists of the first two digits (Fi2D) of postcode values

concatenated with Double-Metaphone (DMe) encoded sur-
name (SurN) values, and the third is made of Soundex
encoded suburb name (SubN) values concatenated with the
last two digits (La2D) of postcode values. To illustrate the
two components of each blocking key in Table 1, their values
are separated by a hyphen (“-”), however in real-world
applications they would be concatenated directly.

Several important issues need to be considered when
record fields are selected to be used as blocking keys. The first
issue is that the quality of the values in these fields will
influence the quality of the generated candidate record pairs.
Ideally, fields containing the fewest errors, variations, or
missing values should be chosen. Any error in a field value
used to generate a BKV will potentially result in records being
inserted into the wrong block, thus leading to missing true
matches [9]. One approach used to overcome errors and
variations is to generate several blocking keys based on
different record fields, as is illustrated in Table 1. The hope is
that records that refer to true matches have at least one BKV in
common, and will therefore be inserted into the same block.

A second issue that needs to be considered when defining
blocking keys is that the frequency distribution of the values
in the fields used for blocking keys will affect the size of the
generated blocks. Often this will be the case even after
phonetic or other encodings have been applied. For example,
a field containing surnames in a database from the United
Kingdom, US, or Australia will likely contain a large portion
of records with the value “Smith,” which will results in a
similarly large portion of records with the corresponding
Soundex encoding “S530.” If m records in database A and
n records in database B have the same BKV, then
m� n candidate record pairs will be generated from the
corresponding block. The largest blocks generated in the
indexing step will dominate execution time of the compar-
ison step, because they will contribute a large portion of the
total number of candidate record pairs. Therefore, it is of
advantage to use fields that contain uniformly distributed
values because they will result in blocks of equal sizes.

When blocking keys are defined, there is also a tradeoff
that needs to be considered. On one hand, having a large
number of smaller blocks will result in fewer candidate
record pairs that will be generated. This will likely increase
the number of true matches that are missed. On the other
hand, blocking keys that result in larger blocks will generate
an increased number of candidate record pairs that likely
will cover more true matches, at the cost of having to
compare more candidate pairs [32]. As will be discussed in
the following section, some indexing techniques do allow
explicit control of the size of the blocks that will be generated,
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TABLE 1
Example Records and Blocking Keys

How the blocking key values are generated is detailed in Section 2. The two highlighted bold pairs of BKVs illustrate that these records would be
inserted into the same blocks.

Downloaded from www.VTUplanet.com



while for others the block sizes depend upon the character-
istics of the record fields used in blocking keys.

All indexing techniques discussed in the following section
do require some form of blocking key to be defined. The
question of how to optimally choose record fields for
blocking keys, such that as many true matching pairs as
possible are included in the set of candidate record pairs, is
orthogonal to the selection of an actual indexing technique.
Traditionally, blocking keys have been manually selected by
domain experts according to their understanding of the
databases to be matched, or based on initial data exploration
steps conducted.

In order to achieve an indexing that generates candidate
record pairs of good quality, many recently developed
indexing techniques require various parameters to be set.
The optimal values of these parameters depend both upon
the data to be matched (such as distribution of values and
error characteristics), as well as the choice of blocking key(s)
used. This makes it often difficult in practice to achieve a
good indexing, because time consuming manual parameter
tuning, followed by test linkages and careful evaluation is
required. Additionally, in many real-world record linkage or
deduplication applications, no data that contain the known
true match status of record pairs are available that can be
used to assess linkage quality [9]. Therefore, it is often not
known how many true matches are included in the set of
candidate record pairs. Measures suitable for assessing
record linkage quality and complexity will be discussed in
Section 4.2. Ideally, an indexing technique for record linkage
and deduplication should be robust with regard to the
selected parameter values or not require parameters at all,
which would allow automated indexing [36].

3 INDEXING TECHNIQUES

In this section, the traditional blocking approach and five
more recently developed indexing techniques and variations
of them are discussed in more detail. Their complexity is
analyzed as the estimated number of candidate record pairs
that will be generated. Knowing this number, together with a
measured average time per record pair comparison (shown
in Table 4), will allow an estimate of the runtime of the
comparison step. Given this step is often the most time
consuming step in a record linkage or deduplication project,
such estimates will help users to predict how long a certain
linkage or deduplication project will take.

The estimated number of candidate record pairs will be
calculated for two different frequency distributions of BKVs.
The first assumes a uniform distribution of values, resulting
in each block containing the same number of records. The

second assumes that the frequencies of the BKVs follow
Zipf’s law [37], a frequency distribution that is commonly
found in data sets that contain values such as personal names
[38]. Zipf’s law states that in a list of words ranked according
to their frequencies, the word at rank r has a relative
frequency that corresponds to 1=r. For attributes such as
postcode, suburb name or age, the frequency distribution of
their values is likely somewhere between a uniform and a
Zipf-like frequency distribution. Therefore, assuming these
two distributions should provide lower and upper limits of
the number of candidate record pairs that can be expected
when linking or deduplicating real-world databases.

Conceptually, the indexing step of the record linkage
process can be split into the following two phases:

1. Build. All records in the database (or databases) are
read, their BKVs are generated, and records are
inserted into appropriate index data structures. For
most indexing techniques, an inverted index [37] can
be used. The BKVs will become the keys of the
inverted index, and the record identifiers of all records
that have the same BKV will be inserted into the same
inverted index list. Fig. 2 illustrates this for a small
example data set.

When linking two databases, either a separate
index data structure is built for each database, or a
single data structure with common key values is
generated. For the second case, each record identifier
needs to include a flag that indicates from which
database the record originates.

The field values required in the comparison step
need to be inserted into another data structure that
allows efficient access to single random records when
they are required for field comparisons. This can be
achieved using an appropriately indexed database or
hash table.

2. Retrieve. For each block, its list of record identifiers is
retrieved from the inverted index, and candidate
record pairs are generated from this list. For a record
linkage, all records in a block from one database will
be paired with all records from the block with the same
BKV from the other database, while for a deduplica-
tion each record in a block will be paired with all other
records in the same block. For example, from the block
with key “S530” from Fig. 2 the pairs (R1, R5), (R1, R7),
and (R5, R7) will be generated.

The candidate record pairs are then compared in
detail in the comparison step, and the resulting
vectors containing numerical similarity values are
given to a classifier in the classification step.
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Fig. 2. Example records with surname values and their Soundex encodings used as BKVs, and the corresponding inverted index data structure as
used for traditional blocking.
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This survey mainly considers the Build phase, namely
how different indexing techniques, using the same blocking
key definition, are able to index records from data sets with
different characteristics, and how this, in combination with
various parameter settings, affects the number and quality
of the candidate record pairs generated. The specific
questions of interest are how many candidate pairs are
generated, and how many of them are true matches and how
many true nonmatches.

The following notation will be used when discussing the
complexity of indexing techniques: nA ¼ jAj and nB ¼ jBj
are the number of records in databases A and B,
respectively. For simplicity, it is assumed that only one
blocking key definition is used, and that the BKVs
generated for both databases are the same, i.e., if KA and
KB are the sets of BKVs generated from A and B, then
KA � KB. While this is a rare scenario in most real-world
applications, it provides an upper bound on the number of
candidate record pairs, because any BKV that is only
generated by one of the two databases will not result in any
candidate record pairs. The number of different BKVs is
denoted as b, with b ¼ jKAj ¼ jKBj (and j � j denoting the
number of elements in a set).

3.1 Traditional Blocking

This technique has been used in record linkage since the
1960s [11]. All records that have the same BKV are inserted
into the same block, and only records within the same block
are then compared with each other. Each record is inserted
into one block only (assuming a single blocking key
definition). As illustrated in Fig. 2, traditional blocking
can be implemented efficiently using a standard inverted
index [37], as described in the Build phase above. In the
Retrieve phase, the identifiers of all records in the same
block are retrieved and the corresponding candidate record
pairs are generated.

While traditional blocking does not have any explicit
parameters, the way blocking keys are defined will influence
the quality and number of candidate record pairs that are
generated. As discussed in Section 2, a major drawback of
traditional blocking is that errors and variations in the record
fields used to generate BKVs will lead to records being
inserted into the wrong block. This drawback can be over-
come by using several blocking key definitions based on
different record fields, or different encodings applied on the
same record fields. A second drawback of traditional
blocking is that the sizes of the blocks generated depend
upon the frequency distribution of the BKVs, and thus it is
difficult in practice to predict the total number of candidate
record pairs that will be generated.

If a uniform distribution of field values is assumed that
leads to uniformly distributed BKVs, then all blocks will be of
uniform size and contain nA=b or nB=b records, respectively,
with b being the number of different BKVs. In this situation,
the number of candidate record pairs generated for a record
linkage equals

uTBRL ¼ b�
nA
b
� nB

b

� �
¼ nAnB

b
; ð1Þ

while for a deduplication the number of candidate record
pairs generated equals

uTBD ¼ b�
�
nA
b
�
�
nA
b
� 1

��
2

�
¼ nA

2

�
nA
b
� 1

�
: ð2Þ

For both situations, this corresponds to a b-fold reduction in
the number of candidate pairs compared to the naı̈ve
approach of comparing all records with each other.

If a Zipf frequency distribution of record field values is
assumed that leads to Zipf-like distribution of BKVs, then the
size of the generated blocks will also follow a Zipf-like
frequency distribution. With b blocks, the number of
candidate record pairs generated for a record linkage in this
situation equals

zTBRL ¼
Xb
i¼1

1=i

Hb
� nA

� �
� 1=i

Hb
� nB

� �

¼ nAnB
H2
b

�
Xb
i¼1

1

i2
;

ð3Þ

with Hb being the harmonic number of the partial harmonic
sum, Hb ¼

Pb
i¼1 1=i. For a deduplication, the number of

candidate record pairs generated equals

zTBD ¼
Xb
i¼1

1=i

Hb
� nA

� �
� 1=i

Hb
� nA � 1

� ��
2

¼ 1

2
� n2

A

H2
b

Xb
i¼1

1

i2
� nA
Hb

Xb
i¼1

1

i

 !
:

ð4Þ

For a given number of blocks and a database (or
databases) of a given size, having blocks of uniform size
will lead to the smallest number of candidate records
pairs generated compared to any nonuniform distribution.
For example, for two equal sized blocks each containing x
records, the number of candidate record pairs generated
will equal 2� x2. Changing the distribution to blocks
containing ðxþ 1Þ and ðx� 1) records, respectively, will
result in ðxþ 1Þ2 þ ðx� 1Þ2 ¼ ðx2 þ 2xþ 1Þ þ ðx2 � 2x þ
1Þ ¼ 2� x2 þ 2. Therefore, every redistribution away from
uniform block sizes will increase the number of candidate
record pairs generated. From this follows that uTBRL <
zTBRL and uTBD < zTBD for the same number of blocks
and same number of records in the database(s) to be
linked or deduplicated.

3.2 Sorted Neighborhood Indexing

This technique was first proposed in the mid 1990s [24]. Its
basic idea is to sort the database(s) according to the BKVs, and
to sequentially move a window of a fixed number of recordsw
(w > 1) over the sorted values. Candidate record pairs are
then generated only from records within a current window.
As illustrated in Figs. 3 and 4, there are two different
approaches of how this technique can be implemented.

3.2.1 Sorted Array-Based Approach

In this first approach, as originally proposed [24], the BKVs
are inserted into an array that is sorted alphabetically, as
shown in the left-hand side of Fig. 3. The window is then
moved over this sorted array and candidate record pairs are
generated from all records in the current window, as
illustrated in the right-hand side of Fig. 3. In case of a
record linkage, the BKVs from both databases will be
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inserted into one combined array and then sorted alphabe-
tically, but candidate record pairs are generated in such a
way that for each pair one record is selected from each of the
two databases.

For a record linkage, assuming the length of the sorted
array is ðnA þ nBÞ (the total number of records in both
databases), then the number of window positions equals
ðnA þ nB � wþ 1Þ, while for a deduplication the number of
windows is ðnA � wþ 1Þ. As can be seen in the right-hand
side of Fig. 3, most candidate record pairs are generated in
several windows, however, each unique pair will only be
compared once in the comparison step. Because the
window size is fixed in this approach, the number of
candidate record pairs generated is independent of the
frequency distribution of the BKVs, and only depends upon
the window size w and the size(s) of the database(s). If � ¼
nA=ðnA þ nBÞ denotes the ratio of the number of records in
database A over the number of records in both databases,
and � ¼ nB=ðnA þ nBÞ ¼ ð1� �Þ the corresponding ratio for
database B, then for a record linkage the number of unique
candidate record pairs generated equals

uSNRLSA ¼ ð�wÞð�wÞ þ ðnA þ nB � wÞ
� ð�ððw� 1Þ�Þ þ �ððw� 1Þ�ÞÞ
¼ ��w2 þ 2��ðnA þ nB � wÞðw� 1Þ
¼ ��ðw2 þ 2ðnA þ nB � wÞðw� 1ÞÞ

¼ nAnB

ðnA þ nBÞ2

� ðw2 þ 2ðnA þ nB � wÞðw� 1ÞÞ:

ð5Þ

The first term in the first line equals to the number of
candidate record pairs that are generated in the first window
position, while the remainder of the equation equals to the
number of unique pairs generated in the remaining ðnA þ
nB � wÞ window positions. Assuming evenly mixed BKVs
from A and B, in the first window position there will be
�w records from database A that have to be compared to
�w records from database B. For all following window
positions, with a likelihood of � the newest record added to

the window originates from database A, and has to be

compared with ðw� 1Þ� records in the current window that

are from database B. A similar calculation, the term

�ððw� 1Þ�Þ, can be made when the newest record in a
window originates from database B. The total number of

candidate record pairs generated depends quadratically

upon the window size w, and on the harmonic mean of the

sizes of the two databases that are linked.
For a deduplication, the number of unique candidate

pairs generated (duplicate pairs not counted) equals

uSNDSA
¼ wðw� 1Þ=2þ ðnA � wÞðw� 1Þ

¼ ðw� 1Þ nA �
w

2

� �
:

ð6Þ

For both a record linkage and a deduplication the number

of candidate record pairs generated is independent of the

frequency distribution of the BKVs, and therefore no

analysis of Zipf-distributed values is required.
A major drawback of this approach is that if a small

window size is chosen, it might not be large enough to cover
all records that have the same BKV. For example, there might

be several thousand records with a surname value “Smith” in

a large database, but with a window size of, for example,

w ¼ 10 not all of these records will be in the same current

window, and thus not all of them will be compared with each

other. One solution to this problem is to select blocking keys

that are made of the concatenation of several record fields
(like surname and given name), so that they have a large

number of different values, rather than employing encoding

functions that group many similar field values together.
Another problem with this approach is that the sorting of

the BKVs is sensitive toward errors and variations in the

first few positions of values. For example, if given names

are used as BKVs, then “Christina” and “Kristina” will very

likely be too far away in the sorted array to be inserted into

the same window, even though they are very similar names
and might refer to the same person. This drawback can be

overcome by employing several blocking key definitions

based on different record fields, or by defining blocking
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Fig. 4. Example sorted neighborhood technique based on an inverted index and with the same BKVs and window size as in Fig. 3.

Fig. 3. Example sorted neighborhood technique based on a sorted array, with BKVs being the surname values from Fig. 2 (and the corresponding
record identifiers), and a window size w ¼ 3.
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keys based on reversed field values (for example “anitsirhc”
and “anitsirk”).

The Build phase for this indexing approach also requires
the sorting of the array, which has a complexity of
Oðn log nÞ, with n ¼ ðnA þ nBÞ for a record linkage, and n ¼
nA for a deduplication.

3.2.2 Inverted Index-Based Approach

An alternative approach [39] for the sorted neighborhood
technique is illustrated in Fig. 4. Rather than inserting BKVs
into a sorted array, this approach utilizes an inverted index
similar to traditional blocking. The index keys contain the
alphabetically sorted BKVs, as is shown in the left-hand
side of Fig. 4. The window is moved over these sorted
BKVs, and candidate record pairs are formed from all
records in the corresponding index lists, as illustrated in the
right-hand side of Fig. 4. Similar to the sorted array-based
approach, most candidate record pairs are generated in
several windows, but each unique candidate pair will again
only be compared once in the comparison step. The number
of generated candidate record pairs with this approach
depends upon the number of record identifiers that are
stored in the inverted index lists.

For a window size w ¼ 1, this inverted index-based
approach reduces to traditional blocking as described in
Section 3.1. For all window sizes w > 1, the generated
candidate record pairs will therefore be a superset of the
pairs generated by traditional blocking. In general, for two
window sizes wi and wj, with wi < wj, all candidate record
pairs generated with window size wi will also be in the set
of pairs generated with wj. However, the larger the window
size is, the larger the number of generated candidate record
pairs becomes.

The number of window positions with this approach for
both a record linkage and a deduplication is ðb� wþ 1Þ,
with b being the number of different BKVs. For a record
linkage, record identifiers from both databases will be
inserted into a common inverted index data structure,
together with a flag stating if a record originates from
database A or B. Assuming a uniform distribution of BKVs,
each inverted index list will contain nA=bþ nB=b record
identifiers. The number of unique candidate record pairs
generated for a record linkage is

uSNRLII ¼ w
nA
b
� wnB

b
þ ðb� wÞ

�
�
nA
b
� wnB

b
þ nB

b
� ðw� 1ÞnA

b

�

¼ w2 nAnB
b2
þ ðb� wÞ � ð2w� 1ÞnAnB

b2

¼ nAnB
b2

w2 þ ðb� wÞð2w� 1Þ
� �

:

ð7Þ

The first term in (7) corresponds to the number of candidate

record pairs generated in the first window position, while

the second term corresponds to the ðb� wÞ following

window positions. The first part of this second term refers

to the candidate pairs that are generated between the record

identifiers in the most recently added inverted index list in

the current window that come from database A and the

identifiers in the previous lists from database B, while the

second part refers to the pairs that are generated between

the newest list from the index of database B and the

previous lists from the index of database A. If the window

size is set to w ¼ 1, the above formula reduces to (1),

generating the same number of candidate record pairs as

with traditional blocking, because the term ðw2 þ ðb �
wÞð2w� 1ÞÞ ¼ ð12 þ ðb� 1Þð2� 1ÞÞ ¼ 1þ ðb� 1Þ ¼ b.

For a deduplication, the number of unique candidate
pairs generated equals

uSNDII
¼ wnA

b
�
�
w
nA
b
� 1

��
2þ ðb� wÞ

�
�
nA
b
� ðw� 1ÞnA

b
þ nA
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�
nA
b
� 1

��
2

�

¼ wnA
2b
�
�
w
nA
b
� 1

�
þ ðb� wÞ

�
�
n2
A

b2
ðw� 1Þ þ nA

2b

�
nA
b
� 1

��
:

ð8Þ

As can easily be verified, with w ¼ 1 the above formula
reduces to (2).

For BKVs that have a Zipf-like frequency distribution,
calculating the number of candidate record pairs is difficult,
because this number will depend upon the ordering of the
inverted index lists. In the worst case scenario, the size of
the inverted index lists (in number of record identifiers they
contain) corresponds to the alphabetically sorted BKVs,
such that the longest list is the alphabetically first, the
second longest the alphabetically second, and so on. As a
result, the first window would contain the largest number
of record identifiers. Following (3) and (7), the number of
unique candidate record pairs generated in this worst case
scenario for a record linkage equals

zSNRLII ¼
nA
Hb

Xw
i¼1

1

i

 !
� nB

Hb

Xw
i¼1

1

i

 !

þ
Xb�wþ1

j¼2

nA
Hbðjþ w� 1Þ

Xjþw�1

i¼j

nB
Hbi

 ! 

þ nB
Hbðjþ w� 1Þ

Xjþw�2

i¼j

nA
Hbi

 !!
:

ð9Þ

Using (4) and (8), for a deduplication the number of
candidate record pairs can be calculated as

zSNDII
¼ 1

2

nA
Hb

Xw
i¼1

1

i

 !
� nA

Hb

Xw
i¼1

1

i
� 1

 !

þ
Xb�wþ1

j¼2

nA
Hbðjþ w� 1Þ

Xjþw�2

i¼j

nA
Hbi

 ! 

þ nA
2Hbðjþ w� 1Þ �

nA
Hbðjþ w� 1Þ � 1

� ��
:

The inverted index-based sorted neighborhood approach
has two main disadvantages. First, similarly to traditional
blocking, the largest blocks will dominate the number of
candidate record pairs that are generated, and therefore
also dominate the time requirements of the comparison
step. The second disadvantage is that the sorting of the
BKVs assumes that their beginning is error free. Otherwise,
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similar values will not be close enough in the sorted keys of
the inverted index and might therefore not be covered in
the same window.

As is recommended with the sorted array-based approach,
it is therefore good practice to define several blocking keys,
ideally based on different record fields, and run this indexing
approach using each of these blocking keys. Similar to
traditional blocking, for this sorted neighborhood approach it
will also be of advantage to use preprocessing, like phonetic
encodings [35], to group similar record values into the same
blocks, i.e., convert them into the same BKVs.

Assuming that the number of BKVs is much smaller than
the number of records in the database(s) to be matched or
deduplicated (i.e., b� ðnA þ nBÞ or b� nA, respectively),
the sorting of the BKVs will be much faster than for the
sorted array-based approach because the sorting step has a
complexity of Oðb log bÞ.

3.2.3 Adaptive Sorted Neighborhood Approach

Recent research has looked at how the sorted neighborhood
indexing technique based on a sorted array can be improved
[40], [41]. The issue of having a fixed block size w which can
result in missed true matches (because not all same BKVs fit
into one window, as discussed in Section 3.2.1) has been
addressed through an adaptive approach to dynamically set
the window size [40]. Depending upon the characteristics of
the BKVs used in the sorted array, the idea is to find values
adjacent to each other that are significantly different from
each other using an appropriate string similarity measure
[35]. These so called boundary pairs of BKVs are then used to
form blocks, i.e., they mark the positions in the sorted array
where one window ends and a new one starts. This
approach can therefore be seen as a combination of
traditional blocking and the sorted neighborhood approach.
Due to the adaptive nature of the approach, where block
sizes are determined by the similarities between BKVs, a
theoretical analysis of the number of generated candidate
record pairs would depend upon the actual BKVs and
therefore not be of general use. This adaptive approach will
however be evaluated experimentally in Section 4.

Another recently developed approach generalizes tradi-
tional blocking and the sorted neighborhood technique, and
combines them into a sorted blocks method [41]. The authors
of this approach show that traditional blocking and sorted
neighborhood are two ends of a general approach, with
blocking corresponding to sorted neighborhood where the
window is moved forward w positions rather than 1,
resulting in nonoverlapping blocks. The proposed combined

approach allows specification of the desired overlap, and

experimental results presented show that the sorted neigh-
borhood approach performs better than traditional blocking,
especially for small blocks [41].

3.3 Q-Gram-Based Indexing

The aim of this technique is to index the database(s) such that
records that have a similar, not just the same, BKV will be
inserted into the same block. The basic idea is to create
variations for each BKV using q-grams (substrings of

lengths q), and to insert record identifiers into more than
one block.

Each BKV is converted into a list of q-grams, and sublist
combinations of these q-gram lists are then generated down to
a certain minimum length, which is determined by a user-

selected threshold t (t � 1). For a BKV that contains
k q-grams, all sublist combinations down to a minimum
length of l ¼ maxð1; bk� tcÞ will be created (b� � �c denotes
rounding to the next lower integer number). These sublists

are then converted back into strings and used as the actual key
values into an inverted index, as is illustrated in Fig. 5.

Different from the inverted index used in traditional
blocking is that each record identifier is generally inserted
into several index lists, according to the number of q-gram

sublists generated for its BKV. With a threshold t ¼ 1:0

however, each record identifier will be inserted into one
inverted index list only, and in this case q-gram-based
indexing will generate the same candidate record pairs as

traditional blocking.
Fig. 5 illustrates q-gram-based indexing for three exam-

ple records, q ¼ 2 (bigrams), and a threshold t ¼ 0:8. The
BKV “Smith” in the first record (R1), for example, contains

four (k ¼ 4) bigrams: “sm,” “mi,” “it,” “th” (assuming all
letters have been converted into lower case beforehand),
and so the length l of the shortest sublists for this value can
be calculated as l ¼ b4� 0:8c ¼ 3. Therefore, four sublists

each containing three bigrams will be generated for this
BKV: [mi, it, th], [sm, it, th], [sm, mi, th], and [sm, mi, it].
Each of these is generated by removing one of the four
original bigrams. These sublists will then be converted back
into strings to form the actual key values used in the

inverted index, as is shown in Fig. 5. The identifier of the
record R1 will therefore be inserted into the five inverted
index lists with key values “smmiitth,” “miitth,” “smitth,”
“smmith,” and “smmiit.” With an even lower threshold

(t < 0:75), sublists of length two would be generated
recursively from the sublists of length three.
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Fig. 5. Q-gram-based indexing with surnames used as BKVs, index key values based on bigrams (q ¼ 2), and calculated using a threshold set to
t ¼ 0:8. The right-hand side shows three of the resulting inverted index lists (blocks), with the common BKV highlighted in bold in the index key value
column.
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The number of sublists generated for a BKV depends
both upon the number of q-grams it consists of, as well as
the value of the threshold t. Lower values of t will lead to
an increased number of shorter sublists, and therefore a
larger number of different index key values. The longer a
BKV is, the more sublists will be generated. For a BKV of
length c characters, there will be k ¼ ðc� q þ 1Þ q-grams,
and with l ¼ maxð1; bk� tcÞ the length of the shortest
sublists, a total of

s ¼
Xk
i¼l

k

i

� �
; ð10Þ

sublists will be generated from this BKV. From Table 2, it
can be seen that the value of s grows exponentially with
longer BKVs, and as the threshold t is set to lower values.
The time required to generate the q-gram sublists will
therefore be dominated by the recursive generation of
sublists for longer BKVs.

Fig. 6 shows the length frequency distributions of values
from three record fields that are common in many databases
that contain information about people. As can be seen, these
distributions roughly follow Poisson distributions with
parameter 5 � � � 10. Therefore, assuming BKV lengths
that follow a Poisson distribution, it is possible to estimate
the overhead of q-gram-based indexing compared to
traditional blocking.

Let v denote the average number of times each record
identifier is inserted into an inverted index list (block),
compared to being inserted into just one index list as is
done with traditional blocking (i.e., v ¼ 1). Assuming that
the average length of BKVs in q-grams is �, their maximum
length is lmax, and the minimum sublist length threshold is
t, then v can be calculated as

v ¼
Xlmax
l¼1

�le��

l!

Xl
i¼maxð1;bl�tcÞ

l

i

� �0
@

1
A: ð11Þ

This summation covers BKVs of lengths 1 to lmax, and for
each of them the number of sublists generated for this
specific length is calculated by combining a Poisson
distribution with (10).

Assuming there are b different BKVs, the question now is
how many index key values (denoted with b0) are generated
by the q-gram sublist generation process. This number
depends upon the characteristics of the data, specifically

the distribution of unique q-grams in the BKVs. One

extreme situation would be that every BKV generates a

set of unique index key values that are not shared with any

other BKV, and thus b0 ¼ v� b. The other extreme situation

would be where every index key value is equal to an

existing BKV, and thus b0 ¼ b.
Assuming uniform frequency distribution of the BKVs,

(1) can be used to estimate the number of candidate record

pairs that will be generated for a record linkage. With the

two extreme situations described above, this number will be

vb� nAv

vb
� nBv

vb

� �
� uQGRL � b�

nAv

b
� nBv

b

� �
;

which can be simplified to

nAnBv

b
� uQGRL �

nAnBv
2

b
: ð12Þ

Similar, for a deduplication, (2) can be used to estimate the

number of candidate record pairs as

nAv

2

nA
b
� 1

� �
� uQGD �

nAv

2

nAv

b
� 1

� �
: ð13Þ

For BKVs that follow a Zipf frequency distribution, (3)

and (4) can be extended similarly to calculate the estimated

number of candidate record pairs.
As was shown in an earlier study [32], q-gram-based

indexing can lead to candidate record pairs that cover more

true matches than both traditional blocking and the sorted

neighborhood indexing techniques. The drawback, how-

ever, is that a much larger number of candidate record pairs

will be generated, leading to a more time consuming

comparison step. This will be confirmed in the experiments

in Sections 4 and 5.
A similar q-grams-based approach to indexing has been

proposed within a database framework [42], using q-gram-

based similarity joins and filtering techniques to improve

performance. This approach was implemented completely

within a relational database and using SQL statements by

generating auxiliary database tables that contain the

q-grams and their record identifiers.
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TABLE 2
Number of Bigram (q ¼ 2) Sublists (s) Generated According to

(10) for Different Threshold Values t and Different Number
of q-Grams k in the BKVs

Fig. 6. Normalized length frequency distributions of record field values
from an Australian telephone directory containing around seven million
records. For comparison, a Poisson distribution (with � ¼ 6:5) is also
shown.
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3.4 Suffix Array-Based Indexing

This technique has recently been proposed as an efficient
domain independent approach to multisource information
integration [19]. The basic idea is to insert the BKVs and
their suffixes into a suffix array-based inverted index. A
suffix array contains strings or sequences and their suffixes
in an alphabetically sorted order. Indexing based on suffix
arrays has successfully been used on both English and
Japanese bibliographic databases [19].

In this indexing technique, only suffixes down to a
minimum length, lm, are inserted into the suffix array. For
example, for a BKV “christen” and lm ¼ 5, the values
“christen,” “hristen,” “risten” and “isten” will be gener-
ated, and the identifiers of all records that have this BKV
will be inserted into the corresponding four inverted index
lists. Fig. 7 shows several other examples of this approach.
A BKV of length c characters will result in ðc� lm þ 1Þ
suffixes to be generated. Similar to q-gram-based indexing,
the identifier of a record will likely be inserted into several
inverted index lists.

To limit the maximum size of blocks (and thus the
number of candidate records pairs to be generated), a
second parameter, bM , allows the maximum number of
record identifiers in a block to be set. Blocks that contain
more that bM record identifiers will be removed from the
suffix array. For example, in Fig. 7, with bM ¼ 3 the block
with suffix value “rina” will be removed because it contains
four record identifiers.

To calculate the number of candidate record pairs that
will be generated with suffix array-based indexing, similar
to q-gram-based indexing the lengths of the BKVs needs to
be estimated. Assuming a Poisson distribution of the length
of BKVs and following (11), the average number of suffixes
generated from a BKV can be calculated as

v ¼
XlM
l¼lm

�le��

l!
ðl� lm þ 1Þ

� �
; ð14Þ

with lM being the maximum and � the average length (both
in characters) of all BKVs in the database(s) to be matched
or deduplicated.

Assuming there are b unique BKVs, the minimum number
of suffix values generated would be b in the extreme situation
where all BKVs are of length lm characters, and thus no
shorter suffixes are generated. The other extreme situation
would occur when each BKV generates suffixes that are
unique. In this situation, assuming each BKV in average
generates v suffixes, a total of v� b unique suffix values will

be generated. With the maximum size of each block being
bM , the number of candidate record pairs generated can be
estimated as

b� b2
M � uSARL � bv� b2

M; ð15Þ

for a record linkage, and for a deduplication as

b� bMðbM � 1Þ
2

� uSAD � b�
vbMðbM � 1Þ

2
: ð16Þ

These estimates assume each block contains exactly bM record
identifiers. In practice, it is very unlikely this will occur, and
thus less record pairs will be generated.

As can be seen in Fig. 7, one problem with suffix array-
based indexing is that errors and variations at the end of BKVs
will result in records being inserted into different blocks,
potentially missing true matches. To overcome this draw-
back, a modification of the suffix generation process is to not
only generate the true suffixes of BKVs, but all substrings
down to the minimum lengths of lm in a sliding window
fashion. For example, for the BKV “christen” and lm ¼ 5, this
approach would generate the substrings: “christen,”
“christe,” “hristen,” “christ,” “hriste,” “risten,” “chris,”
“hrist,” “riste,” and “isten.” This approach is similar to q-
gram-based indexing as described in Section 3.3. It can better
overcome errors and variations at different positions in the
BKVs, at the costs of creating more blocks and inserting
record identifiers into a larger number of blocks compared to
the original suffix array technique. This proposed variation
will be evaluated experimentally in Section 4.

3.4.1 Robust Suffix Array-Based Indexing

An improvement upon the original suffix array-based
indexing technique has recently been proposed [43]. The
idea is similar to adaptive blocking [40], in that the inverted
index lists of suffix values that are similar to each other in the
sorted suffix array are merged. An approximate string
similarity measure [35] is calculated for all pairs of neighbor-
ing suffix values, and if the similarity of a pair is above a
selected threshold t, then their lists are merged to form a new
larger block.

For example, using the given name suffix values from
Fig. 7, the normalized edit-distance string measure [35], and
a minimum similarity of t ¼ 0:85, then the following suffix
string pairs and their corresponding record identifier lists
will be merged into one block each: “atherina” and
“atherine” (with similarity 0.875 and resulting in list R1,
R2, R3), “catherina” and “catherine” (with similarity 0.889
and resulting in list R1, R3), and “therina” and “therine”
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Fig. 7. Suffix-array-based indexing with given names used as BKVs, a minimum suffix length lm ¼ 4, and a maximum block size bM ¼ 3. The two
tables on the right-hand side show the resulting sorted suffix array. The block with suffix value “rina” will be removed because it contains more than
bM record identifiers.
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(with similarity 0.857 and resulting in list R1, R2, R3). As
will be shown in the experimental evaluation in Section 4,
this indexing technique can lead to improved matching or
deduplication results at the cost of larger blocks, and thus
more candidate record pairs that need to be compared. A
detailed analysis of the efficiency and time complexity of
this approach has been presented elsewhere [43].

3.5 Canopy Clustering

This indexing technique is based on the idea of using a
computationally cheap clustering approach to create high-
dimensional overlapping clusters, from which blocks of
candidate record pairs can then be generated [29], [44].
Clusters are created by calculating the similarities between
BKVs using measures such as Jaccard or TF-IDF/cosine [37].
Both of these measures are based on tokens [29], [35], which
can be characters, q-grams or words. They can be implemen-
ted efficiently using an inverted index which has tokens,
rather than the actual BKVs, as index keys.

This inverted index data structure is built by converting
BKVs into lists of tokens (usually q-grams), with each
unique token becoming a key in the inverted index. All
records that contain this token in their BKV will be added to
the corresponding inverted index list. If the TF-IDF/cosine
similarity is used, additional information has to be
calculated and stored in the index. First, for each unique
token, the number of records that contain this token is
required. This corresponds to the term frequency (TF) of the
token, and equals the number of record identifiers stored in
a token’s inverted index list. Second, within the inverted
index lists themselves, the document frequency (DF) of a
token (i.e., how often it appears in a BKV) needs to be
stored. Fig. 8 shows an example of such an inverted index
data structure with DF and TF counts as required for the
TF-IDF/cosine similarity.

When all records in the database(s) have been inserted
into the inverted index, the TF and DF counts can be
normalized and the inverse document frequencies (IDF) be
calculated [37]. If Jaccard similarity is used neither
frequency information nor normalization is required.

Once the inverted index data structure is built, over-
lapping clusters, called canopies, can be generated [29]. For
this, initially all records are inserted into a pool of candidate
records. A canopy cluster is created by randomly selecting a
record rc from this pool. This record will become the centroid
of a new cluster. All records in the pool that are similar to rc
(according to the selected similarity measure) are added into
the current cluster. The Jaccard similarity between rc and any
other record rx in the pool is calculated as

sJ ¼
jtokenðrcÞ \ tokenðrxÞj
jtokenðrcÞ [ tokenðrxÞj

; ð17Þ

with the function tokenðrÞ returning the tokens of the BKV
of a record r, and 0 � sJ � 1. When the TF-IDF/cosine
similarity measure is used, the normalized TF and IDF
weight values, as stored in the inverted index, are included
into the similarity calculations [37], which makes this
measure computationally more expensive. Once the simila-
rities between rc and all other records in the pool are
calculated, an overlapping cluster can be created in two
different ways: based on thresholds or nearest neighbors.

3.5.1 Threshold-Based Approach

In this originally proposed approach [29], [44], two
similarity thresholds are used to create the overlapping
clusters. All records rx that are within a loose similarity, tl,
to rc are inserted into the current cluster (e.g., all records
with tl � sJ ). Of these, all records that are within a tight
similarity threshold tt (with tt � tl), will be removed from
the pool of candidate records.

This process of randomly selecting a centroid record rc,
calculating the similarities between this and all other
records in the pool, and inserting records into clusters, is
repeated until no candidate records are left in the pool. If
tl ¼ tt, the clusters will not be overlapping, which means
each record will be inserted into one cluster only. If both
tl ¼ 1 and tt ¼ 1 (i.e., exact similarity only), canopy
clustering will generate the same candidate record pairs
as traditional blocking.

Estimating the number of candidate record pairs that will
be generated with this approach is difficult (similar to q-gram
based indexing), because this number depends upon the
values of the thresholds tl and tt, the similarities between
BKVs, and the frequency distribution of their tokens.
Together, these factors determine how many record identi-
fiers will be inserted into each cluster, and how many will be
removed from the pool of candidate records in each step of the
algorithm. The random selection of the records used as cluster
centroids also results in a nondeterministic approach that can
result in different clusters for each run, and thus different
numbers of candidate record pairs generated.

One extreme situation would occur when the similarity
values between all BKVs (calculated using their tokens as
discussed above) are larger than the tt threshold, resulting
in one single cluster only that contains all record identifiers.
The other extreme situation would occur when all BKVs are
so different from each other that their similarities are below
tl, and thus each record is inserted only into the block that
contains the record identifiers that have the same BKV. In
this second situation, canopy clustering will generate the
same candidate record pairs as traditional blocking.

Assuming the number of clusters (or blocks) generated
equals b, and that all clusters contain the same number of
record identifiers, then the number of candidate record
pairs generated depends upon into how many clusters each
record will be inserted. The smallest number of candidate
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Fig. 8. Canopy clustering example with BKVs based on surnames, and their sorted bigram (q ¼ 2) lists including DF counts. The TF and DF counts in
the inverted index data structure are used to calculate TF-IDF weights.
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pairs will be generated when each record is inserted into
one cluster only. On the other hand, if each record is
inserted into v clusters, then, based on (1) and (12), the
number of candidate record pairs generated for a record
linkage can be estimated as

nAnB
b
� uCCRLT �

nAnBv
2

b
; ð18Þ

and for a deduplication (using (2) and (13)) the estimated
number of candidate record pairs generated is

nA
2

nA
b
� 1

� �
� uCCDT

� nAv
2

nAv

b
� 1

� �
: ð19Þ

As can be seen, for both a record linkage and a
deduplication the upper bound depends quadratically on
the number of times a record identifier is inserted into a
cluster. Given that in reality the generated clusters will not
be of uniform size, the largest clusters will generate the
largest numbers of candidate record pairs (similar as with
traditional blocking). For BKVs that follow a Zipf-like
distribution, (3) and (4) can be extended with the overhead
v similarly to (18) and (19) above.

3.5.2 Nearest Neighbor-Based Approach

An alternative to using two thresholds is to employ a
nearest neighbor-based approach to create the overlapping
clusters [39]. The idea is to replace the two threshold
parameters, tl and tt, with two nearest neighbor parameters,
nl and nt (with nl � nt). The first parameter, nl, corresponds
to the number of record identifiers that are inserted into
each cluster, while nt is the number of record identifiers that
are removed from the pool of candidate records in each step
of the algorithm.

Similar to the threshold-based approach, the process of
creating overlapping clusters starts by randomly selecting a
record rc from the pool of initially all records. Similarities are
then calculated between the rc and the records rx that have
tokens in common in the inverted index. The nl records
closest to rc are inserted into the current cluster, and of these
the nt records closest to rc are removed from the pool.

This approach will result in all clusters containing
nl record identifiers, independently of the frequency
distribution of the BKVs. Therefore, blocks of uniform size
will be created, allowing the calculation of the number of
generated record pairs. The number of clusters only
depends upon the number of records in the database(s) to
be matched or deduplicated, and the values of nl and nt.
The number of clusters generated corresponds to nA=nt and
nB=nt, respectively, and each cluster will contain nl records.
For a record linkage, the number of candidate record pairs
generated therefore equals

uCCRLN ¼ zCCRLN ¼
nAnl
nt

� �
� nBnl

nt

� �
¼ nAnBn

2
l

n2
t

; ð20Þ

while for a deduplication the number equals

uCCDN
¼ zCCDN

¼ nAnl
2nt

nAnl
nt
� 1

� �
: ð21Þ

The drawback of this approach is similar to the draw-
back of the sorted neighborhood technique based on a

sorted array, as discussed in Section 3.2.1. If there are BKVs
that are frequent (like the surnames “Smith” or “Meier”),
the generated clusters might not be big enough to include
all records with these BKVs, and therefore true matches
might be missed. The solution is to use BKVs that are the
concatenation of several record fields and that have a large
number of different values.

Compared to other indexing techniques, canopy cluster-
ing using both the threshold and the nearest neighbor
approach is not sensitive to errors and variations at the
beginning of BKVs, because the similarity measures used are
independent of the order of where tokens appear in BKVs.

Previous experiments [39] have shown that using the
nearest neighbor-based approach can result in an increase
in the number of true matches in the candidate records
pairs that are generated compared to the threshold-based
approach, and also in a higher robustness of the canopy
clustering technique with regard to changes in parameter
settings. The experiments presented in Sections 4 and 5 will
confirm these statements.

3.6 String-Map-Based Indexing

This indexing technique [45] is based on mapping BKVs
(assumed to be strings) to objects in a multidimensional
Euclidean space, such that the distances between pairs of
strings are preserved. Any string similarity measure that is a
distance function (such as edit-distance [35]) can be used in
the mapping process. Groups of similar strings are then
generated by extracting objects in this space that are similar to
each other. The approach is based on a modification of the
FastMap [46] algorithm, called StringMap, that has a linear
complexity in the number of strings to be mapped [45].

The first step of string-map-based indexing iterates over
d dimensions. For each dimension, the algorithm finds two
pivot strings that are used to form orthogonal directions.
Ideally, these two pivots are as far apart from each other as
possible. To find the two pivot strings, an iterative farthest
first selection process is used. Once the pivot strings have
been selected for a dimension, the coordinates of all other
strings are calculated based on the directions of these pivot
strings. Selecting an appropriate dimension d is based on
using a heuristic approach that iterates over a range of
dimensions and selects the one that minimizes a cost
function. Dimensions between 15 and 25 seem to achieve
good results [45].

Once all strings are mapped into a multidimensional
space using a suitable index data structure (the original
implementation uses an R-tree [45]), in the second step of this
indexing approach (the Retrieve step) clusters of similar
objects (that refer to similar strings) are retrieved. In the
implementation of string-map-based indexing evaluated in
the experiments, the originally implemented R-tree data
structure has been replaced with a grid-based index [47]. As
reported, the performance of most tree-based index struc-
tures degrade rapidly with more than 15 to 20 dimensions
[47], because nearly all objects in an index will be accessed
when similarity searches are conducted. The grid-based
index works by having a regular grid of dimensionality d
implemented as an inverted index in each dimension. The
index keys are the coordinate value of the objects, and all
objects mapped into the same grid cell in a dimension are
inserted into the same inverted index list.
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Similar to canopy clustering-based indexing, overlap-
ping clusters can be extracted from the multidimensional
grid index. An object (referring to a BKV) is randomly
picked from the pool of (initially all) objects in the grid-
based index, and the objects in the same, as well as in
neighboring grid cells, are retrieved from the index. Similar
to canopy clustering, either two thresholds, tl and tt, or the
number of nearest neighbors, nl and nt, can be used to insert
similar objects into clusters, and remove objects from the
pool with a similarity larger than tt, or that are the
nt nearest objects to the centroid object. Equations (18) to
(21) can be used to estimate the number of record pairs that
will be generated with string-map-based indexing and
using either a threshold or a nearest neighbor-based
approach.

A variation of this mapping-based indexing technique
has recently been proposed [48], with the basic idea being to
first map records into a multi-dimensional space, followed
by a mapping into a second lower-dimensional metric space
where edit-distance calculations are performed. Using a
KD-tree and a nearest neighbor-based similarity approach
allows for efficient matching. Experiment showed a reduc-
tion in runtime of 30 to 60 percent compared to string-map-
based indexing, while at the same time keeping the
matching accuracy [48].

4 EXPERIMENTAL EVALUATION

The aim of the experiments conducted was to evaluate the
efficiency and performance of the presented indexing
techniques within a common framework, in order to
answer questions such as: how do parameter values and
the choice of the blocking key influence the number and
quality of the candidate record pairs generated? How do
different indexing techniques perform with different types
of data? Which indexing techniques show better scalability
to larger databases?

All presented indexing techniques were implemented in
Python within the Febrl open source record linkage system
[26]. (available from: https://sourceforge.net/projects/
febrl/) To facilitate repeatability of the presented results,
the evaluation program used for these experiments (evalIn-
dexing.py) will be published as part of the next version of
Febrl. All experiments were conducted on an otherwise idle
compute server with two 2.33 GHz quad-core CPUs and
16 Gigabytes of main memory, running Linux 2.6.32 (Ubuntu
10.04) and using Python 2.6.5.

4.1 Test Data Sets

Two series of experiments were conducted, the first using
four “real” data sets that have previously been used by the
record linkage research community, and the second using
artificial data sets. Table 3 summarizes these data sets. The
aim of the first series of experiments was to investigate how
different indexing techniques are able to handle various
types of data, while the second series was aimed at
investigating the scalability of the different indexing
techniques to larger data sets.

The first three “real” data sets were taken from the
SecondString toolkit.1 “Census” contains records that were
generated by the US Census Bureau based on real census

data; “Cora” contains bibliographic records of machine
learning publications; and “Restaurant” contains records
extracted from the Fodor and Zagat restaurant guides. The
“CDDB” data set contains records of audio CDs, such as
their title, artist, genre, and year. This last data set was
recently used in the evaluation of a novel indexing
technique [41]. The true match status of all record pairs is
available in all four of these data sets.

Artificial data sets were generated using the Febrl data
generator [49]. This generator first creates original records
based on frequency tables that contain real name and
address values, as well as other personal attributes;
followed by the generation of duplicates of these records
based on random modifications such as inserting, deleting,
or substituting characters, and swapping, removing, insert-
ing, splitting, or merging words. The types and frequencies
of these modifications are also based on real characteristics.
The true match status of all record pairs is known. The
original and duplicate records were then stored into one file
each to facilitate their linkage.

As shown in Table 3, two series of artificial data sets
were created. The “Clean” data contain 80 percent original
and 20 percent duplicate records, with up to three
duplicates for one original record, a maximum of one
modification per attribute, and a maximum of three
modifications per record. The “Dirty” data contain 60 per-
cent original and 40 percent duplicate records, with up to
nine duplicates per original record, a maximum of three
modifications per attribute, and a maximum of 10 mod-
ifications per record.

4.2 Quality and Complexity Measures

Four measures are used to assess the complexity of the
indexing step and the quality of the resulting candidate
record pairs [9], [10]. The total number of matched and
nonmatched record pairs are denoted with nM and nN ,
respectively, with nM þ nM ¼ nA � nB for the linkage of
two databases, and nM þ nN ¼ nAðnA � 1Þ=2 for the dedu-
plication of one database. The number of true matched and
true nonmatched record pairs generated by an indexing
technique is denoted with sM and sN , respectively, with
sM þ sN � nM þ nN .

The reduction ratio, RR ¼ 1:0� sMþsN
nMþnN , measures the

reduction of the comparison space, i.e., the fraction of
record pairs that are removed by an indexing technique.
The higher the RR value, the less candidate record pairs are
being generated. However, reduction ratio does not take the
quality of the generated candidate record pairs into account
(how many are true matches or not).
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TABLE 3
Data Sets Used in Experiments

Artificial data sets containing 1,000, 5,000, 10,000, 50,000, and 100,000
records, respectively, were generated.

1. Available from: http://secondstring.sourceforge.net.
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Pairs completeness, PC ¼ sM
nM

, is the number of true
matched record pairs generated by an indexing techni-
que divided by the total number of true matched pairs.
It measures how effective an indexing technique is in
not removing true matched record pairs. PC corre-
sponds to recall as used in information retrieval [37].

Finally, pairs quality, PQ ¼ sM
sMþsN , is the number of

true matched record pairs generated by an indexing
technique divided by the total number of record pairs
generated. A high PQ value means an indexing technique
is efficient and generates mostly true matched record
pairs. On the other hand, a low PQ value means a large
number of nonmatches are also generated. PQ corre-
sponds to precision as used in information retrieval. The f-
score (or f-measure) [9], the harmonic mean of PC and
PQ, f ¼ PC	PQ

PCþPQ , will also be reported.

4.3 Experimental Setup

Rather than trying to find optimal parameter settings for
each combination of blocking key definition, indexing
technique and test data set, a large number of settings
were evaluated to provide a better understanding of the
average performance and scalability of the different
indexing techniques on different data sets. Because in
many real-world applications no training data are available
that would allow optimal parameter tuning, domain and
record linkage experts are commonly tasked with finding
the best settings experimentally.

For each data set, three different blocking keys were
defined using a variety of combinations of record fields.
String fields such as names and addresses were phoneti-
cally encoded using the Double-Metaphone [35] algorithm.
For example, for the “Census” data set, one blocking key
definition consisted of encoded surnames concatenated
with initials and zipcodes, while a second consisted of
encoded given names concatenated with encoded suburb
names. Due to space limitation, not all blocking key
definitions can be described in detail.

A large variety of parameter settings were evaluated. Four
string similarity functions (Jaro-Winkler, bigram, edit-distance,
and longest common substring) [35] were employed for the
adaptive sorted neighborhood, the robust suffix array, and
the string-map-based indexing techniques. For the two
nonadaptive sorted neighborhood techniques, the window
size was set to w ¼ f2; 3; 5; 7; 10g. Similarity thresholds were

set to t ¼ f0:8; 0:9g and q-grams to q ¼ f2; 3g for all indexing
techniques that require these parameters. For suffix array-
based indexing, the minimum suffix length and maximum
block sizes were set to lm ¼ f3; 5g and bM ¼ f5; 10; 20g. For
canopy clustering, both the Jaccard and TF-IDF/cosine simila-
rities were used, in combination with global thresholds
tt=tl ¼ f0:9=0:8; 0:8=0:7g or nearest neighbor parameters
nt=nl ¼ f5=10; 10=20g. The same threshold and nearest
values were also used for string-map-based indexing. The
grid size for this technique was set to 100 and 1,000, and the
mapping dimension to d ¼ f15; 20g.

For each data set, a total of 163 parameter settings were
evaluated. Table 4 summarizes the experimental setup and
shows runtime results. Figs. 9, 10, 11, 12, and 13 show for
each indexing technique the average and standard deviation
values over all blocking key definitions and combinations of
parameter settings. The presented results on these various
data sets should therefore provide some indication of the
performance and scalability of the different indexing
techniques. Note that for the scalability experiments not all
results are shown, because either an indexing technique
required more than the available 16 Gigabytes of main
memory, or its runtime was prohibitively slow to conduct
many experiments.

5 DISCUSSION

Looking at the runtime results shown in the right-hand side
of Table 4, one can clearly see that the q-gram-based
indexing technique is the overall slowest technique by a
very large margin (in average 40 times slower than the
second slowest technique). This confirms earlier experi-
ments [32], and as a result this technique is not suitable for
linking or deduplicating large databases.

Both string-map-based indexing approaches, the suffix
array-based approaches, and threshold-based canopy clus-
tering also have fairly slow average and maximum
runtimes. On the other hand, the more simpler approaches,
like traditional blocking and the array-based sorted
neighborhood approach, are the overall fastest techniques.
Among the other fastest techniques are the robust suffix
array and adaptive sorted neighborhood approaches. In the
following discussion we will see if these fast indexing times
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come at the cost of lower indexing quality (i.e., lower PC
and PQ values).

Fig. 9 shows the results for the four “real” data sets. As
can be seen in Fig. 9a, some indexing techniques have large
variations in the reduction ratio (RR) they attain, while
others have a high RR independently of the data sets they
are applied on. The array-based sorted neighborhood and
the three suffix array-based indexing techniques achieve
nearly uniformly high RR values for all data sets, because
the size of the blocks generated by them is either
independent of the data to be linked or deduplicated, or
limited to a maximum size determined by a parameter.
Therefore, because the number of candidate record pairs
generated by these techniques can easily be calculated, they
can be useful for applications where a linkage or deduplica-
tion must be done within a certain amount of time.

On the other hand, the large variations of RR values by
other indexing techniques for some data sets are due to the
varying sizes of the blocks generated by them. For these
techniques, block sizes depend upon the frequency dis-
tribution of the BKVs.

The quality of the candidate record pairs generated by
the different indexing techniques, measured using PC, PQ,
and the f-score, is mostly influenced by the characteristics
of the data set and the choice of blocking key definition.
This can be seen by the large standard deviations for some
data sets in Figs. 9b, 9c, and 9d. All three measures differ
more prominently between data sets than between indexing

techniques. For the “Census” data set, for example, all
techniques achieve a PC value above 0.8, while for the
“CDDB” data set none produces a PC value larger than 0.4.
This highlights the need for the careful definition of
blocking keys, which needs to be done uniquely to each
data set. As the very low PQ and f-score results for “CDDB”
and “Restaurant” show, due to variations and errors in
these data sets, that cannot be overcome with appropriate
blocking key definitions, it might not be possible at all to
achieve good quality indexing with traditional techniques.

Among the techniques that attain the lowest PC and f-score
values are the suffix array-based approaches. This is because
the high RR they achieve comes at a cost of low PQ and f-score
values. The highest performing technique with regard to PC
is the inverted index-based sorted neighborhood approach,
which is surprising given its sensitivity to errors and
variations at the beginning of BKVs.

The overall efficiency of the different indexing techni-
ques is shown in Fig. 9d as the f-score of PC and PQ.
Surprisingly, traditional blocking is the best performing
technique for two of the four data sets, closely followed by
threshold-based canopy clustering, q-gram-based indexing,
and the adaptive sorted neighborhood technique. This
figure once more highlights that the definition of suitable
blocking keys is one of the most crucial components in the
indexing step for record linkage or deduplication, and not
the actual indexing technique employed.

Moving on to the results achieved with the artificial data
sets shown in Figs. 10, 11, 12, and 13, as can be seen the RR
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Fig. 9. Experimental results for the four “real” data sets. Average values and standard deviations are shown.
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values for most indexing techniques stay high—or get even

higher—as the data sets get larger. This indicates a

subquadratic increase in the number of candidate record

pairs generated as the data sets get larger. One exception is

the threshold-based string-map indexing technique, which

not only has the lowest average RR values in general, but

also shows to be very sensitive toward parameter settings.

As expected, the PC values are higher for the “Clean” data
sets compared to the “Dirty” data sets, because the BKVs for
the former contain less errors and variations and thus more
records were inserted into the correct blocks. As Figs. 11 and
12 show, for several indexing techniques the PC or PQ values
drop significantly as the data sets get larger. As can be seen,
having a constant PC value across data sets size comes at the
cost of lower PQ values, and vice versa.
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Fig. 11. Pairs completeness results for the artificial data sets. Average values and standard deviations are shown.

Fig. 10. Reduction ratio results for the artificial data sets. Average values and standard deviations are shown.

Fig. 13. F-score results for the synthetic data sets. Average values and standard deviations are shown.

Fig. 12. Pairs quality results for the artificial data sets. Average values and standard deviations are shown.
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The reason for the drop in PC values are the fixed
window size for the sorted neighborhood approaches, the
fixed number of nearest neighbors for the canopy clustering
and string-map-based approaches, and the fixed maximum
block size for the suffix array-based techniques. As the data
sets get larger, more records will have the same or similar
BKVs, and the fixed block size limits will result in records
that do have the same (or very similar BKVs) not being
included into the same block, thereby missing increasingly
more true matches with larger data sets. On the other hand,
traditional blocking and the threshold-based indexing
techniques do not have maximum block sizes, and thus
all records with the same or similar BKVs are inserted into
the same blocks without limitations.

The costs of being able to keep constant PC values
with larger data sets are lower PQ values. This means
that as data sets get larger, the number of candidate
record pairs that will be generated increases faster for
threshold-based techniques than for techniques that
somehow limit the maximum block size. This tradeoff
between PC and PQ is similar to the precision-recall
tradeoff in information retrieval [37].

One aspect of indexing techniques that is of importance
to their practical use is their robustness with regard to
parameter settings. Ideally, an indexing technique should
achieve a high RR and a high f-score value for a large
variety of parameter settings, because otherwise a user
needs to carefully tune the parameters of an indexing
technique. As Fig. 13 shows, the string-map and suffix
array-based approaches have the largest standard devia-
tions in the f-score values they achieve.

For effective parameter tuning, some form of “gold
standard” data, where the true match status of record
pairs is known, must be available. Such data must have
the same characteristics as the data to be linked or
deduplicated. As can be seen from Fig. 13, traditional
blocking, the adaptive sorted neighborhood approach and
threshold-based canopy clustering achieve high f-score
values for all their parameter settings.

6 RELATED RESEARCH

Research into indexing for record linkage and deduplica-
tion can be classified into two categories. The first category
is to develop new and improve existing techniques with the
aim of making them more scalable to large data sets while
keeping a high linkage quality [22], [33], [40], [41], [43], [48],
[50], [51]. The techniques presented in this survey are efforts
toward this goal.

The second category of research into indexing is the
development of techniques that can learn optimal blocking
key definitions. Traditionally, the choice of blocking keys is
made manually by domain and record linkage experts.
Recently, two supervised machine learning-based ap-
proaches to optimally select blocking keys have been
proposed [52], [53]. They either employ predicate-based
formulations of learnable blocking functions [52], or use the
sequential covering algorithm which discovers disjunctive
sets of rules [53]. Both approaches aim to define blocking
keys such that the number of true matches in the candidate
record pairs is maximized, while keeping the total number
of candidate pairs as small as possible. Both approaches rely
on training examples, i.e., pairs of true matches and

nonmatches. Such training data are often not available in
real-world applications, or they have to be prepared
manually. In principle, these learning approaches can be
employed with any of the indexing techniques presented in
this survey.

Another approach to reduce the computational efforts of
the record linkage process is to minimize the number of
costly (string) comparisons that need to be made between
records. One recently proposed technique is based on a
matching tree that allows early match decisions without
having to compare all attributes between two records [54],
while another technique sequentially assesses the attributes
and stops the comparison of two records once a match
decision can be made [55].

A large amount of work has also been conducted by the
database community on similarity joins [42], [51], [56], [57],
[58], [59], where the aim is to facilitate efficient and
scalable approximate joins for similarity measures such as
edit or Jaccard distance. Another avenue of work is to
efficiently index uncertain databases [60], as well as
finding similarities between objects in uncertain databases
[61]. Concurrently, the information retrieval community
has developed techniques to detect duplicate documents
returned by (web) search queries [6], [7]. In this domain,
fast matching and scalability to very large data collections
are of paramount importance.

Real-time entity resolution of databases that contain
personal information has recently also attracted some
interest [21], because many applications increasingly re-
quire the matching of query records to large databases of
known entities in real time rather than in batch mode.

7 CONCLUSIONS AND FUTURE WORK

This paper has presented a survey of six indexing techniques
with a total of 12 variations of them. The number of candidate
record pairs generated by these techniques has been
estimated theoretically, and their efficiency and scalability
has been evaluated using various data sets. These experi-
ments highlight that one of the most important factors for
efficient and accurate indexing for record linkage and
deduplication is the proper definition of blocking keys.
Because training data in the form of true matches and true
nonmatches is often not available in real-world applications,
it is commonly up to domain and linkage experts to decide
how such blocking keys are defined.

The experimental results showed that there are large
differences in the number of true matched candidate record
pairs generated by the different techniques, but also large
differences for several indexing techniques depending upon
the setting of their parameters. The variety of parameters
that have to be set by a user, and the sensitivity of some of
them (especially global thresholds) with regard to the
candidate record pairs generated, makes it somewhat
difficult to successfully apply these techniques in practice,
as parameter settings depend both upon the quality and
characteristics of the data to be linked or deduplicated.

Due to space limitation it was not possible to include an
empirical evaluation of the theoretical estimates of the
number of candidate record pairs that will be generated, as
was provided in Sections 3.1 to 3.6. Such an evaluation will
be part of future work. Other future work includes the
implementation of further recently developed new indexing
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techniques [22], [41], [48] into the Febrl framework, as well
as the investigation of learning techniques for efficient and
accurate indexing [52], [53].

The indexing techniques presented in this survey are
heuristic approaches that aim to split the records in a
database (or databases) into (possibly overlapping) blocks
such that matches are inserted into the same block and
nonmatches into different blocks. While future work in the
area of indexing for record linkage and deduplication
should include the development of more efficient and more
scalable new indexing techniques, the ultimate goal of such
research will be to develop techniques that generate blocks
such that it can be proven that 1) all comparisons between
records within a block will have a certain minimum
similarity with each other, and 2) the similarity between
records in different blocks is below this minimum similarity.
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