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Abstract—RFID technology can be applied to a broad range of areas. In particular, RFID is very useful in the area of business, such

as supply chain management. However, the amount of RFID data in such an environment is huge. Therefore, much time is needed to

extract valuable information from RFID data for supply chain management. In this paper, we present an efficient method to process a

massive amount of RFID data for supply chain management. We first define query templates to analyze the supply chain. We then

propose an effective path encoding scheme that encodes the flows of products. However, if the flows are long, the numbers in the path

encoding scheme that correspond to the flows will be very large. We solve this by providing a method that divides flows. To retrieve the

time information for products efficiently, we utilize a numbering scheme for the XML area. Based on the path encoding scheme and the

numbering scheme, we devise a storage scheme that can process tracking queries and path oriented queries efficiently on an RDBMS.

Finally, we propose a method that translates the queries to SQL queries. Experimental results show that our approach can process the

queries efficiently.

Index Terms—RFID, supply chain management, path encoding scheme, prime number.

Ç

1 INTRODUCTION

AS the size of the RFID tag becomes smaller and the price
of the RFID tag gets lower, RFID technology has been

applied to many areas. It is different from existing
technologies, such as barcode systems and magnetic card
systems, in that barcode systems and magnetic card systems
require contact between a detector and an object. RFID
readers in RFID systems, on the other hand, can detect RFID
tags without contact.

A typical example of RFID technology being used is
supply chain management. In supply chain management, in
order to know the movements of products easily, an RFID
tag is attached to a product. If the product with an RFID tag
moves or stays near the detection region, RFID readers will
detect RFID tags and the detected information will be
generated in the form of (tag identifier,1 location, time). As the
flow of the product is detected easily by RFID technology, it
is observed that RFID can be used to revolutionize supply
chain management.

The RFID data generated in each region (i.e., (tag identifier,
location, time)) are sent to the central server. Then, the data
are transformed into stay records in the form of (tag identifier,
location, start time, end time). While raw RFID data have many
duplicates, the transformed data (i.e., stay records) do not
have duplicates. We can represent how long a tag stays at a

location by the start time and end time of stay records. The
stay records for each tag compose a trace record that gives us
movement history with time information for the tag. In this
paper, we will use trace records instead of stay records for
storing RFID data in the central server.

We can store RFID data in a relational table BASIC_
TABLE(TAG_ID, LOC, START_TIME, END_TIME) as a
straightforward method, where TAG_ID represents the tag
identifier, LOC the location, START_TIME the time when the
tag enters the location, and END_TIME the time when the
tag leaves the location. The queries that analyze the supply
chain are related to the product transition. For example, a
manager may ask the query “Find the number of laptops that
go through locations Factory1, Distribution Center1, and
Store1.” To evaluate the query with BASIC_TABLE, we must
perform self-joins of BASIC_TABLE many times. Also, the
size of BASIC_TABLE is big. Therefore, it requires a lot of
time to execute the query with BASIC_TABLE.

To support efficient path-dependent aggregates for RFID
data, Gonzalez et al. propose a new warehousing model
[14]. In the model, STAY_TABLE(GID, LOC, START_TIME,
END_TIME, COUNT) is used to store RFID data efficiently.
In many RFID applications, products usually move together
in large groups during the early stages and move in small
groups during the later stages. Therefore, they represent
stay records with the same location and time by one record
such as (tag identifier list, location, start time, end time, the
number of tags with the same location and time). To link
locations efficiently (i.e., to perform self-joins of STAY_
TABLE efficiently), the tag identifier list is encoded by the
prefix encoding scheme. The value of the prefix encoding
scheme corresponds to GID in STAY_TABLE. To know
whether two locations (A and B) are linked, the prefix
encoding scheme checks whether the GID that corresponds
to A is the prefix of the GID that corresponds to B.

Therefore, the approach by Gonzalez et al. [14] reduces
the size of the table significantly and improves the join cost.
However, if products do not move together in large groups,
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the size of the table will not be largely reduced. In this case,
the performance of the approach by Gonzalez et al. does not
have a great benefit compared to that of the approach with
BASIC_TABLE. Also, since the prefix encoding scheme uses
a string comparison in joining tables, it needs much more
time than a number comparison. Thus, we propose a new
approach to store RFID data and process queries for supply
chain management. Since the queries related to the object
transition in supply chain management was not defined
formally in [14], we first define query templates for tracking
queries and path-oriented queries to analyze the supply
chain. Then, to solve the above drawbacks, we propose a
new approach.

While Gonzalez et al. [14] focus on groups in which
products move together, we focus on the movement for
each tag. The movement of one tag makes a path in supply
chain management. Therefore, we devise a path encoding
scheme to process tracking queries and path-oriented
queries efficiently. The proposed path encoding scheme
can encode a path with only two numbers, which is
motivated by Wu et al. [39]. The numbers are called
Element List Encoding Number and Order Encoding
Number, and will be explained in detail subsequently. In
[39], in order to determine whether a relationship exists
between two elements in an XML tree, a property of prime
numbers is used. In addition, to preserve the global order
for elements, simultaneous congruence values are used. In
this paper, we use the property of prime numbers to encode
nodes in a path, and simultaneous congruence values to
encode the ordering among nodes in the path. Our encoding
scheme is based on the Fundamental Theorem of Arithmetic
and the Chinese Remainder Theorem. Using the proposed
path encoding scheme, we can efficiently retrieve paths that
satisfy the path condition in a query. To store the time
information related to the movement, we separate the time
information from trace records. We use the region number-
ing scheme [40], which is widely used in the XML area, in
order to retrieve the time information efficiently. Based on
the path encoding scheme and the region numbering
scheme, we devise a new relational schema to store the
path information and the time information for tags.

If a path is long, its Element List Encoding Number and
Order Encoding Number are very large and an RDBMS
may not support the data type for storing very large
numbers. Although we can implement our encoding
scheme on a special purpose database engine, it has many
disadvantages. Therefore, we propose a method to divide a
path. If we cannot store a path by using one attribute in an
RDBMS, we divide the path into multiple path segments,
each of which can be stored by using one attribute.

Based on the encoding schemes described above, we
translate query templates into SQL queries. However, in the
case of dividing paths, the SQL translation is not straight-
forward due to the computation overflow. Therefore, we
propose a method to translate query templates into SQL
queries, which do not cause the computation overflow, by
using mathematical analyses.

1.1 Contributions

The contributions of the paper are as follows:

. Encoding Scheme to Encode Flows of Products: To
support tracking queries and path-oriented queries

efficiently, we propose a path encoding scheme for
flows of products. Element List Encoding Number is
computed by the product of the prime numbers that
correspond to the nodes in a path. Based on the
Chinese Remainder Theorem, Order Encoding Num-
ber is computed. By using the two numbers, we can
easily find paths that satisfy the path condition.

. Efficient Relational Schema and Query Transla-
tion: We propose an efficient relational schema with
the path encoding scheme and the region numbering
scheme. Based on the schema, we propose a method
that translates tracking queries and path-oriented
queries into SQL queries.

. Effective Method to Store Long Paths: A long path
is common in typical supply chain management. The
product of prime numbers for a long path can
become excessively large, which can cause a limit to
the path length. To avoid overflows in storing large
numbers, we provide a method that divides the long
path into several path segments.

. Extended Query Translation for Handling Long
Paths: When we store a long path by dividing the
path, the computation overflow may occur during
the execution of the translated SQL query. To
overcome the computation overflow, we extend the
method to translate query templates into SQL
queries by using mathematical formulas.

. Defining of Query Templates to Analyze the
Supply Chain: We define query templates to
analyze the supply chain. We consider query
templates for tracking queries and path-oriented
queries. For path-oriented queries, we provide a
grammar to effectively express the path condition
for products like XPath [3].

. Experimentation to Validate Our Proposed Ap-
proach: Through extensive experiments, we show
that our approach is efficient. Experimental results
show that the query performance of our approach is
better than the recent approach in most queries.

1.2 Organization

The rest of the paper is organized as follows: In Section 2, we
discuss related work on managing RFID data. In Section 3,
we deal with data formats and define query templates for
tracking queries and path-oriented queries in supply chain
management. We show the architecture that stores RFID
data and process queries in Section 4. We describe our path
encoding scheme in Section 5 and devise a storage scheme
based on our path encoding scheme in Section 6. We propose
a method to translate tracking queries and path-oriented
queries into SQL queries in Section 7, and experimentally
show the superiority of our approach in Section 8. We make a
conclusion in Section 9.

2 RELATED WORK

In contrast to the initial study for RFID, which focuses on the

device, many studies have been done recently to manage

RFID data as the amount of RFID data has become large.
The system architecture for managing RFID data is

discussed in [8], [11], [17]. Bornhövd et al. [8] describe the
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Auto-ID infrastructure (Device Layer/Deivce Operation
Layer/Business Processing Bridging Layer/Enerpise Appli-
cation Layer). The Auto-ID infrastructure integrates data
from smart items such as RFID and sensor with existing
business processes. Chawathe et al. [11] suggest a layered
architecture for managing RFID data (Tag/Reader/Savant/
EPC-IS/ONS server). In the work of Hag et al. [17], two
software layers are proposed: the ubiquity agent architecture
and the tag centric RFID application architecture. The
ubiquity agent architecture is for a general-purpose core
architecture. The tag centric RFID application architecture is
for the RFID application architecture that specializes the
generic agent architecture.

RFID data are generated in the form of streaming data
and then stored in a database for data analyses. Therefore,
there are two types of approaches for managing RFID data.
One approach is online processing for RFID data and it is
related to data stream processing [5], [6], [19], [36]. The
other approach is offline processing and it is related to
stored data processing [4], [7], [13], [14], [18], [29], [35].

In the aspect of viewing RFID data as data streams, event
processing and data cleaning have been studied. RFID data
have a temporal property, which is important in analyzing
data. Therefore, a temporal RFID event can be defined.
However, this cannot be well supported by traditional ECA
(Event-Condition-Action) rule systems. Therefore, Wang et
al. [36] formalize the specification and semantics of RFID
events and rules including temporal RFID events. Also,
they propose a method to detect RFID complex events
efficiently. Bai et al. [6] explore the limitation of SQL queries
in supporting temporal event detection and discuss an SQL-
based stream query language to provide comprehensive
temporal event detection.

Inevitably, RFID data have some errors, such as
duplicate readings and missing readings. To rescue missing
readings, the first declarative and adaptive smoothing filter
for RFID data (SMURF) [19] is proposed. SMURF controls
the window size of the smoothing filter adaptively using
statistical sampling. Also, Bai et al. [5] propose several
methods to filter RFID data.

In the aspect of viewing RFID data as stored data,
various approaches exist that can manage RFID data. Since
RFID readers can detect RFID tags easily and quickly, object
tracking that uses RFID is widely used. To trace tag
locations, a new index is proposed by Ban et al. [7]. They
point out the problem of representing trajectories in RFID
data and propose a new data model to solve it. Also, they
devise a new index scheme called the Time Parameterized
Interval R-Tree as a variant of the R-Tree. In order to
represent a collection of tag identifiers generated by item
tracking applications compactly, a bitmap data type is
proposed and a set of bitmap access and manipulation
routines is provided in [18]. Agrawal et al. [4] deal with the
tracing of items in distributed RFID databases. They
introduce the concept of traceability networks and propose
an architecture for traceability query processing in dis-
tributed RFID databases.

Since RFID data have a temporal property, it is difficult
to model RFID data by using the traditional ER-model.
Therefore, Wang et al. [35] propose a new model called the

Dynamic Relationship ER Model (DRER), which simply
adds a new relationship (dynamic relationship). They also
propose methods to express temporal queries based on
DRER by using SQL queries. Although we can use the
above techniques, such as indexes and bitmap data types, to
process tracking queries and path-oriented queries, it is
inefficient to process the queries since they do not consider
the object transition.

Gonzalez et al. [14] propose a new warehousing model
for the object transition and a method to process a path
selection query. To get aggregate measures on a path, they
join tables many times. Therefore, they use compression in
order to reduce the join cost. However, the proposed
compression is useless if products do not move together in
large groups.

A preliminary version of this work appeared in [22].
While an efficient storage scheme and query processing for
RFID data in supply chain management were proposed by
Lee and Chung [22], they cannot be applied when the path
length is large since Element List Encoding Number and
Order Encoding Number cannot be stored by using the data
types that an RDBMS supports. Long paths are common in
typical supply chain management because there are many
checkpoints in a route. In such a case, the work of Lee and
Chung [22] should be implemented on a special-purpose
DBMS that can support very large numbers.

To solve the problem, we propose a method to divide a
long path. By dividing the path, we can store the long path
without modifying an RDBMS or implementing a special-
purpose database engine. However, in the case of dividing
the path, if we use the translation method proposed in [22],
computation overflow may occur. Therefore, we provide a
method to translate query templates into SQL queries, which
do not cause the computation overflow, by mathematical
analyses. Also, we redo the entire experiment with data sets
generated from a real-life example and additional queries.

In addition, managing object transitions has been dealt
with in various areas with different views and terminolo-
gies. In the vehicle tracking area, most papers focus on how
to detect and track vehicle objects than how to manage the
generated tracking data. To track vehicles, video cameras
are generally used [16], [20], [21]. To detect and track
vehicles from video streams efficiently, Kanhere et al. [20]
and Kim et al. [21] propose image-processing-based
methods while Haidarian-Shahri et al. [16] use a graph-
based approach. They do not consider how to manage the
tracking data for vehicles. In this paper, we focus on
managing the flows of products that are similar to the
tracking data.

In XML databases, the path information can be stored in
XML data format. In [10], [25], [34], XML data can be
represented as compact data (i.e., compressed data) and
direct query processing is available in such a compact
representation. Also, to index and query XML data, various
approaches are proposed [23], [24], [30], [33], [37], [39], [40].
However, in an environment where so much path data are
generated, the existing approaches in the XML area cannot
manage and analyze the path information for products
efficiently since they do not focus on many ancestor/
descendant relationships in a query.

In spatio-temporal databases, the data generated from
moving objects (e.g., vehicles) are manipulated. As moving
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objects go around, the object movement information is
generated and its collection composes the trajectories of
moving objects. In [12], [15], the data structure and model
for moving objects are proposed. Also, in [26], [27], [28],
[32], [38], to index and query the data from moving objects,
various index structures and algorithms are used. In the
aspect of representing object movements, the trajectory data
of moving objects and the flow information of products in
supply chain management using RFID are similar. Both the
trajectories of moving objects and the flow information of
products can be represented as the set of <ObjectID,
Location, Time>. However, the locations of products in
RFID applications are limited since they are detected
through the fixed RFID readers. In contrast, the locations
of moving objects in spatio-temporal databases are not
limited. Also, in spatio-temporal databases, most queries
are related to the locations of objects (e.g., k-nearest
neighbor query, range query) rather than the flow of
objects. Therefore, query processings in these two areas
are quite different, although the data can be represented in
a similar format.

3 PROBLEM DEFINITION

Raw RFID data consist of a set of triples (TagID, Loc,
Time), where

. TagID is the Electronic Product Code (EPC) of the
tag and is used for identifying the tag uniquely,

. Loc is the location of the RFID reader which detects
the tag,

. Time is the time of detecting the tag.

We translate raw RFID data generated in supply chain
management into a set of stay records that do not have
duplicates. A stay record has the form (TagID, Loc,
StartTime, EndTime), where

. TagID and Loc are the same as above,

. StartTime is the time when the tag enters the
location,

. EndTime is the time when the tag leaves the location.

From the stay records of a tag, we can construct the
trace record of the tag in the form of TagID: L1½S1;
E1� ! � � � ! Ln½Sn;En�, where L1; . . . ; Ln are the locations
where the tag is detected, Si is StartTime at the location
Li, Ei is EndTime at the location Li, and Li½Si; Ei� is
ordered by Si. We use a set of trace records instead of raw
RFID data in our systems.

Example 1. Fig. 1a shows raw RFID data and Fig. 1b
shows a set of trace records that corresponds to raw

RFID data. From (tag1, A, 2) and (tag1, A, 3), we get
the stay record (tag1, A, 2, 3). Similarly, we can
compute stay records (tag1, B, 5, 7) and (tag1, C, 8, 9)
for tag1. Finally, we can compute the trace record,
tag1 : A½2; 3� ! B½5; 7� ! C½8; 9�.

To analyze the supply chain, we use queries for the object
transition. Although Gonzalez et al. [14] use a path selection
query, it is insufficient to express the relationship between
locations. Therefore, we define query templates to analyze
the supply chain. We consider query templates for tracking
queries and path-oriented queries. The tracking query finds
the movement history for the given tag. The path-oriented
query is classified into the path-oriented retrieval query and
the path-oriented aggregate query. The path-oriented retrie-
val query finds tags that satisfy given conditions (including a
path condition), and the path-oriented aggregate query
computes the aggregate value for tags that satisfy given
conditions (including a path condition). In query templates
for the path-oriented retrieval query and the path-oriented
aggregate query, we provide a grammar to effectively
express path conditions for products like XPath [3].

Fig. 2 shows the formal definition for query templates in
supply chain management. There are three query templates
(tracking query, path-oriented retrieval query, path-or-
iented aggregate query). The query template for a tracking
query has only a tag identifier to trace the tag. The path-
oriented retrieval query consists of Path Condition and Info
Condition. The path-oriented aggregate query needs Ag-
gregate Function as well as Path Condition and Info
Condition. Path Condition uses a grammar similar to
XPath. Path Condition consists of a Step sequence. Each
Step has a parent axis (/) or an ancestor axis (//). Also, each
Step may have Time Conditions. Time Condition is the
predicate for StartTime and EndTime. The argument for
Aggregate Function (i.e., Time Selection) allows only the
time information. We can express various queries in supply
chain management by using the query templates in Fig. 2.
We show some examples for tracking queries and path-
oriented queries in Fig. 3.

Our problem definition is as follows: For an environment
where there is a large amount of RFID data in supply chain
management and users issue tracking queries and path-
oriented queries, devise an efficient storage scheme and
processing method for the queries.

4 ARCHITECTURE

Fig. 4 shows the architecture to store RFID data, and process
tracking queries and path-oriented queries in supply chain
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management. The central server receives raw RFID data
from various regions whose format is ðTagID; Loc; T imeÞ.
The raw RFID data are transformed into trace records after
sorting the RFID data by the tag identifier and the time (i.e.,
TagID : Loc1½S1; E1� ! � � � ! Locn½Sn;En�). The path infor-
mation in the trace records is stored by using Element List
Encoding Number and Order Encoding Number, and the
time information in the trace records is stored by using
Region Number. Since we use prime numbers instead of
location names, the (Location, Prime Number) list is kept in
memory as a hash structure. Based on the above encoding

schemes, we store trace records by using the relational
schema (PATH_TABLE, TAG_TABLE, and TIME_TABLE).
If a user requests a tracking query, a path-oriented retrieval
query, or a path-oriented aggregate query, Query Translator
translates it into an SQL query. Then, the SQL query is
processed by an RDBMS and the result is sent to the user.

5 PATH ENCODING SCHEME FOR TAG MOVEMENTS

In this section, we devise a new path encoding scheme to
represent tag movements compactly and efficiently. A
product with an RFID tag goes through many locations.
Its movements are represented by trace records in the form
of TagID: L1½S1; E1� ! � � � ! Ln½Sn;En�. In supply chain
management, it is important to analyze the object transition.
To manage the object transition efficiently, we first extract
the flow information from trace records, and it composes
the path L1 ! � � � ! Ln. We then propose a path encoding
scheme for encoding the path L1 ! � � � ! Ln in order to
analyze the object transition efficiently.

We can represent different paths for each product by a
tree structure. Fig. 6 shows the tree structure for trace
records in Fig. 5. We assume that there is no cycle in a path.
However, we will explain how to store and query paths
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with cycles later. The path of each tag composes the tree by
eliminating duplicate nodes. The numbers beside the nodes
are prime numbers, which will be explained subsequently.
In Fig. 6, the dark nodes mean that there are tags whose
final location is the node. We store all paths that end at dark
nodes, which are A! B! C, A! B! D, A! E,
A! E ! C, and A! D. Although a huge amount of RFID
data is generated, the size of the tree is small.

To encode a path, we can consider various techniques in
the XML area [23], [25], [30], [33], [37], [39], [40]. However,
those techniques are inefficient in processing queries that
have many ancestor-descendant relationships, such as
“Find the tags that go through locations L1; L2; L3

(==L1==L2==L3).” In supply chain management, we need
such queries to analyze the flows of tags. Before proposing a
new path encoding scheme, we introduce two well-known
theorems [31].

Theorem 1. The Fundamental Theorem of Arithmetic (The
Unique Factorization Theorem): Any natural number greater
than 1 is uniquely expressed by the product of prime numbers.

For example, 231 ¼ 3� 7� 11 and the product of any
other prime number combination for 231 does not exist.

Theorem 2. The Chinese Remainder Theorem: Suppose that
p1; p2; . . . ; and pn are pairwise relatively prime numbers.
Then, there exists X with 0 � X < p1p2 . . . pn which solves
the system of simultaneous congruences.

X mod p1 ¼ a1

X mod p2 ¼ a2

� � �
X mod pn ¼ an

For example, consider the system of simultaneous
congruences, such as X mod 3 ¼ 2, X mod 7 ¼ 3, and
X mod 11 ¼ 2. Then, by Theorem 2, there exists X with
0 � X < 3� 7� 11. In this example, X is 101. We can
compute X by using the method in [1].

Let L1 ! L2 ! � � � ! Ln be a path to encode. Suppose
that each location is associated with a different prime
number, the nodes with the same location have the same
prime number, and the prime number for location Li is
denoted by PrimeðLiÞ. Then, we define Element List
Encoding Number for the path L1 ! L2 ! � � � ! Ln as
PrimeðL1Þ � PrimeðL2Þ � � � � � PrimeðLnÞ. If Element List
Encoding Number is given, we can know the locations
that compose the path since Element List Encoding
Number is uniquely factorized by the product of prime
numbers that correspond to locations by Theorem 1.
However, although we know the locations in the path by
Element List Encoding Number, we cannot know the
ordering between the locations. To encode the ordering

information compactly and efficiently, we consider the
system of simultaneous congruences.

X mod PrimeðL1Þ ¼ 1

X mod PrimeðL2Þ ¼ 2

� � �
X mod PrimeðLnÞ ¼ n

Here, 1; 2; . . . ; and n are the levels (i.e., orders) of the
nodes that correspond to L1; L2; . . . ; and Ln, respectively.
Since PrimeðL1Þ; PrimeðL2Þ; . . . ; and PrimeðLnÞ are prime
numbers, they are pairwise relatively prime numbers. Thus,
by Theorem 2, there exists X with 0 � X < PrimeðL1Þ �
PrimeðL2Þ � � � � � PrimeðLnÞwhich solves the system of the
above simultaneous congruences. We callX Order Encoding
Number. Given Order Encoding Number, we can know the
order information for any location Li in the path by
computing X mod PrimeðLiÞ. Sometimes, PrimeðLi) may
be less than i. To prevent it, a prime number that is greater
than the maximum path length is assigned to a location.

Our use of prime numbers is similar to that in [39].
However, the approach in [39] assigns different prime
numbers to each element in an XML tree that can have
millions of elements, while our approach assigns different
prime numbers to different locations in a tree for trace
records that has, at most, a few hundred locations. There-
fore, in a typical application, the approach in [39] generates
extremely large prime numbers. Furthermore, the approach
in [39] orders all the elements of an XML tree, while we
order only the locations on a path whose length is much
smaller than the tree for trace records.

Therefore, we can encode the path by using Element List
Encoding Number and Order Encoding Number. Although
a path condition has multiple ancestor-descendant relation-
ships, we can find out whether a path satisfies the path
condition in Fig. 2 by checking some simple mathematical
conditions. We will explain how we process tracking
queries and path-oriented queries efficiently by using
Element List Encoding Number and Order Encoding
Number in Section 7.

Example 2. Assume that in Fig. 6, the prime numbers that
correspond to A;B;C;D; and E are 2, 3, 5, 7, and 11.
Consider the path A! B! C. Element List Encoding
Number for the path is 2� 3� 5 ¼ 30. To compute Order
Encoding Number, we must compute X such that
X mod 2 ¼ 1; X mod 3 ¼ 2; and X mod 5 ¼ 3. By Theo-
rem 2, there exists X with 0 � X < 30. In this case,
X ¼ 23. Similarly, we encode the other four paths, and
get Element List Encoding Numbers and Order Encod-
ing Numbers for the paths.
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Consider a path with cycles. In such a case, we cannot
compute Order Encoding Number since the same prime
numbers should return different orders. However, we can
solve the problem with a simple renaming method that
adds the sequence order to the location. For example,
consider the path A! B! C ! A! B! D! A. In the
path, the location A appears in the first, fourth, and seventh
positions. We can rename A in the first, fourth, and seventh
positions to A1, A2, and A3, respectively, by the sequence
order of A. In the same way, we can rename the path to
A1! B1! C1! A2! B2! D1! A3. Then, since the
nodes with the same location name are considered
differently, we can compute Order Encoding Number. In
data sets that have cycles, a user can write a query with a
sequence order such as ==A1==B1==A3. If a user does not
specify the sequence order, we translate the location name
with the default sequence order (¼ 1). For example, ==A==D
is translated into ==A1==D1.

Even though we can store the flow information for
products effectively by using the path encoding scheme, we
have not discussed the time information for products yet.
To store the time information for products, we construct the
time tree from trace records in which the node has the start
time and end time as well as the location.

In the time tree, we say that two paths are the same if the
flows for locations are the same as well as the time
information (start time and end time) for locations is the same.

Fig. 7 shows the time tree constructed from the trace
records in Fig. 5. The construction of the time tree is the
same as that of the tree for the trace records except that the
stay records with the same location become different nodes
if their time information is different. See B [5,7] node and
B[7,8] node in Fig. 7. Although these two nodes have the
same location, they are classified as different nodes since
they have different time information.

To retrieve the time information efficiently, we store
numbers with nodes in the time tree by using the region

numbering scheme [40] which assigns a node two values,
Start and End. Start and End are assigned consecutively
during the depth-first search. The region numbering has the
property that node A is the ancestor of node B if and only if
A.Start < B.Start and B.End < A.End. In order to know the

region numbers of the nodes associated with a tag, we attach
the tag to the node that corresponds to the final location of
the trace record of the tag. Thus, the region number that
corresponds to the final node in the trace record of the tag is
assigned to the tag. In order to get the time and location
information for tag 6 in Fig. 7, we see the region number that

corresponds to the final node in the trace record of tag 6. For
the final node C[7,8] for tag 6, its region number is [13, 14].
Therefore, we retrieve nodes that satisfy Start � 13 and
End � 14. Such nodes are A[2,3], E[4,6], and C[7,8]. There-
fore, we can retrieve the time information for tag 6 efficiently.
There are more sophisticated region numbering schemes,

however, the incorporation of them is straightforward.

6 STORING TRACE RECORDS IN AN RDBMS

We devise a relational schema to store RFID data based on
the path encoding scheme and the region numbering
scheme. The schema is shown in Fig. 8. PATH_TABLE,
TAG_TABLE, and TIME_TABLE are related to the trace

records and INFO_TABLE is related to the product
information (e.g., product name, manufacturer, price).

PATH_TABLE stores the path information by using the
path encoding scheme in Section 5. In PATH_TABLE, the
attributes ELEMENT_ENC_1, ELEMENT_ENC_2, . . . , and
ELEMENT_ENC_m correspond to Element List Encoding

Number, while the attributes ORDER_ENC_1, ORDER_
ENC_2, . . . , and ORDER_ENC_m correspond to Order
Encoding Number. If an RDBMS supports the data type
whose maximum value is greater than Element List
Encoding Number and Order Encoding Number of any
trace record, PATH_TABLE consists of only ELEMENT_

ENC_1 and ORDER_ENC_1 with PATH_ID.
TIME_TABLE stores the time information for trace

records by using the region numbering scheme. In TIME_-
TABLE, START and END are Start and End in the region
numbering scheme. LOC is the location. START_TIME and
END_TIME correspond to the start time and end time in the
time tree. TAG_TABLE has two identifiers for path and

time information. PATH_ID is the identifier for the path
information and (START, END) is the identifier for the time
information. In addition, INFO_ID is the identifier for
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INFO_TABLE. INFO_TABLE stores the information of

products. In this paper, we do not focus on INFO_TABLE.
If a path is long, its Element List Encoding Number and

Order Encoding Number will be large and commercial

RDBMSs may not support the storing of such large

numbers. To solve this problem, we store the path in

several attributes by dividing it.
The notations used in this paper are defined as follows:

. Type: the data type for Element List Encoding
Number and Order Encoding Number which an
RDBMS supports (e.g., BIGINT, DECIMAL),

. MaxType: the maximum value that the data type Type
can have, and

. m: the maximum number of path segments in a path.

Consider the long path L1 ! L2 ! � � � ! Ln. We can

divide the long path into several path segments s1; . . . ; st
such that

.

s1 ¼ L1 ! L2 ! � � � ! Li1 ;

s2 ¼ Li1þ1 ! Li1þ2 ! � � � ! Li2 ;

� � � ;
st ¼ Lit�1þ1 ! Lit�1þ2 ! � � � ! Lit

ð1 � i1 < i2 < � � � < it ¼ nÞ

. For u 2 1; 2; . . . ; t;

�j¼iu
j¼iu�1þ1PrimeðLjÞ �MaxType; and

ð�j¼iu
j¼iu�1þ1PrimeðLjÞÞ � PrimeðLiuþ1Þ > MaxType;

with i0 ¼ 0 and PrimeðLnþ1Þ ¼ 1.

We can easily find the path segments for the long path

L1 ! L2 ! � � � ! Ln which satisfy the above conditions. We

do not consider Order Encoding Number when we divide

the path since Order Encoding Number X for any path is

less than Element Encoding Number E for the path by

Theorem 2 (i.e., 0 � X < EÞ. However, elements in each

path segment keep the order information in the original

path. Example 3 shows how the path is split up.

Example 3. Assume that the path A! B! C ! D�>
E ! F , p1 ¼ PrimeðAÞ ¼ 2, p2 ¼ PrimeðBÞ ¼ 3, p3 ¼
PrimeðCÞ ¼ 5, p4 ¼ PrimeðDÞ ¼ 7, p5 ¼ PrimeðEÞ ¼ 11,

p6 ¼ PrimeðF Þ ¼ 13, and MaxType ¼ 250. Since �j¼6
j¼1pj ¼

30030 > MaxType ¼ 250, Element List Encoding Number

for the path cannot be stored in one attribute with Type.

We split up the path into path segments s1 : A! B�>
C ! D, s2 : E ! F which satisfy the following inequal-

ities. Note that the order of E in s2 is not 1 but 5, and that

of F is not 2 but 6.

�j¼4
j¼1pj ¼ 210 < MaxType and

�
�j¼4
j¼1pj

�
� p5

¼ 2310 > MaxType

�j¼6
j¼5pj ¼ 143 < MaxType and

�
�j¼6
j¼5pj

�
� p7

¼ 1 > MaxType

If the maximum number of path segments in a path is m,
then PATH_TABLE is created, as shown in Fig. 8, which has
m ELEMENT_ENC attributes and m ORDER_ENC attri-
butes. If some path is divided into tpath segments and t is less
than m, we fill ELEMENT_ENC_(tþ 1), ELEMENT_
ENC_(tþ 2), . . . , and ELEMENT_ENC_m with 1 and
ORDER_ENC_(tþ 1), ORDER_ENC_(tþ 2), . . . and OR-
DER_ENC_m with 0.

Fig. 9 shows the algorithm to store trace records using
the relational schema. As input for the algorithm, trace
records are given. Trace records are translated into
relational data. In the algorithm of Fig. 9, we pile up the
relational data in a text file format and then store it into an
RDBMS together with bulk loading in order to load data
efficiently. PATH_FILE is the file for PATH_TABLE,
TEMP_PATH_FILE for TEMP_PATH_TABLE, TIME_FILE
for TIME_TABLE, and TEMP_TIME_FILE for TEMP_
TIME_TABLE. In Line 2, we initialize m, the maximum
number of path segments in a path. To fill PATH_TABLE,
we construct a tree from the paths of the trace records tr by
using constructTree(Tree tree, TraceRecord tr) (Line 5). In
constructTree(Tree tree, TraceRecord tr), if there is no path for
tr in tree, it inserts a new path into tree, returns path_id of the
new path and sets store_flag to FALSE. Otherwise, it returns
path_id of the path and sets store_flag to TRUE.

If store_flag is FALSE, we insert Element List Encoding
Number and Order Encoding Number for the path into
PATH_FILE (Line 6-12). However, if the numbers are large
and cannot be stored in one attribute, we divide the path
using divide_path(TraceRecord tr). The divide_path(TraceRecord
tr) divides one path into several path segments according to
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MaxType and returns a path segment list (i.e., segment_list)
and the number of path segments in the path (i.e.,
segment_num). Each path segment is stored in PATH_FILE
by using the path encoding scheme with path_id. Also, for the
creation of the schema, we keep the maximum number of
path segments, m (Line 9-10). In Line 13, we insert tag
identifier and path_id into TEMP_PATH_FILE. Note that
TEMP_PATH_TABLE is used to fill TAG_TABLE later.

To fill TIME_TABLE, we construct the time tree from the
trace records tr by using constructTimeTree(TimeTree time_
tree, TraceRecord tr) (Line 16). In constructTimeTree(TimeTree
time_tree, TraceRecord tr), if there is no tr in time_tree, it
inserts the new trace record into time_tree. After the
construction of time_tree, we assign region numbers to the
nodes in time_tree (Line 17). Then, we store (START, END,
LOC, START_TIME, END_TIME) in TIME_FILE (Line 20)
by traversing nodes in time_tree by using the breath-first
search. If there are tags attached to a node, we store (tag
identifier, region number for the node) in TEMP_TIME_
FILE (Line 21). We create the schema according to the
maximum number of path segments m. We then perform
bulk loading with PATH_FILE, TEMP_PATH_FILE,
TIME_FILE, and TEMP_TIME_FILE. Finally, to fill TAG_
TABLE, we join TEMP_PATH_TABLE and TEMP_TIME_
TABLE on TAG_ID (Line 25).

Fig. 10 shows the status of tables after storing trace
records in Fig. 5 by the algorithm in Fig. 9. In Fig. 10, we
assume that all Element List Encoding Numbers can be
stored in one attribute since MaxType is large enough. Since
there are five different paths for trace records in Fig. 5,
Element List Encoding Numbers and Order Encoding
Numbers of five paths are stored in PATH_TABLE. Note
that the path identifiers for A! B! C, A! B! D,
A! E ! C, A! E, and A! D are 1, 2, 3, 4, and 5,
respectively. As shown in Fig. 7, the time tree for trace
records has 10 nodes. The information for 10 nodes is stored
in TIME_TABLE. Also, the path identifier and the time
identifier for 10 tags are stored in TAG_TABLE.

If we cannot store Element List Encoding Number in
one attribute, we should split up the paths as mentioned
above. Fig. 11 shows the status of PATH_TABLE after
storing trace records in Fig. 5 when MaxType is 30. In this
case, m is 2. Also, since TAG_TABLE and TIME_TABLE
are not affected by m, they are the same as those in Fig. 10.
Thus, we do not show them in Fig. 11. In Fig. 11, the path
A! B! D (path_id 2) and the path A! E ! C (path_id
3) are divided into two path segments. Therefore, those

paths are stored with two ELEMENT_ENC attributes and
two ORDER_ENC attributes. For example, A! B! D has
two path segments, A! B and D. A! B is encoded as
ELEMENT ENC 1 ¼ 2� 3 and ORDER ENC 1 ¼ 5 and D

as ELEMENT ENC 2 ¼ 7 and ORDER ENC 2 ¼ 3. Other
paths are stored with one ELEMENT_ENC attribute and
one ORDER_ENC attribute and their remaining attributes
are filled with 1 or 0.

7 QUERY TRANSLATION

Based on the relational schema in Section 6, we provide a

method to process tracking queries and path-oriented

queries. Since we store RFID data by using an RDBMS,

we translate tracking queries and path-oriented queries into

SQL queries. Then, we can easily process the queries by

executing the SQL queries. We will first deal with the

translation when m is 1 in Section 7.1 and then deal with the

translation when m is greater than 1 in Section 7.2.

7.1 Basic Query Translation

In this section, we assume that all Element List Encoding

Numbers can be stored in one attribute. That is, m is 1 and

PATH_TABLE consists of three attributes: path_id, ELE-

MENT_ENC_1, and ORDER_ENC_1. Therefore, for conve-

nience, we use ELEMENT_ENC and ORDER_ENC instead

of ELEMENT_ENC_1 and ORDER_ENC_1, respectively.

7.1.1 Tracking Query

We can process a tracking query efficiently by using the

relational schema in Section 6. To trace a tag, we get

Element List Encoding Number and Order Encoding

Number that correspond to the tag. To get them, we join

PATH_TABLE and TAG_TABLE. Fig. 12 shows the SQL

query to get Element List Encoding Number and Order
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Fig. 10. Status of tables after storing trace records when m is 1.

Fig. 11. Status of tables after storing trace records when m is 2.
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Encoding Number that correspond to the tag with TagID ¼
my tag id.

In order to know the locations in the flow of the tag, we

factorize Element List Encoding Number. We then order the

prime number factors P1; . . . ; Pn by computing Order

Encoding Number mod Pi. We finally transform the prime

number into the location name that corresponds to it.
Though the SQL query in Fig. 12 has the join between

PATH_TABLE and TAG_TABLE, it does not have too much

time to execute the query since the query has the selection

predicate for TAG_TABLE (T.TAG_ID = my_tag_id) and

there is only one tuple that satisfies the predicate. Therefore,

we can process tracking queries efficiently.

7.1.2 Path-Oriented Retrieval Query

Although the path condition in a path-oriented retrieval

query has many ancestor-descendant relationships, we can

easily find paths that satisfy the path condition by

checking mathematical conditions. Therefore, we can

process path-oriented retrieval queries efficiently with

our relational schema.
By Theorem 1, the path contains locations L1; L2; . . . ; Lk if

and only if ELEMENT_ENC mod ðPrimeðL1Þ � PrimeðL2Þ �
� � � � PrimeðLkÞÞ ¼ 0. Therefore, if the path condition

contains locations L1; L2; . . . ; Lk, we insert the element

membership condition ELEMENT_ENC mod ðPrimeðL1Þ �
PrimeðL2Þ � � � � � PrimeðLkÞÞ ¼ 0 into the where clause in

the SQL query. To determine the ancestor-descendant

relationship or the parent-child relationship, we use Order

Encoding Number. Consider two adjacent steps in the path

condition and let locations of the two steps be La and Lb. If

La and Lb are in the ancestor-descendant relationship (i.e.,

La//Lb), we insert ELEMENT ENC mod PrimeðLaÞ <
ELEMENT ENC mod PrimeðLbÞ into the where clause

in the SQL query. If La and Lb are in the parent-child

relationship (i.e., La=Lb), we insert ELEMENT ENC mod

PrimeðLaÞ þ 1 ¼ ELEMENT ENC mod PrimeðLbÞ into

the where clause.
After finding the paths that satisfy the path condition, we

join PATH_TABLE and TAG_TABLE on TAG_ID to get

tags. Fig. 13 shows the SQL query that corresponds to the

path-oriented retrieval query <//A//B/C>. In Figs. 13, 14,

15, 16, 17, and 18, pA, pB, and pC denote PrimeðAÞ,
PrimeðBÞ, and PrimeðCÞ, respectively.

Path-oriented retrieval queries may have time condi-

tions. If the queries have time conditions, we join

TAG_TABLE and TIME_TABLE. We can retrieve the time

information efficiently by using the property of the region

numbering scheme. We insert the following statement into

the where clause in the SQL query for time conditions:

TIME TABLE:LOC ¼ ‘location name’ AND

TIME TABLE:START � TAG TABLE:START AND

TAG TABLE:END � TIME TABLE:END AND

Time Conditions in the Step

Fig. 14 shows the SQL query that corresponds to the

path-oriented retrieval query <//A//B[(EndTime-Start-

Time)<10]/C>.
Path-oriented retrieval queries may also have product

information conditions, such as PRODUCT_NAME ¼ ‘lap-

top’. To process such queries, we first perform the selection of
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Fig. 12. SQL query for the tracking query.

Fig. 13. SQL query for <//A//B/C>.

Fig. 14. SQL query for <//A//B[(EndTime-StartTime)<10]/C>.

Fig. 15. SQL query for <//A//B/C, PRODUCT_NAME ¼ ‘laptop’>.

Fig. 16. SQL query for <COUNT(), //A//B/C>.

Fig. 17. SQL query for <AVG(B.StartTime), //A//B/C>.

Fig. 18. SQL query for <AVG(C.EndTime - A.StartTime), //A//B/C>.
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INFO_TABLE for product information conditions. We then
join INFO_TABLE and TAG_TABLE on INFO_ID. Fig. 15
shows the SQL query that corresponds to the path-oriented
retrieval query <//A//B/C, PRODUCT_NAME = ‘laptop’>.

7.1.3 Path-Oriented Aggregate Query

Since path-oriented aggregate queries have aggregate
functions, we add an aggregate function in the select clause
of the SQL query. Fig. 16 shows the SQL query that
corresponds to the path-oriented aggregate query
<COUNT(), //A//B/C>.

In the case of aggregate functions that need time
attributes as arguments, we join TAG_TABLE and TIME_
TABLE to get the time attributes since PATH_TABLE does
not have the time information. Fig. 17 shows the SQL query
that corresponds to the path-oriented aggregate query
<AVG(B.StartTime),//A//B/C>.

Consider the query <AVG(C.EndTime-A.StartTime),//
A//B/C>. The query has the aggregate function that has
two time attributes as the argument. In this case, we join
one TAG_TABLE and two TIME_TABLEs. Fig. 18 shows the
SQL query that corresponds to the path-oriented aggregate
query <AVG(C.EndTime-A.StartTime), //A//B/C>.

7.2 Advanced Query Translation

In this section, we assume that Element List Encoding
Number cannot be stored in one attribute. Although we can
store Element List Encoding Number for a long path in an
RDBMS by dividing the path, it is difficult to find the paths
that satisfy the path condition using the SQL query due to
the computation overflow. For example, to find some path
from PATH_TABLE in Fig. 11, we should multiply
ELEMENT_ENC_1 by ELEMENT_ENC_2. However, since
MaxType is 30, the overflow will occur in an RDBMS during
the multiplication. The SQL query may not run, or the result
may be wrong. Therefore, we need to extend the translation
for path conditions when m is greater than 1.

When a path condition contains locations L1; L2; . . . ; Lk,
we should insert the element membership condition

ðELEMENT ENC 1� ELEMENT ENC 2� � � �
�ELEMENT ENC mÞ mod ðPrimeðL1Þ
� PrimeðL2Þ � � � � � PrimeðLkÞÞ ¼ 0

into the where clause in the SQL query in order to check
whether the path contains locations L1; L2; � � � ; Lk. To avoid
the computation overflow during the execution of the
condition, we change the condition into another equivalent
condition by using Lemmas 1 and 2.

Lemma 1. Let E1, E2, and P be any natural numbers. Then,

ðE1E2Þ mod P ¼ ðE1 mod P ÞðE2 mod P Þ mod P:

Proof. This is easily derived from the basic number
theory. tu

Lemma 2. Let E, P1, and P2 be any natural numbers and P1 and
P2 be relatively prime numbers. Then,
E mod ðP1P2Þ ¼ 0 if and only if E mod P1 ¼ 0 and

E mod P2 ¼ 0.

Proof. This is easily derived from the basic number
theory. tu

Suppose that the path condition in the query contains
L1; L2; . . . ; Lk. Let pi be PrimeðLiÞ, P be p1p2 . . . pk, and Ei be
ELEMENT_ENC_i. To know whether the path contains
locations L1; L2; . . . ; Lk, we should check the condition
ðE1E2 � � �EmÞ mod P ¼ 0. To avoid the overflow during the
computation of the condition, we change it into another
equivalent condition using Lemma 1, which can be computed
without an overflow. Consider the simple case thatm is 2. By
Lemma 1, ðE1E2Þ mod P is equal to ðE1 mod P ÞðE2 mod P Þ
mod P . Therefore, we check ðE1 mod P ÞðE2 mod P Þ mod P ¼
0 instead of ðE1E2Þ mod P ¼ 0. If P 2 �MaxType, the compu-
tation of ðE1 mod P ÞðE2 mod P Þ mod P ¼ 0 is performed
without an overflow since A mod P < P , for any natural
number A.

If m is greater than 2, we apply Lemma 1 recursively. The
detailed algorithm is shown in Fig. 19. However, the
translation using Lemma 1 is limited since P 2 �MaxType
should be satisfied. If P 2 �MaxType is not satisfied, we can
apply Lemma 2 before using Lemma 1. To apply Lemma 2, we
first factorize P into P1; P2; . . . ; Pt such that P ¼ P1P2 . . .Pt
and P 2

i �MaxType for i ¼ 1; 2; . . . ; t. If P is factorized into P1

and P2, we can change the condition ðE1E2Þ mod P ¼ 0 into
two conditions ðE1E2Þ mod P1 ¼ 0 and ðE1E2Þ mod P2 ¼ 0 by
using Lemma 2. Also, by using Lemma 1, we can change
ðE1E2Þ mod P1 ¼ 0 and ðE1E2Þ mod P2 ¼ 0 into ðE1 mod P1Þ
ðE2 mod P1Þ mod P1 ¼ 0 a n d ðE1 mod P2ÞðE2 mod P2Þ
mod P2 ¼ 0. An RDBMS can evaluate ðE1 mod P1ÞðE2

mod P1Þ mod P1 ¼ 0 and ðE1 mod P2Þ ðE2 mod P2Þ mod P2 ¼
0 without a computation overflow.

The algorithm in Fig. 19 summarizes the above process
for checking whether the path contains locations
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L1; L2; . . . ; Lk. As input for the algorithm element_transla-

tion(), the element list L1; L2; . . . ; Lk in the path condition is

given. In Line 1-2, product and condition are initialized. If the

square of the product of prime numbers for the elements in

the path is greater than MaxType, we call sub_element_

translation(product, m) and reinitialize product. sub_ element_-

translation(product, m) translates ðE1E2E3 . . .EmÞ mod P into

the equivalent condition, which does not cause the

computation overflow.
To determine the ancestor-descendant relationship or the

parent-child relationship, we use Order Encoding Number.

When m is 1, we compute ORDER ENC 1 mod pj for the

order of location Lj. However, when m is greater than 1, the

order information of each location in a path is separately

stored in attributes ORDER_ENC_1, ORDER_ENC_2, . . . ,

and ORDER_ENC_m. We use Theorem 3 to compute the

order when m is greater than 1.

Theorem 3. Let O be Order Encoding Number in an original

path before dividing the path and Oi be ORDER_ENC_i that

corresponds to the ith path segment after dividing the path. For

each location Lj in the path, the following equation is satisfied:

O mod pj ¼ �m
i¼1ðOi mod pjÞb-1�

Ei mod pj
pj

-c:

Proof. If Lj is contained in the ith path segment, ðOi mod pjÞ
b-1�

Ei mod pj
pj -c ¼ ðOi mod pjÞ ¼ ðO mod pjÞ since Ei mod

pj ¼ 0. Otherwise, ðOi mod pjÞb-1�
Ei mod pj

pj -c ¼ 0 since

Ei mod pj 6¼ 0 and Ei mod pj < pj. Therefore, �m
j¼1ðOi

mod pjÞb-1�
Ei mod pj

pj -c computes the order information of

location Lj in m ORDER_ENC attributes. That is,

O mod pj ¼ �m
i¼1ðOi mod pjÞb-1�

Ei mod pj
pj -c. tu

If we use �m
i¼1ðOi mod pjÞb-1�

Ei mod pj
pj -c in Theorem 3, we

can translate the order condition into an SQL query. We use

the FLOOR operator in SQL queries for b--c.
Fig. 20 shows the SQL query that corresponds to the path-

oriented retrieval query <//A//B/C> whenm is 2. We omit

other translation examples since the translation, except for

the path information, is similar to that of Section 7.1.

8 EXPERIMENTS

In order to validate our approach, we conduct experimental

evaluations for various queries.

8.1 Experimental Environment

We experiment on a Pentium 2.53 GHz with 1 GB main
memory using Java. Since there is no well-known RFID data
set, we generate synthetic data based on a real-life example
and formulate 15 queries (1 tracking query, 4 path-oriented
retrieval queries, 10 path-oriented aggregate queries). The
query performance is measured by processing the queries
three times and averaging the execution time. As a
comparison system, RFID-Cuboid [14] is used. For fairness,
we implement RFID-Cuboid on an RDBMS to support
tracking queries and path-oriented queries.

8.1.1 Data Set

Since we use stay records instead of raw RFID data, we
generate stay records. To reflect real environments, we
generate data sets based on a real-life example in Fig. 21.
Fig. 21 shows the food distribution [9] in the United States.
In the food distribution, the minimum length of paths is 3
and the maximum length is 9. The products are distributed
from import markets and agricultural input suppliers. Since
it is difficult to find detailed distribution information of
each product from a real-life example, we assume that the
products are distributed equally when they move to the
next location if there are many next locations.

Initially, products are generated at starting nodes such as
import markets and agricultural input suppliers. Then, they
move to the next location in groups according to the links of
Fig. 21. As products move together in groups in many RFID
applications, we generate stay records with the grouping
factor, which is the number of data generated at a starting
node simultaneously. We consider two kinds of data in data
generation: GData (grouping factor: 10,000) and IData
(grouping factor: 1,000). Although we set the grouping
factor of GData to 10,000 and that of IData to 1,000, the values
(i.e., 10,000, 1,000) are not important. The key point in
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Fig. 20. SQL query for <//A//B/C> when m is 2.

Fig. 21. Food distribution in the United States [9].
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generating GData and IData is that products in GData move
in larger groups compared to those in IData. By generating
GData and IData, we analyze how the query performance is
affected by the grouping factor. We set the number of
instances for each location to 2 since we consider all possible
paths and the number of paths increases exponentially.

Here, 6� 106, 12� 106, 18� 106, 24� 106, and 30� 106

stay records are generated for both GData and IData. The
DECIMAL type in an RDBMS is used to store Element List
Encoding Number and Order Encoding Number.

8.1.2 Query Set

Fifteen queries are formulated to test various features.
Query 1 is a tracking query, Queries 2-5 are path-oriented
retrieval queries, and Queries 6-15 are path-oriented
aggregate queries. The queries are shown in Fig. 22. Note
that we represent the location name in queries as the
character in the circle in Fig. 21 and the instance identifier.
Query 1 tests the performance of the tracking query.
Queries 2, 6, 12, and 15 evaluate the performance of the
path condition with a single location, while other queries
with multiple locations. In particular, Queries 5 and 9 have
the time condition.

8.2 Experimental Results

In experimental results, if the query is not finished within
2 hours, we denote it by “X” in the graph.

Fig. 23 shows the query performance in IData with 3�
107 as m, the maximum number of path segments in a path,
changes. Fig. 23a shows the query performance when the
execution time is less than 3 seconds and Fig. 23b shows the
performance when the time is more than 3 seconds. As m

increases, the computation overhead becomes generally
large since we need the additional computation for
segmented paths. However, as can be seen in Fig. 23b, the
performance sometimes is not affected much by m. This is
partly because the RDBMS does not properly optimize the
translated SQL query as the query is quite complex. While a
lower value of m is favorable for query performance, a
higher value must be used to avoid the overflow of the
DECIMAL type. This is especially necessary for RDBMSs
that do not provide a large DECIMAL type. Therefore, we
set m to 2 for the following experiments.

Fig. 24 shows the query performance for 15 queries.
Figs. 24a and 24b show the performance with 3� 107 tuples
in GData and IData, respectively. Path denotes our approach
and Cuboid denotes RFID-Cuboid in the figures of this
section. Since the performance gap between our approach
and RFID-Cuboid is wide, we use the logarithmic scale
(base 10) for the execution time in Fig. 24.

In GData and IData, our approach is better than RFID-
Cuboid for most queries in terms of the execution time
(except Queries 6, 12, and 15). We can also observe that the
performance gap between our approach and RFID-Cuboid
in IData is larger than that in GData. Since the shapes of the
graphs for the execution time for different sizes are similar,
the execution time for only GData with 3� 107 and IData
with 3� 107 is shown in Fig. 24.

Fig. 25, 26, and 27 show the query performance
according to the number of stay records. Fig. 25a shows
the performance for a tracking query. For the tracking
query, our approach is faster than RFID-Cuboid in both
GData and IData. We can also observe that our approach is
much faster than RFID-Cuboid in IData. While our
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Fig. 22. Query set.

Fig. 23. Experiment with respect to m. (a) When the execution time is less than 3 seconds. (b) When the execution time is more than 3 seconds.
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approach finds only Element List Encoding Number and
Order Encoding Number for the given tag identifier, RFID-
Cuboid scans STAY_TABLE (the table for stay records).
Therefore, in IData, RFID-Cuboid has much worse perfor-
mance than our approach compared to GData since the
number of tuples of STAY_TABLE in IData is more than
that in GData.

The performance of Queries 2, 3, and 4 is shown in
Figs. 25b, 25c, and 25d. However, most cases of RFID-
Cuboid do not finish within 2 hours. They are denoted by
X in a rectangle. For example, : X in a rectangle on the
horizontal axis 24 means that the approach does not
finish within 2 hours when the number of tuples is
24� 106. These queries are path-oriented retrieval queries.
To process path-oriented retrieval queries, RFID-Cuboid

joins STAY_TABLE and MAP_TABLE. MAP_TABLE con-
tains the mapping from GID to TAG_ID in RFID-Cuboid.
Since RFID-Cuboid uses the prefix encoding scheme, it
needs string comparisons to process the join between
STAY_TABLE and MAP_TABLE. Therefore, for path-
oriented retrieval queries, our approach has a much better
performance than RFID-Cuboid.

The performance of Query 5 is shown in Fig. 25e.
Although RFID-Cuboid in GData shows a much better
performance than that in IData for the cases of Queries 2, 3,
and 4, the performance gap between GData and IData in
RFID-Cuboid does not have a big difference in Fig. 25e. On
the contrary, the performance in IData is better than that in
GData. Query 5 has the time condition (StartTime<2,000).

LEE AND CHUNG: RFID DATA PROCESSING IN SUPPLY CHAIN MANAGEMENT USING A PATH ENCODING SCHEME 755

Fig. 25. Execution time for Queries 1, 2, 3, 4, and 5. (a) Query 1. (b) Query 2. (c) Query 3. (d) Query 4. (e) Query 5.

Fig. 24. Execution time for 15 queries. (a) GData. (b) IData.
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Therefore, in IData, many tuples of STAY_TABLE are

removed by the condition and tuples to join are reduced

significantly. Also, the number of results in IData is less

than that in GData. Therefore, the performance gap between

IData and GData for RFID-Cuboid is small for Query 5.
In Queries 6, 12, and 15 (Fig. 26a, Fig. 27b, and Fig. 27e),

RFID-Cuboid is better than our approach. The path

condition in Queries 6, 12, and 15 has only one location.

Since RFID-Cuboid focuses on groups in which products

move together, RFID-Cuboid is efficient in the case of

getting information at one location. However, in supply

chain management, it is important to analyze the object

transition. For queries related to the object transition

(Queries 3, 4, 5, 7, 8, 9, 10, 11, 13, and 14), our approach is

superior to RFID-Cuboid. However, for Query 2, our

approach has a better performance than RFID-Cuboid,

756 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 5, MAY 2011

Fig. 27. Execution time for Queries 11, 12, 13, 14, and 15. (a) Query 11. (b) Query 12. (c) Query 13. (d) Query 14. (e) Query 15.

Fig. 26. Execution time for Queries 6, 7, 8, 9, and 10. (a) Query 6. (b) Query 7. (c) Query 8. (d) Query 9. (e) Query 10.
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although Query 2 is used to get information at one location.
This is because RFID-Cuboid uses the string comparison to
get tags.

Consider the query performance of Queries 6, 12, and 15
(Fig. 26a, Fig. 27b, and Fig. 27e) versus that of Query 7, 8, 10,
11, 13, and 14 (Fig. 26b, Fig. 26c, Fig. 26e, Fig. 27a, Fig. 27c,
and Fig. 27d). The path condition in Queries 6, 12, and 15
has only one location while the path condition in Queries 7,
8, 10, 11, 13, and 14 has multiple locations. Since our
approach uses Element List Encoding Number and Order
Encoding Number, our approach can easily find paths,
although the path condition has many ancestor-descendant
relationships. Therefore, in Queries 7, 8, 10, 11, 13, and 14,
our approach is better than RFID-Cuboid.

Since Query 9 has the time information, our approach
joins TAG_TABLE and TIME_TABLE. Therefore, our
approach has a little better performance than RFID-Cuboid
for GData, as shown in Fig. 26d.

Consequently, our approach is superior to RFID-Cuboid
in most cases. Also, our approach is less sensitive than
RFID-Cuboid for the grouping factor. Therefore, our
approach can be used in a wide range of applications. For
the path-oriented aggregate query whose path condition
has only one location, our approach may be worse than
RFID-Cuboid. However, since it is important to analyze the
object transition in supply chain management, our ap-
proach will be more useful.

9 CONCLUSION

We expect that RFID technology will revolutionize supply
chain management. In supply chain management, a large
amount of RFID data is generated. However, since RFID data
have flow information that is different from the traditional
data, it is difficult to store data and process queries.
Therefore, we propose an efficient storage scheme and
efficient query processing for supply chain management.

The proposed approach in this paper is very efficient in
tracking and analyzing the flow of products. We believe
that it is useful for real-life logistic applications after
conducting experiments with data sets based on a real-life
logistic example. In addition, we devise a method that
divides a path. Therefore, our approach can be implemen-
ted on an RDBMS easily, even if long paths exist in some
logistic applications and we cannot store a large number in
one attribute. Therefore, our approach is efficient and
practical. Its application is not limited to supply chain
management nor logistic applications. It will be useful for
many applications that need flow-based processing. How-
ever, since we have not considered a distributed environ-
ment, all RFID data should be collected in the central server.
Data collection in the central server may be difficult in some
environments. Therefore, in the future, we plan to adapt
and develop our approach in a distributed environment.
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[8] C. Bornhövd, T. Lin, S. Haller, and J. Schaper, “Integrating
Automatic Data Acquisition with Business Processes - Experi-
ences with SAP’s Auto-ID Infrastructure,” Proc. 30th Int’l Conf.
Very Large Data Bases (VLDB), pp. 1182-1188, 2004.

[9] D.J. Bowersox and D.J. Closs, Logistical Management. McGraw-Hill,
1996.

[10] P. Buneman, M. Grohe, and C. Koch, “Path Queries on
Compressed XML,” Proc. 29th Int’l Conf. Very Large Data Bases
(VLDB), pp. 141-152, 2003.

[11] S.S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S.
Sarma, “Managing RFID Data,” Proc. 30th Int’l Conf. Very Large
Data Bases (VLDB), pp. 1189-1195, 2004.
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