
RITAS: Services for
Randomized Intrusion Tolerance

Henrique Moniz, Student Member, IEEE, Nuno Ferreira Neves, Member, IEEE,

Miguel Correia, Member, IEEE, and Paulo Verissimo, Fellow, IEEE

Abstract—Randomized agreement protocols have been around for more than two decades. Often assumed to be inefficient due to

their high expected communication and computation complexities, they have remained overlooked by the community-at-large as a

valid solution for the deployment of fault-tolerant distributed systems. This paper aims to demonstrate that randomization can be a very

competitive approach even in hostile environments where arbitrary faults can occur. A stack of randomized intrusion-tolerant protocols

is described and its performance evaluated under several settings in both local-area-network (LAN) and wide-area-network

environments. The stack provides a set of relevant services ranging from basic communication primitives up to atomic broadcast.

The experimental evaluation shows that the protocols are efficient, especially in LAN environments where no performance reduction is

observed under certain Byzantine faults.

Index Terms—Intrusion tolerance, Byzantine agreement, randomized protocols, performance evaluation.

Ç

1 INTRODUCTION

MODERN society has been growing increasingly depen-
dent on networked computer systems. The availabil-

ity, confidentiality, and integrity of data and services are
crucial attributes that must be enforced by real-world
distributed systems. The typical approach to secure these
systems has been one of almost complete prevention, i.e., to
avoid successful attacks, or intrusions, at all cost. Once a
breach occurs, manual intervention is necessary to restore
system correctness.

A different approach to deal with attacks has been
gaining momentum within the scientific community—intru-
sion tolerance. Arising from the intersection of two classical
areas of computer science, fault tolerance and security, its
objective is to guarantee the correct behavior of a system
even if some of its components are compromised and
controlled by an intelligent adversary [1], [2], [3].

Within this domain of fault- and intrusion-tolerant
distributed systems, there is an essential problem: consensus.
This problem has been specified in different ways, but
basically it aims to ensure that n processes are able to
propose some values and then all agree on one of these
values. Consensus has been shown to be equivalent to
fundamental problems, such as state machine replication
[4], group membership [5], and atomic broadcast [6], [7].

Hence, the relevance of consensus is noteworthy because it
is a building block of several important distributed systems
services. For example, to maintain data consistency in a
replicated database, some form of consensus between the
sites is needed. Synchronization of clocks, leader election, or
practically any kind of coordinated activity between the
various nodes of a distributed system can be built using
consensus. Unsurprisingly, the consensus problem has
received a lot of attention from the research community.

Consensus, however, is impossible to solve determinis-
tically in asynchronous systems (i.e., systems where there
are no bounds to the communication delays and computa-
tion times) if a single process can crash (also known as the
FLP result [8]). This is a significant result, in particular for
intrusion-tolerant systems, because they usually assume an
asynchronous model in order to avoid time dependencies.
Time assumptions can often be broken, for example, with
denial-of-service attacks.

Throughout the years, several researchers have investi-
gated techniques to circumvent the FLP result. Most of
these solutions, however, required changes to the basic
system model, with the explicit inclusion of stronger time
assumptions (e.g., partial synchrony models [9], [10]), or by
augmenting the system with devices that hide in their
implementation of these assumptions (e.g., failure detectors
[11], [12], [13] or wormholes [14]). Randomization is another
technique that has been around for more than two decades
[15], [16]. One important advantage of this technique is that
no additional timing assumptions are needed.

To circumvent the FLP result, randomization uses a
probabilistic approach where the termination of consensus
is ensured with probability of 1. Although this line of
research produced a number of important theoretical
results, including several algorithms, randomization has
been historically overlooked, in what pertains to the
implementation of practical applications, because it has
usually been considered to be too inefficient.

122 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011

. H. Moniz is with the Departamento de Informática, Faculdade de Ciencias,
Universidade de Lisboa, Bloco C6.3.30, Campo Grande, 1749-016 Lisboa,
Portugal. E-mail: hmoniz@di.fc.ul.pt.

. N.F. Neves and M. Correia are with the Departamento de Informática,
Faculdade de Cincias, Universidade de Lisboa, Bloco C6-Piso 3, Campo
Grande, 1749-016 Lisboa, Portugal. E-mail: {nuno, mpc}@di.fc.ul.pt.

. P. Verissimo is with the Departamento de Informática, Faculdade de
Cincias, Universidade de Lisboa, Bloco C6.3.10, Campo Grande, 1700-016
Lisboa, Portugal. E-mail: pjv@di.fc.ul.pt.

Manuscript received 28 June 2007; revised 7 Jan. 2008; accepted 10 Nov.
2008; published online 2 Dec. 2008.
Recommended for acceptance by L. Alvisi.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2007-06-0084.
Digital Object Identifier no. 10.1109/TDSC.2008.76.

1545-5971/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Downloaded from www.VTUplanet.com

The reasons for the assertion that “randomization is
inefficient in practice” are simple to summarize. Rando-
mized consensus algorithms, which are the most common
form of these algorithms, usually have a large expected
number of communication steps, i.e., a large time complex-
ity. Even when this complexity is constant, the expected
number of communication steps is traditionally significant
even for small numbers of processes, when compared, for
instance, with solutions based on failure detectors.1 Many
of those algorithms also rely on public-key cryptography,
which increases the performance costs, especially for local
area networks (LANs) or MANs in which the time to
compute a digital signature is usually much higher than
the network delay.

Nevertheless, two important points have been chroni-
cally ignored. First, consensus algorithms are not usually
executed in oblivion, they are run in the context of a higher-
level problem (e.g., atomic broadcast) that can provide a
friendly environment for the “lucky” event needed for faster
termination (e.g., many processes proposing the same value
can lead to a quicker conclusion [20]). Second, for the sake of
theoretical interest, the proposed adversary models usually
assume a strong adversary that completely controls the
scheduling of the network and decides which processes
receive which messages and in what order. In practice, a real
adversary does not possess this ability, but if it does, it will
probably perform attacks in a distinct (and much simpler)
manner to prevent the conclusion of the algorithm—for
example, it can block the communication entirely. There-
fore, in practice, the network scheduling can be “nice” and
lead to a speedy termination.

This paper describes the implementation of a stack of
randomized intrusion-tolerant protocols and evaluates their
performance under different fault loads. One of the main
purposes is to show that randomization can be efficient
and should be regarded as a valid solution for practical
intrusion-tolerant distributed systems.

This implementation is called RITAS which stands for
Randomized Intrusion-Tolerant Asynchronous Services. At the
lowest level of the stack (see Fig. 1), there are two broadcast

primitives: reliable broadcast and echo broadcast. On top of
these primitives, the most basic form of consensus is
available, binary consensus. This protocol lets processes
decide on a single bit and is, in fact, the only randomized
algorithm of the stack. The rest of the protocols are built on
top of this one. Building on the binary consensus layer,
multivalued consensus allows the agreement on values of
arbitrary range. At the highest level, there is vector
consensus, which lets processes decide on a vector with
values proposed by a subset of the processes, and atomic
broadcast, which ensures total order. The protocol stack is
executed over a reliable channel abstraction provided by
standard Internet protocols—TCP ensures reliability, and
IPSec guarantees cryptographic message integrity [21]. The
protocols in RITAS have been previously described in the
literature [22], [23], [7]. The implemented protocols are, in
most cases, optimized versions of the original proposals
that have significantly improved the overall performance.

The protocols of RITAS share a set of important
structural properties:

. They are asynchronous in the sense that no
assumptions are made on the processes’ relative
execution and communication delays, thus prevent-
ing attacks against assumptions in the domain of
time (a known problem in some protocols that have
been presented in the past).

. They attain optimal resilience, tolerating up to
f ¼ bn�1

3 c malicious processes out of a total of
n processes, which is important since the cost of
each additional replica has a significant impact in
a real-world application.

. They are signature-free, meaning that no expensive
public-key cryptography is used anywhere in the
protocol stack, which is relevant in terms of perfor-
mance since this type of cryptography is several orders
of magnitude slower than symmetric cryptography.

. They take decisions in a distributed way (there is
no leader), thus avoiding the costly operation of
detecting the failure of a leader, an event that can
considerably delay the execution.

This paper has two main contributions: 1) it presents the
design and implementation of a stack of randomized
intrusion-tolerant protocols, discussing several optimiza-
tions—to the best of our knowledge, the implementation of
a stack with the four structural properties above is novel
and 2) it provides a detailed evaluation of RITAS in both
LAN and wide-area-network (WAN) settings, showing that
it has interesting latency and throughput values.

2 RELATED WORK

Randomized intrusion-tolerant protocols have been around
since Ben-Or’s and Rabin’s seminal consensus protocols
[15], [16]. These papers defined the two approaches that
each of the subsequent works followed. Essentially, all
randomized protocols rely on a coin-tossing scheme that
generates random bits. Ben-Or’s approach relies on a local
coin toss, while in Rabin’s shares of the coins are distributed
by a trusted dealer before the execution of the protocol and,
therefore, all processes see the same coins.

MONIZ ET AL.: RITAS: SERVICES FOR RANDOMIZED INTRUSION TOLERANCE 123

1. An exception is the stack of randomized protocols proposed by
Cachin et al. [17], [18], which terminate in a low expected number of
communication steps. They, however, depend heavily on public-key
cryptography which may seriously affect their performance [19].

Fig. 1. The RITAS protocol stack.

Downloaded from www.VTUplanet.com

Although many randomized asynchronous protocols
have been designed throughout the years [15], [16], [22],
[24], [25], [26], only recently one implementation of a stack of
randomized multicast and agreement protocols has been
reported, SINTRA [18]. These protocols are built on top of a
binary consensus protocol that follows a Rabin-style ap-
proach, and in practice terminates in one or two commu-
nication steps [17]. The protocols, however, depend heavily
on public-key cryptography primitives like digital and
threshold signatures. The implementation of the stack is in
Java and uses several threads. RITAS uses a different
approach, Ben-Or-style, and resorts only to fast crypto-
graphic operations such as hash functions.

Randomization is only one of the techniques that can be
used to circumvent the FLP impossibility result. Other
techniques include failure detectors [12], [27], [28], [20],
partial-synchrony [9], and distributed wormholes [29], [14].
Some of these techniques have been employed in the past to
build other intrusion-tolerant protocol suites.

The first evaluation of a set of asynchronous Byzantine
protocols (reliable and atomic broadcast) was made for the
Rampart toolkit [23]. The reliable broadcast is implemented
by Reiter’s echo broadcast (see Section 4.7), and the order is
defined by a leader that also echo-broadcasts the order
information. Even with such a simple protocol, and using
small RSA keys (300 bits), this paper acknowledges that
“public-key operations still dominate the latency of reliable
multicast, at least for small messages.” Moreover, if a
process does not echo-broadcast a message to all or if a
malicious leader performs some attack against the ordering
of the messages, these events have to be detected and the
corrupt process removed from the group. This implies that
liveness is dependent on the cost of this detection [30] and
synchrony assumptions are required about the network
delay, allowing attacks where malicious processes delay
others in order to force their removal. For this reason,
Rampart relies on a group membership protocol not only to
handle voluntary joins and leaves from the group but also
to detect and remove corrupt processes. This is a necessity
(that emerges out of design) as much as it is a feature.
RITAS can indeed be extended with a group membership
protocol that handles dynamic groups; however, it does not
require one for its protocols to make progress because
decisions are made in a decentralized way.

Like Rampart, SecureRing is an intrusion-tolerant group
communication system [31]. It relies on a token that rotates
among the processes to decide the order of message
deliveries. This signed token carries message digests, a
solution that allows a lower number of signatures and an
improvement in performance when compared to Rampart.
In SecureRing, malicious behavior also has to be detected
for the protocols to make progress, which means that it
suffers from similar problems as Rampart.

WORM-IT uses the wormhole abstraction to provide a
membership service and a view-synchronous atomic multi-
cast primitive [32]. It is designed under a hybrid system
model. The system is considered to be asynchronous and
subject to Byzantine failures with the exception of a small
subset, the wormhole, that is assumed to be secure (i.e., can
only crash) and synchronous. Critical steps of the protocols

that require stronger environmental properties (such as
agreement tasks) are executed inside the wormhole.

Byzantine JazzEnsemble is another group communica-
tion system that resists Byzantine failures [33]. It relies on
fuzzy mute and fuzzy verbose failure detectors to detect mute
failures (i.e., a process neglecting to send messages) and
verbose failures (i.e., a process sending too many messages),
respectively. These kinds of failures can be identified based
on locally observed events, which motivates the use of such
failure detectors. Moreover, the system provides a vector
consensus protocol and a uniform broadcast protocol, as
well as modifications at each layer to overcome potential
Byzantine attacks.

BFT, while not a protocol stack, is an algorithm that
provides a Byzantine-fault-tolerant state machine replica-
tion service [34]. In BFT, there are clients and servers. The
clients issue requests to the servers, then requests are
processed by the servers in total order, and a reply is
returned to the clients. Servers are either primary or
backup, and there is only one primary at any given moment
in the system. Client requests are issued directly to the
primary, which in turn multicasts the request to the
backups. The replies are transmitted to clients by all
servers. A client waits for f þ 1 replies with the same result
in order to obtain the response. This comprises the normal
operation of the algorithm. In case a primary fails, a view
change must occur and servers must agree on a new
primary. View changes are triggered by timeouts. After a
view change, the service resumes to its normal operation.

It is hard to compare BFT and RITAS because they are
designed with different assumptions and goals in mind. BFT
is centralized and requires synchrony for liveness, while
RITAS is decentralized and completely asynchronous. BFT
is a system designed to perform a very specific task (i.e.,
state machine replication), while RITAS is a stack that
provides several general broadcast and consensus protocols
that can be applied to a multitude of scenarios including
state machine replication. For instance, the Reliable Broad-
cast protocol in RITAS could be used as a primitive to
implement state machine replication (more specifically, the
dissemination of requests from a primary to the backups).

3 SYSTEM MODEL

The system is composed by a group of n processes
P ¼ fp0; p1; . . . pn�1g. Group membership is static, i.e., the
group is predefined and there cannot be joins or leaves
during system operation. Processes are fully connected.

There are no constraints on the kind of faults that can
occur in the system. This class of unconstrained faults is
usually called arbitrary or Byzantine. Processes are said to be
correct if they do not fail, i.e., if they follow their protocol
until termination. Processes that fail are called corrupt. No
assumptions are made about the behavior of corrupt
processes—they can, for instance, stop executing, omit
messages, send invalid messages either alone or in collusion
with other corrupt processes. It is assumed that at most
f ¼ bn�1

3 c processes can be corrupt.
The system is completely asynchronous. Therefore,

there are no assumptions whatsoever about bounds on
processing times or communications delays.

124 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011
Downloaded from www.VTUplanet.com

Each pair of processes ðpi; pjÞ shares a secret key sij. It is
out of the scope of this work to present a solution for
distributing these keys, but it may require a trusted dealer
or some kind of key distribution protocol based on public-
key cryptography. Nevertheless, this is a long-term opera-
tion, normally performed before the execution of the
protocols and does not interfere with their performance.

Each process has access to a random bit generator that
returns unbiased bits observable only by the process (if the
process is correct).

Some protocols use a cryptographic hash function HðmÞ
that maps an input m of arbitrary length into a fixed-length
output. We assume that it is impossible 1) to find two
values m 6¼ m0 such that HðmÞ ¼ Hðm0Þ and 2) given a
certain output, to find an input that produces that output.
The output of the function is often called a hash.

4 PROTOCOL STACK

This section briefly describes the function of each protocol
and how it works. Since all protocols have already been
described in the literature, no formal specifications are
given, and some details are only provided to explain the
optimizations. We have developed formal proofs showing
that the optimized protocols behave according to their
specification, but we could not present them in this paper
due to lack of space [35].

4.1 Reliable Channel

The two layers at the bottom of the stack implement a
reliable channel (see Fig. 1). This abstraction provides a
point-to-point communication channel between a pair of
correct processes with two properties: reliability and
integrity. Reliability means that messages are eventually
received, and integrity says that messages are not modified
in the channel. In practical terms, these properties can be
enforced using standard Internet protocols: reliability is
provided by TCP, and integrity by the IPSec Authentication
Header (AH) protocol [21].

4.2 Reliable Broadcast

The reliable broadcast primitive ensures two properties:
1) all correct processes deliver the same messages and
2) if the sender is correct then the message is delivered.
The implemented protocol was originally proposed by
Bracha [22]. The protocol starts with the sender broad-
casting a message (INIT, m) to all processes. Upon

receiving this message, a process sends a (ECHO, m)
message to all processes. It then waits for at least bnþf2 cþ1
(ECHO, m) messages or f þ 1 (READY, m) messages, and
then it transmits a (READY, m) message to all processes.
Finally, a process waits for 2f þ 1 (READY, m) messages
to deliver m. Fig. 2 illustrates the three communication
steps of the protocol.

4.3 Echo Broadcast

The echo broadcast primitive is a weaker and more efficient
version of the reliable broadcast. Its properties are somewhat
similar; however, it does not guarantee that all correct
processes deliver a broadcast message if the sender is
corrupt [24]. In this case, the protocol only ensures that the
subset of correct processes that deliver will do it for the
same message.

The protocol is essentially the described reliable broadcast
algorithm with the last communication step omitted. An
instance of the protocol is started with the sender broad-
casting a message (INITIAL, m) to all processes. When a
process receives this message, it broadcasts a (ECHO, m)
message to all processes. It then waits for more than nþf

2

(ECHO, m) messages to accept and deliver m.

4.4 Binary Consensus

A binary consensus allows correct processes to agree on a
binary value. The implemented protocol is adapted from a
randomized algorithm by Bracha [22]. Each process pi
proposes a value vi 2 f0; 1g and then all correct processes
decide on the same value b 2 f0; 1g. In addition, if all correct
processes propose the same value v, then the decision must
be v. The protocol has an expected number of communica-
tion steps for a decision of 2n�f , and uses the underlying
reliable broadcast as the basic communication primitive.

The protocol proceeds in three-step rounds, running as
many rounds as necessary for a decision to be reached. In
the first step, each process pi (reliably) broadcasts its
proposal vi, waits for n� f valid messages (the definition
of valid is given in the next paragraph), and changes vi to
reflect the majority of the received values. In the second
step, pi broadcasts vi, waits for the arrival of n� f valid
messages, and if more than half of the received values are
equal, vi is set to that value; otherwise, vi is set to the
undefined value ? . Finally, in the third step, pi broadcasts
vi, waits for n� f valid messages, and decides if at least

MONIZ ET AL.: RITAS: SERVICES FOR RANDOMIZED INTRUSION TOLERANCE 125

Fig. 2. Overview of the messages exchanged and best-case number of communication steps in each protocol.

Downloaded from www.VTUplanet.com

2f þ 1 messages have the same value v 6¼? . Otherwise, if at
least f þ 1 messages have the same value v 6¼? , then vi is
set to v and a new round is initiated. If none of the above
conditions apply, then vi is set to a random bit with value 1
or 0, with probability 1

2 , and a new round is initiated.
A message received in the first step of the first round is

always considered valid. A message received in any other
step k, for k > 1, is valid if its value is congruent with any
subset of n� f values accepted at step k� 1. For example,
suppose that process pi receives n� f messages at step 1,
where the majority has value 1. Then at step 2, it receives a
message with value 0 from process pj. Remember that the
message a process pj broadcasts at step 2 is the majority
value of the messages received by it at step 1. That message
cannot be considered valid by pi since value 0 could never
be derived by a correct process pj that received the same
n� f messages at step 1 as process pi (i.e., value 0 is not
congruent). If process pj is correct, then pi will eventually
receive the necessary messages for step 1, which will
enable it to form a subset of n� f messages that validate
the message with value 0. This validation technique has the
effect of causing the processes that do not follow the
protocol to be ignored.

4.5 Multivalued Consensus

A multivalued consensus allows processes to propose a
value v 2 V with arbitrary length. The decision is either
one of the proposed values or a default value ?62 V. The
implemented protocol is based on the multivalued con-
sensus proposed by Correia et al. [7]. It uses the services of
the underlying reliable broadcast, echo broadcast, and binary
consensus layers. The main differences from the original
protocol are the use of echo broadcast instead of reliable
broadcast at a specific point, and a simplification of the
validation of the vectors used to justify the proposed values.

The protocol starts when every process pi announces its
proposal value vi by reliably broadcasting a (INIT, vi)
message. The processes then wait for the reception of
n� f INIT messages and store the received values in a
vector Vi. If a process receives at least n� 2f messages with
the same value v, it echo-broadcasts a (VECT, v, Vi) message
containing this value together with the vector Vi that
justifies the value. Otherwise, it echo-broadcasts the default
value ? that does not require justification. The next step is
to wait for the reception of n� f valid VECT messages. A
VECT message, received from process pj, and containing
vector Vj, is considered valid if one of two conditions hold:
1) v ¼? and 2) there are at least n� 2f elements Vi½k� 2 V
such that Vi½k� ¼ Vj½k� ¼ vj. If a process does not receive two
valid VECT messages with different values, and it received
at least n� 2f valid VECT messages with the same value,
it proposes 1 for an execution of the binary consensus;
otherwise, it proposes 0. If the binary consensus returns 0,
the process decides on the default value ? . If the binary
consensus returns 1, the process waits until it receives
n� 2f valid VECT messages (if it has not done so already)
with the same value v and decides on that value.

4.6 Vector Consensus

Vector consensus allows processes to agree on a vector with a
subset of the proposed values. The protocol is the one

described in [7] and uses reliable broadcast and multivalued
consensus as underlying primitives. It ensures that every
correct process decides on a same vector V of size n; if a
process pi is correct, then V ½i� is either the valued proposed
by pi or the default value ? , and at least f þ 1 elements of
V were proposed by correct processes.

The protocol starts by reliably broadcasting a message
containing the proposed value by the process and setting
the round number ri to 0. The protocol then proceeds in up
to f rounds until a decision is reached. Each round is carried
out as follows. A process waits until n� f þ ri messages
have been received and constructs a vector Wi of size n with
the received values. The indexes of the vector for which a
message has not been received have the value ? . The
vector Wi is proposed as input for the multivalued consensus.
If it decides on a value Vi 6¼? , then the process decides Vi.
Otherwise, the round number ri is incremented and a new
round is initiated.

4.7 Atomic Broadcast

An atomic broadcast protocol delivers messages in the same
order to all processes. One can see atomic broadcast as a
reliable broadcast plus the total order property. The
implemented protocol was adapted from [7]. The main
difference is that it has been changed to use multivalued
consensus instead of vector consensus and to utilize
message identifiers for the agreement task instead of
cryptographic hashes. These changes were made for
efficiency and have been proved not to compromise the
correctness of the protocol. The protocol uses reliable
broadcast and multivalued consensus as primitives.

The atomic broadcast protocol is divided in two tasks
(see Fig. 2): 1) the broadcasting of messages and 2) the
agreement over which messages should be delivered. When
a process pi wishes to broadcast a message m, it simply uses
the reliable broadcast to send a (AB_MSG, i, rbid, m)
message where rbid is a local identifier for the message.
Every message in the system can be uniquely identified by
the tuple (i, rbid).

The agreement task 2 is performed in rounds. A process pi
starts by waiting for AB_MSG messages to arrive. When
such a message arrives, pi constructs a vector Vi with the
identifiers of the received AB_MSG messages and reliably
broadcasts a (AB_VECT, i, r, Vi) message, where r is the
round for which the message is to be processed. It then
waits for n� f AB_VECT messages (and the corresponding
Vj vectors) to be delivered and constructs a new vector Wi

with the identifiers that appear in f þ 1 or more Vj vectors.
The vector Wi is then proposed as input to the multivalued
consensus protocol and if the decided valueW 0 is not? , then
the messages with their identifiers in the vector W 0 can be
deterministically delivered by the process.

5 IMPLEMENTATION

This section describes the internal structure of the protocol
stack and provides an insight into the design considerations
and practical issues that arose during the development of
RITAS. The protocol stack was implemented in the
C language and was packaged as a shared library with
the goal of offering a simple interface to applications

126 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011
Downloaded from www.VTUplanet.com

wishing to use the protocols. Some of the concepts
presented here have been studied in other group commu-
nication systems such as Horus and Ensemble [36], [37].

5.1 Single-Threaded Operation

When developing a software component such as a protocol
stack, there are two possible options regarding its opera-
tion: multithreaded or single threaded. The RITAS protocol
stack runs in a single thread, independent of the application
threads.

In a typical multithreaded protocol stack, every instance
of a specific protocol is handled by a separate thread.
Usually, there is a pivotal thread that reads messages from
the network and instantiates protocol threads to handle
messages that are specific to them. Another option is to
avoid the pivotal thread, and have the protocol threads
reading messages directly from the network.

The multithreaded approach may be simpler to imple-
ment since each context is self-contained in a given thread,
and there is virtually no need for protocol demultiplexing
since messages can be addressed directly to the threads
handling them. This leads to a cleaner implementation (i.e.,
more verbatim translations from pseudocode) because the
protocol code has only to deal with one protocol instance
(the context is implicit). Nevertheless, in a loaded system,
with potentially several hundreds of threads, the constant
context switching and synchronization between threads
poses a serious performance impact on the stack, and may
provoke an unfair internal scheduling.

A single-threaded approach, while more complex to
develop, allows a much more efficient stack operation when
properly implemented. A single-threaded protocol stack
ensures a fair first-come, first-served scheduling as mes-
sages are processed by the relevant protocol instances one-
by-one as they are received. But this approach poses
additional challenges. The contexts for the different protocol
instances are not self-contained and require explicit man-
agement, which adds complexity to such tasks as message
passing, protocol demultiplexing, and packet construction.
The specific protocol code also becomes harder to imple-
ment since it has to juggle between multiple contexts.

Since one of the main goals of RITAS was the
implementation of an efficient protocol stack, the extra
complexity of a single-threaded approach was outweighed
by its potential performance advantages.

5.2 Message Buffers

In a multilayered network protocol stack, messages have to
be passed back and forth. A certain degree of flexibility is
needed to manipulate the buffers that hold the messages
because data may need to be prepended or appended to
these buffers, and existing data may need to be transformed
or deleted. Additionally, the number of operations that
actually copy data has to be kept to a minimum to reduce
performance penalties.

In RITAS, information is passed along the protocol stack
using message buffers (mbuf for short). A mbuf is used to store
a message and several metadata related to its management.
All communication between the different layers is done by
passing pointers to mbufs. This way, it is possible to both
eliminate the need to copy large chunks of data when

passing messages from one layer to another, and have a

data structure that facilitates the manipulation of messages.

This data structure was inspired by the TCP/IP implemen-

tation in the Net/3 Operating System kernel [38].
A mbuf is usually created when a new message arrives

from the network. The RITAS network scheduler creates a

mbuf, then it reads the message from the socket directly into

the mbuf, and passes the mbuf to the appropriate protocol

layer. A mbuf can also be created by a specific protocol layer,

for instance if it needs to send a message to other processes.

Every mbuf is reutilized as much as possible.
There are also specific rules as to when a mbuf should be

destroyed. An outbound mbuf should be destroyed im-

mediately after its message is sent to all relevant processes.

The exception is when a RITAS_MBUF_PROTECTED flag is

set. In this case, the mbuf was explicitly marked for no

destruction by a particular protocol layer, which then

becomes solely responsible for the mbuf destruction. For

an inbound mbuf, the last protocol to which the mbuf is

going to be passed is responsible for its management. A

protocol layer has three options, which are mutually

exclusive, after it has processed the message contained in

the mbuf: it passes the mbuf to an upper layer protocol, it

destroys the mbuf, or it reuses the mbuf to transmit a new

message. The chosen action depends on the semantic of the

protocol and the current state of the particular protocol

instance context to which the mbuf is relevant.

5.3 Control Blocks and Protocol Handlers

Each protocol implemented in RITAS is formed by two

protocol-specific components: the control block and the

protocol handler. The control block is a data structure that

holds the state of a specific instance of the protocol. It keeps

track of things like the instance identification, the current

protocol step, and the values received so far.
The protocol handler is the set of functions that imple-

ments the operation of the protocol. It is formed by

initialization and destruction functions, input and output

functions, and one or more functions that export the protocol

functionality. The purpose of the initialization and destruc-

tion functions is, respectively, to allocate a new control block

and initialize all its variables and data structures, and to

destroy the internal data structures and the control block

itself. The input and output functions are used for inter-

protocol communication, and both receive as parameters the

respective control block and the mbuf to be processed. The

communication between the protocols is depicted in Fig. 3.

MONIZ ET AL.: RITAS: SERVICES FOR RANDOMIZED INTRUSION TOLERANCE 127

Fig. 3. Communication flow among the protocol layers during an atomic

broadcast.

Downloaded from www.VTUplanet.com

6 The RITAS Channel and Control Block
Chaining

Since applications might perform several broadcast and/or
agreement operations simultaneously, the ability to execute
multiple instances of the same protocol is a requisite.
Therefore, one needs to support many contexts for the
different protocol instances. When a message is passed to a
given protocol layer, that layer must be able to identify the
relevant context for the message, and process the message
according to it. This hints a necessity of having each protocol
instance uniquely identified, and to have messages ad-
dressed to specific protocol instances to avoid overlapping
of multiple instances. Two techniques in RITAS make
possible the efficient implementation of this functionality:
the RITAS Channel and Control Block Chaining.

6.1.1 RITAS Channel

This is a special protocol handler that sits between the
broadcast layers and the Reliable Channel layer (the
Reliable Channel layer corresponds to the implementation
of TCP and IPSec that is accessed through the socket
interface) (see Fig. 3). It is the first layer to process messages
after they are read from the network, and the last one before
they are written to the network.

The purpose of the RITAS channel is to build a header
containing a unique identifier for each message. Messages
are always addressed to a given RITAS Channel. The
message is then passed along the appropriate protocol
instances by a mechanism called control block chaining.

6.1.2 Control Block Chaining

This mechanism manages the linking of different protocol
instances, solving several problems: it gives a means to
unambiguously identify all messages, provides for seamless
protocol demultiplexing, and facilitates control block
management.

Control block chaining works in the following way.
Suppose an application executes an atomic broadcast. The
creation of the atomic broadcast protocol instance is done
by calling the corresponding initialization function that
returns a pointer to a control block responsible for that
instance. Since atomic broadcast uses multivalued consen-
sus and reliable broadcast as primitives, the atomic broad-
cast initialization function also calls the initialization
functions for such protocols in order to create as many
instances of these protocols as needed. The returned control
blocks are kept and managed in the atomic broadcast
control block. This mechanism is recursive since second-
order protocol instances may need to use other protocols as
primitives and so on. The result is a tree of control blocks
that has its root at the protocol called by the application and
goes down all the way, having control blocks for RITAS
Channels as the leaf nodes.

A unique identifier is given to each outbound message
when the associated mbuf reaches the RITAS Channel layer.
The tree is traversed bottom-up starting at the RITAS
Channel control block and ending at the root control block.
The message identifier is generated by appending the
protocol instance ID of each traversed node to a local message
identifier that was set by the node that created the mbuf.

Protocol demultiplexing is done seamlessly. When a
message arrives, its identification defines an association
with a particular RITAS Channel control block. The RITAS
Channel passes the mbuf to the upper layer by calling the
appropriate input function of its parent control block. The
message is processed by that layer and the mbuf keeps being
passed in the same fashion.

6.2 Out-of-Content Messages

The asynchronous nature of the protocol stack allows
scenarios where a process receives messages for a protocol
instance whose context has not yet been created. These
messages—called out-of-context (OOC) messages—have no
context to handle them, though they will, eventually.

Since the correctness of the protocols depends on the
eventual delivery of these messages, they cannot simply be
discarded. All OOC messages are stored in a hash table.
When a RITAS Channel is created, it checks this hash table
for relevant messages. If any relevant messages exist, they
are promptly delivered to the upper protocol instance.

It is also possible for a protocol instance to be destroyed
before consuming all of its OOC messages. To scenarios
where OOC messages are kept indefinitely in the hash
table, upon the destruction of a protocol, the hash table is
checked and all relevant messages are deleted. This is not a
solution for the case where a malicious process sends bogus
OOC messages that will never have a context. The problem
of finite memory in Byzantine message-passing systems is
an open issue in the research community. In principle,
RITAS and other group communication systems could
benefit from an approach such as the one in [39].

7 PERFORMANCE EVALUATION

This section describes the performance evaluation of the
protocol stack in both LAN and WAN environments. Two
different performance analyses are made. First, a compara-
tive evaluation is presented in order to gain insight on the
stack, and on how protocols relate and build on one another
performance-wise. Second, an in-depth analysis is con-
ducted on how atomic broadcast performs under various
conditions. This protocol is arguably the most interesting
candidate for a detailed study because it utilizes all other
protocols as primitives, either directly or indirectly, and it
can be used for many practical applications [34], [32], [40].

7.1 Testbeds

The experiments were carried out on three different
testbeds. Two represent LAN environments which differ
on the hardware and the number of nodes they accom-
modate, and the third represents a WAN environment with
four nodes.

The first LAN testbed, which will be referred as tb-lan-
slow, consisted of four 500-MHz Dell Pentium III PCs
with 128 Mbytes of RAM, running Linux kernel 2.6.5.
The PCs were connected by a 100-Mbps HP ProCurve
2424M network switch. Bandwidth tests taken with the
network performance tool lperf have shown a consistent
throughput of 9.1 Mbytes/s in full-duplex mode.

The second LAN testbed, which will be referred as
tb-lan-fast, consisted of 10 Dell PowerEdge 850 servers.

128 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011
Downloaded from www.VTUplanet.com

These servers have Pentium 4 CPUs with 2.8 GHz of
clock speed, and 2 Gbytes of RAM. They were connected
by a Dell PowerConnect 2724 network switch with 10/
100/1,000 Mbps of bandwidth capacity. The operating
system was Linux 2.6.11. Bandwidth tests showed a
consistent throughput of 1.16 Mbytes/s for the 10-Mbps
setting, 11.5 Mbytes/s for the 100 Mbps setting, and
67.88 Mbytes/s for the 1,000-Mbps setting. All values
were taken in full-duplex mode, which was used in the
experiments.

The WAN testbed, which will be referred as tb-wan,
consisted of four nodes, each one located in a different
continent: a European node in Lisbon, Portugal (P4,
3 GHz, 1-Gbyte RAM), a North American node in
Berkeley, CA (P4, 2.4 GHz, 1-Gbyte RAM), a South
American node in Campinas, Brazil (Xeon, 3 GHz,
1.5-Gbyte RAM), and an Asian node in Ishikawa, Japan
(P4, 3.4 GHz, 3.5-Gbyte RAM). These nodes belong to the
Planetlab platform [41] and their operating system was
Linux 2.6.12. Table 1 shows the round-trip latency and
bandwidth measurements taken between each pair of
nodes.

For testbeds tb-lan-fast and tb-lan-slow, the IPSec im-
plementation that was used was the one available in the
Linux kernel and the reliable channels that were established
between every pair of processes employed the IPSec AH
protocol (with SHA-1) in transport mode [21]. For testbed
tb-wan, there was no IPSec available, so the experiments for
this testbed were carried out with regular IP. This makes the
protocols insecure since the integrity property of the
channels is not provided, but our interest here is to evaluate
the performance of the protocols. In practice, this is not
affected because the latency added by the cryptographic
operations (at the microseconds order) is negligible com-
pared to the latency of the WAN links (around hundreds of
milliseconds).

7.2 Stack Analysis

In order to get a better understanding about the relative
overheads of each layer of the stack, we have run a set of
experiments to determine the latencies of the protocols.
These measurements were carried out in the following
manner: a signaling machine that does not participate in
the protocols is selected to control the benchmark execution.
It starts by sending a 1-byte UDP message to the n processes
to indicate which specific protocol instance they should
create. Then, it transmits M messages, each one separated by
a 2-seconds interval (in our case, M was set to 100). Whenever

one of these messages arrives, a process runs the protocol,
either a broadcast or a consensus. In case of a broadcast, the
process with the lowest identifier acts as the sender, while the
others act as receivers. In case of a consensus, all processes
propose identical initial values.2 The broadcast messages and
the consensus proposals all carry a 10-byte payload (except
for binary consensus where the payload is 1 byte). The
latency of each instance was obtained at a specific process.
This process records the instant when the signal message
arrives and the time when it either delivers a message (for
broadcast protocols) or a decision (for consensus protocols).
The measured latency is the interval between these two
instants. The average latency is obtained by taking the mean
value of the sample of measured values. Outliers were
identified and excluded from the sample.

The results for testbed tb-lan-slow with four processes,
shown in Table 2, demonstrate the interdependencies
among protocols and how much time is spent on each
protocol. For example, in a single atomic broadcast instance,
roughly 2/3 of the time is taken running a multivalued
consensus. For a multivalued consensus, about 1/2 of the
time is used by the binary consensus. And for vector
consensus, about 3/4 of the time is utilized by the
multivalued consensus. The experiments also demonstrated
that consensus protocols were always able to reach a
decision in one round because the initial proposals were
identical.

The table also shows the cost of using IPSec. This
overhead could in part be attributed to the cryptographic
calculations, but most of it is due to the increase on the size
of the messages. For example, the total size of any Reliable
Broadcast message—including the Ethernet, IP, and TCP
headers—carrying a 10-byte payload is 80 bytes. The
IPSec AH adds another 24 bytes, which accounts for an
extra 30 percent.

Table 3 shows the performance results for testbed tb-lan-
fast. The average latency for all protocols is presented for
three different group sizes: 4, 7, and 10 processes. The
relative slowdown with respect to the four-process scenario
is also shown for each protocol.

The first conclusion that can be extracted from these
results is that protocols in this testbed exhibit a much better
performance than the previous testbed. The use of more
powerful hardware had a significant impact on the

MONIZ ET AL.: RITAS: SERVICES FOR RANDOMIZED INTRUSION TOLERANCE 129

2. The only protocol whose performance may directly suffer from
different initial values is binary consensus since its termination is
probabilistic. This protocol has been subject to a thorough evaluation in a
different paper and its performance has been shown not to be significantly
affected by different initial values [19].

TABLE 1
Average Round-Trip Latency and Bandwidth between

Every Pair of Nodes in Testbed tb-wan
(Variance is Shown in Parentheses)

TABLE 2
Average Latency for Isolated Executions of Each Protocol in

Testbed tb-lan-slow (100 Mbps) with Four Processes

Downloaded from www.VTUplanet.com

performance of all protocols. For instance, in the case of
binary consensus, the performance was improved threefold,
while for atomic broadcast, performance was increased
almost four times. The network switch with increased
bandwidth capacity, the network interface cards with better
performance, and the machines in general with greater
computational power are the obvious candidates to justify
the performance gain. It is unclear, however, in the relative
weight of the various hardware components on the faster
protocol execution. Later experiments isolate some of these
parameters and demonstrate in greater depth the impact of
network bandwidth and host computational power on the
protocol stack performance.

Another interesting observation from the results in
Table 3 is the relative slowdown of each protocol when
the group size increases. The reliable and echo broadcast
protocols were less sensitive to a larger group size, while
the slowdown for the remaining protocols was consider-
ably accentuated due to the increase in the number of
exchanged messages. Reliable and echo broadcast exchange
Oðn2Þ messages per communication step, while the remain-
ing protocols exchange Oðn3Þ, thus being more sensitive to
increasing group sizes.

The results for the WAN environment are shown in
Table 4. The performance of the protocols is significantly
affected by the higher-latency, lower-bandwidth links of
this testbed. As expected, the protocols with a larger
number of message exchanges suffer more due to the
network delays.

7.3 Atomic Broadcast Analysis

This section evaluates the atomic broadcast protocol in
more detail. The experiments were carried out by having
the n processes send a burst of k messages and measuring
the interval between the beginning of the burst and the
delivery of the last message. The benchmark was per-
formed in the following way: processes wait for a 1-byte
UDP message from the signaling machine, and then each
one atomically broadcasts a burst of k

n messages. Messages

have a fixed size of m bytes. For every tested workload, the
obtained measurement reflects the average value of
10 executions.

Two metrics are used to assess the performance of the
atomic broadcast: burst latency ðLburstÞ and maximum
throughput ðTmaxÞ. The burst latency is always measured at
a specific process and is the interval between the instant
when it receives the signal message and the moment when
it delivers the kth message. The throughput for a specific
burst is the burst size k divided by the burst latency Lburst
(in seconds). The maximum throughput Tmax can be
inferred as the value at which the throughput stabilizes
(i.e., does not change with increasing burst sizes). Although
no graphs for the burst latency are provided due to space
constrains, by dividing the burst size by the throughput
value one can obtain the corresponding burst latency in
seconds.

The measurements were taken by varying several system
parameters: group size, network bandwidth, fault load, and
message payload size. In the LAN environment, the impact
of all these parameters is tested. In the WAN environment,
only the fault load and the payload size are tested.

The group size defines the number of processes n in the
system and can assume three values: 4, 7, and 10.

The network bandwidth is the amount of data that can be
passed between every pair of processes in a given period
of time. It can take three values: 10 Mbps, 100 Mbps, and
1,000 Mbps.

The fault load defines the types of faults that are injected
in the system during its execution. The measurements were
obtained under three fault loads. In the fault-free fault load,
all processes behave correctly. In the fail-stop fault load,
f processes crash before the measurements are taken (f is
always set to the maximum number of processes that can
fail as dictated by the system model, which means that
f ¼ bn�1

3 c). Finally, in the Byzantine fault load, f processes
permanently try to disrupt the behavior of the protocols. At
the binary consensus layer, they always propose zero trying
to impose a zero decision. At the multivalued consensus
layer, they always propose the default value in both INIT
and VECT messages trying to force correct processes to
decide on the default value. The impact of any such attack,
if successful, would be that correct processes do not reach
an agreement over which messages should be delivered by
the atomic broadcast protocol and, consequently, would
have to start a new agreement round.

The message payload size is the length of the data
transmitted in each atomic broadcast (excluding protocol
headers). Four values were used in the experiments:
10 bytes, 100 bytes, 1 Kbyte, and 10 Kbytes.

130 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011

TABLE 3
Average Latency and Relative Slowdown (w.r.t. to the

Four-Process Scenario) for Isolated Executions of Each
Protocol (with IPSec) in Testbed tb-lan-fast (1,000 Mbps)

TABLE 4
Average Latency for Isolated Executions of Each
Protocol in Testbed tb-wan (with Four Processes)

Downloaded from www.VTUplanet.com

7.3.1 Group Size and Fault Load in LAN

The set of experiments described in this section had the
objective of measuring the impact of both the group size
and the fault load in a LAN environment. The network
bandwidth was fixed to 100 Mbps in testbed tb-lan-slow and
to 1,000 Mbps in testbed tb-lan-fast. The message payload
size was 100 bytes. The group size was set for 4, 7, and
10 processes. All three fault loads were tested: fault-free,
fail-stop, and Byzantine.

Fig. 4 shows the performance of the atomic broadcast in
testbed tb-lan-fast for the three different fault loads. Each
curve shows the throughput for a different group size n.

Fault-free fault load. From the graph in Fig. 4, it is possible
to observe that the stabilization point in the throughput
curves indicates the maximum throughput Tmax. This value
was around 2,800 messages/s for a group size of four
processes, 1,500 msgs/s for seven processes, and
1,000 msgs/s for 10 processes. The burst latency for a burst
size of 1,000 was 354, 700, and 995 ms for 4, 7, and
10 processes, respectively. The group size had a significant
impact on the protocol performance. The maximum through-
put dropped almost to half from the 4-process to the
7-process scenario, and then about one third from the
7-process to the 10-process scenario. These results were
expected because larger group sizes implicate that a larger
number of messages must be exchanged. This imposes a
higher load on the network, which decreases the maximum
throughput.

Fail-stop fault load. In this fault load, where f processes
crash, each correct process sends a burst of k

n�f messages.
Looking at the curves, it is possible to conclude that
performance is noticeably better with f crashed processes
than in the fault-free situation. This happens because with
f fewer processes there are fewer messages. The decreased
contention, which does not necessarily occur at the network
since the individual nodes are also susceptible to resource
contention, allows operations to be executed faster. The
maximum throughput Tmax is around 3,000 messages/s for
a group size of four processes, 1,700 msgs/s for seven
processes, and 1,050 msgs/s for 10 processes. The burst
latency for a burst size of 1,000 was 330, 587, and 989 ms for
4, 7, and 10 processes, respectively.

Byzantine fault load. In this fault load, f processes try to
disrupt the protocol. The maximum throughput Tmax is
around 2,800 messages/s for a group size of four processes,
1,500 msgs/s for seven processes, and 1,000 msgs/s for

10 processes. The burst latency for a burst size of 1,000 was
355, 704, and 966 ms for 4, 7, and 10 processes, respectively.

There is no noticeable performance penalty when
compared to the fault-free fault load. An important result
is that all the consensus protocols reached agreement
within one round, even under Byzantine faults. This can
be explained in an intuitive way as follows. The experi-
mental setting was a LAN, which not only provides a low-
latency, high-throughput environment but also keeps the
nodes within symmetrical distance of each other. Due to
this symmetry, in the atomic broadcast protocol, correct
processes maintained a fairly consistent view of the
received AB_MSG messages because they all received these
messages at approximately the same time. Any slight
inconsistencies that, on occasion, existed over this view
were squandered when processes broadcast vector V
(which was built with the identifiers of the received
AB_MSG messages) and then constructed a new vector W
(which serves as the proposal for the multivalued con-
sensus) with the identifiers that appeared in, at least, f þ 1
of those V vectors. This mechanism caused all correct
processes to propose identical values in every instance of
the multivalued consensus, which allowed one-round
decisions.

Testbed tb-lan-slow versus tb-lan-fast. Fig. 6a compares the
performance for the fault-free and fail-stop scenarios with
four processes in both testbeds. The curves for the
Byzantine scenario were left out for legibility since, as
observed above, they are practically the same as for the
fault-free scenario. The bandwidth for testbed tb-lan-slow is
100 Mbps, and for tb-lan-fast is set to 1,000 Mbps.

Unsurprisingly, it can be observed that the performance
is clearly superior in testbed tb-lan-fast. The greater
computational power and network capacity of tb-lan-fast
allows a maximum throughput about four times larger in
the fault-free scenario (2,800 msgs/s versus 650 msgs/s),
and three times larger in the fail-stop scenario (3,000 msgs/s
versus 1,000 msgs/s). The performance factor is larger in the
fault-free case because the load increase in this scenario
w.r.t. the fail-stop scenario pushes tb-lan-slow closer to its
limit (i.e., consumes a greater percentage of resources) than
tb-lan-fast.

7.3.2 Network Bandwidth and Message Size in LAN

This section analyzes in greater detail the impact of
network bandwidth and message payload size in the
protocol performance. In these experiments, no faults were
injected and the group size was set to four processes. The

MONIZ ET AL.: RITAS: SERVICES FOR RANDOMIZED INTRUSION TOLERANCE 131

Fig. 4. Throughput for atomic broadcast with different group sizes and fault loads for testbed tb-lan-fast.

Downloaded from www.VTUplanet.com

network bandwidth was 1,000, 100, and 10 Mbps for testbed
tb-lan-fast, and 100 Mbps for testbed tb-lan-slow. Four
message payload sizes were used: 10 bytes, 100 bytes,
1 Kbyte, and 10 Kbytes.

Fig. 5 shows the performance curves for testbed tb-lan-
fast with 10-byte, 100-byte, and 1-Kbyte message payloads.
Each curve represents a different bandwidth value.

While there is a clear performance difference between
the protocol execution in the three network bandwidth
scenarios, it is not accentuated as one would expect, if
considering the bandwidth as the sole performance bottle-
neck. For instance, while the 1,000-Mbps scenario has
100 times more bandwidth than the 10-Mbps scenario, the
maximum throughput is only about 1.6 higher in the
1,000-Mbps case (2,900 msgs/s versus 1,800 msgs/s) with
10-byte messages. It is only for larger message payloads that
the network bandwidth becomes a restricting factor. As
later experiments confirm, the processing power of the

individual nodes and the network latency considerably
affect the performance, especially for small payload sizes.

Finally, the charts of Figs. 6b and 6c compare the
protocol performance on both testbeds with similar band-
width values. The purpose is solely to compare the impact
of the individual node computational power on the protocol
performance. As can be easily observed, testbed tb-lan-fast
clearly outperforms testbed tb-lan-slow. It is only for large
payloads (e.g., 10 Kbytes) that their performance becomes
comparable as both the network bandwidth and latency
become more restricting factors.

7.3.3 Fault Load and Message Size in WAN

This section describes the experiments that measure the
impact of the message payload size and different types of
faults in the WAN environment (testbed tb-wan).

Fault-free fault load. The chart of Fig. 7a shows the

performance of the atomic broadcast in testbed tb-wan when

132 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011

Fig. 5. Throughput for atomic broadcast with different bandwidth settings and message sizes for testbed tb-lan-fast.

Fig. 6. Comparative throughput for atomic broadcast for testbeds tb-lan-slow and tb-lan-fast.

Fig. 7. Throughput for atomic broadcast for testbed tb-wan.

Downloaded from www.VTUplanet.com

no faults occur in the system. Each curve shows the
throughput for a different payload size. For 10-byte
payloads, the maximum throughput is around 80 msgs/s
(burst latency of 13 seconds for k ¼ 1;000). For 100-byte
payloads, the maximum throughput is around 32 msgs/s
(burst latency of 34 seconds for k ¼ 1;000). Finally, for
1-Kbyte payloads, the throughput stabilizes around
25 msgs/s (burst latency of 400 seconds for k ¼ 1;000).

As expected, the throughput in the WAN environment is
considerably lower than in the LAN environment. The
higher latency and lower bandwidth of such an environ-
ment has a negative impact on the atomic broadcast
performance, and makes it extremely sensitive to the
message payload size.

Fail-stop fault load. The chart of Fig. 7b shows the
performance of the atomic broadcast (using 100-byte pay-
load messages) in testbed tb-wan when one of the processes
fails by crashing. One curve shows the performance impact
on the atomic broadcast protocol when the Campinas node
crashes, and the other curve when a node other than
Campinas crashes. When the crashed node is not Campinas,
the performance of the protocol is similar for all the
remaining scenarios, with the throughput stabilizing
around 14 msgs/s (burst latency of 71 seconds for
k ¼ 1;000). On the other hand, when the crashed node is
Campinas, the performance of the atomic broadcast is
boosted to around 120 msgs/s (burst latency of eight
seconds for k ¼ 1;000), a significant increase even if
compared to the fault-free scenario.

The first observation of these results is that when the
crashed node is not Campinas, the performance is worse
than the fault-free scenario by about 50 percent. Messages
from the Campinas node were consistently the last ones to
arrive at any given process for any particular communica-
tion step. This observation is coherent with the latency
and bandwidth measurements taken. The links connecting
to the Campinas node had the worst results on average.
The conclusion is that the Campinas node is a perfor-
mance bottleneck. When one process crashes (other than
Campinas), this forces all processes to wait for the
Campinas messages at every communication step. In the
fault-free scenario, this is offset by the fact that the other
processes need not wait for the Campinas messages to
advance in the execution of the protocols. They only need
to wait for the messages that Campinas atomically
broadcasts (but not the messages related to agreement
executions) since, by definition of the experiment, all
processes wait for k

n messages from each process.
The second observation is that the atomic broadcast has a

considerably higher throughput when the crashed node is
Campinas. This can be explained using the same rationale
as the previous observation. Since the process crashed and
by definition of the experiment, the other processes do not
expect any messages from the Campinas node (not even
atomically broadcast messages). Hence, the higher perfor-
mance in this case, even when compared to the fault-free
scenario. What is striking is really how much of a
performance impact one slower process can have on the
execution of the protocol.

Byzantine fault load. The performance of the atomic
broadcast in testbed tb-wan is shown on the chart of

Fig. 7c when one of the processes tries to disrupt the
execution of the protocol. One curve shows the perfor-
mance impact on the atomic broadcast protocol when the
Campinas node fails, and the other curve when a node
other than Campinas fails. When the Byzantine node is not
Campinas, the performance of the protocol is again very
similar for all the cases with the maximum throughput
being roughly around 12 msgs/s. When the Byzantine node
is Campinas, the throughput climbs up to around 35 msgs/s
but drops to around 20-25 msgs/s for higher burst sizes
(i.e., k > 600).

The main observations are similar for the fail-stop
scenario. The protocol performance is worse when the
Byzantine node is not Campinas, and better when it is
Campinas. Naturally, this implies that when the Byzantine
node is among the n� f fastest, its power to delay the
execution of the protocols is greater. Because the messages
from the slower node are rarely processed by the other
processes, the impact of its Byzantine actions is minimized
or even nonexistent. The performance of the atomic broad-
cast when the Byzantine node is Campinas is similar to the
fault-free scenario for burst sizes less or equal to 600. It is
only when the burst rises above this threshold that the
node begins to show some capacity to delay the protocol
execution. When more messages are processed in the
system, there is a higher chance for some of the messages
sent by Campinas to be among the first n� f to be received
by other processes.

7.3.4 Relative Cost of Agreement

On all experiments, only a few agreements were necessary
to deliver an entire burst. The observed pattern was that a
consensus was initiated immediately after the arrival of the
first message. While the agreement task was being run, a
significant portion of the burst would arrive, and so on until
all the messages were delivered. This has the interesting
effect of diluting the cost of the agreements when the load
increases.

Fig. 8 shows the relative cost of the agreements with
respect to the total number of (reliable and echo) broadcasts
that was observed in the fault-free scenario with four
processes and 100-byte messages in testbed tb-lan-fast. This
relative cost is referred to as the efficiency of the atomic
broadcast protocol. The curves for the other scenarios
are almost identical; none of the testing parameters had a
noticeable effect on the efficiency. Basically, two quantities

MONIZ ET AL.: RITAS: SERVICES FOR RANDOMIZED INTRUSION TOLERANCE 133

Fig. 8. Relative cost: percentage of (reliable or echo) broadcasts that are

due to the agreements when a burst of messages is atomically

broadcast.

Downloaded from www.VTUplanet.com

were obtained for the transmission of every burst: the total
number of (reliable and echo) broadcasts and the total
number of (reliable and echo) broadcasts that were
necessary to execute the agreement operations. The values
depicted in the figure are the second quantity divided by
the first. It is possible to observe that for small burst sizes,
the cost of agreement is high—in a burst of four messages,
it represents about 92 percent of all broadcasts. This
number, however, drops exponentially, reaching as low as
6.3 percent for a burst size of 1,000 messages.

There is a downside to this result that is related to the
individual message latency under an atomic broadcast burst.
According to the observed pattern, for a burst of kmessages,
k� 1 are delivered exactly at the end of the burst. This means
the individual message latency for those k� 1 messages
matches the whole burst latency and suggests that in a certain
usage scenario the protocols could be optimized to provide a
more sparse distribution of message delivery inside a burst
(by sacrificing some efficiency).

7.4 Summary of Results

Some of the conclusions of the experimental evaluation are
summarized in the following points:

. The protocols are robust. In LAN environments,
performance (and also correctness) is not affected by
the tested fault patterns.

. The protocols are efficient with respect to the
number of rounds to reach agreement. In the
experiments with no Byzantine failures, the multi-
valued consensus always reached an agreement with
a value distinct from the default ? , and the binary
consensus always terminated within one round.

. Since protocols do not carry out any recovery actions
when a failure occurs, crashes have the effect of
making executions faster for LAN environments.
Fewer processes mean less contention on the
network.

. The network bandwidth only becomes a serious
performance bottleneck when it becomes relatively
small (i.e., 10 Mbps or WAN) or the message
payloads become relatively large (i.e., 1 Kbyte and
10 Kbytes).

. Protocols perform much worse in a WAN, due to its
higher-latency and lower-bandwidth links.

. For LANs, the computational capability of the
individual nodes has a strong influence on the
protocol stack performance.

. In a WAN, the performance impact of a process
crash can be positive or negative, depending on
whether the process is relatively slow or relatively
fast, respectively.

. A Byzantine process can have a negative impact
on the performance of the protocols in a WAN
environment, but only if the process can consistently
broadcast valid messages that are delivered among
the first n� f messages for any given step.

. On the atomic broadcast protocol, the cost of the
agreements is diluted when the load is high. For a
burst of 1,000 messages, it represents only 6.3 percent
of all (reliable or echo) broadcasts that were made.

8 CONCLUSION

This paper has presented an implementation and evalua-
tion of a stack of intrusion-tolerant randomized protocols.
These protocols have a set of important structural proper-

ties, such as not requiring the use of public-key crypto-
graphy (relevant for good performance) and optimal
resilience (significant in terms of system cost).

The experiments led to several observations. First,
randomized binary consensus protocols that in theory run

in high numbers of steps, in practice, may execute in only a
few rounds under realistic conditions. Second, although
atomic broadcast is equivalent to consensus, with the right
implementation, a high number of atomic broadcasts can

be done with a small number of rounds of consensus.
Consequently, the average cost in terms of throughput for
atomic broadcast can be almost as little as a reliable
broadcast. Third, taking decisions in a decentralized way

is important to avoid performance penalties due to the
existence of faults. In fact, the performance of our protocols
is approximately the same, or even improved, with realistic
fault loads.

In conclusion, randomization can, in fact, and contrary to
a widespread belief in the scientific community, be a valid
solution for the deployment of efficient distributed systems.
This is true even if they are deployed in hostile environ-

ments where they are usually subject to malicious attacks.

ACKNOWLEDGMENTS

This work was partially supported by the European Union
through NoE IST-4-026764- NOE (RESIST) and project
IST-4-027513-STP (CRUTIAL), and by the FCT through
project POSI/EIA/60334/2004 (RITAS) and the Large-Scale

Informatic Systems Laboratory (LASIGE).

REFERENCES

[1] J.S. Fraga and D. Powell, “A Fault- and Intrusion-Tolerant File
System,” Proc. Third IFIP Int’l Conf. Computer Security (IFIP/Sec ’85),
pp. 203-218, Aug. 1985.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,”
IEEE Trans. Dependable and Secure Computing, vol. 1, no. 1,
pp. 11-33, Jan.-Mar. 2004.

[3] P.E. Verissimo, N.F. Neves, and M.P. Correia, “Intrusion-Tolerant
Architectures: Concepts and Design,” Architecting Dependable
Systems, R. Lemos, C. Gacek, and A. Romanovsky, eds. Spring-
er-Verlag, vol. 2677, 2003.

[4] F.B. Schneider, “Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial,” ACM Computing Surveys,
vol. 22, no. 4, pp. 299-319, Dec. 1990.

[5] R. Guerraoui and A. Schiper, “The Generic Consensus Service,”
IEEE Trans. Software Eng., vol. 27, no. 1, pp. 29-41, Jan. 2001.

[6] V. Hadzilacos and S. Toueg, “A Modular Approach to Fault-
Tolerant Broadcasts and Related Problems,” Dept. Computer
Science, Cornell Univ., Technical Report TR94-1425, May 1994.

[7] M. Correia, N.F. Neves, and P. Verissimo, “From Consensus
to Atomic Broadcast: Time-Free Byzantine-Resistant Protocols
without Signatures,” The Computer J., vol. 41, no. 1, pp. 82-96,
Jan. 2006.

[8] M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process,” J. ACM, vol. 32,
no. 2, pp. 374-382, Apr. 1985.

[9] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
Presence of Partial Synchrony,” J. ACM, vol. 35, no. 2, pp. 288-323,
Apr. 1988.

134 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011
Downloaded from www.VTUplanet.com

[10] D. Dolev, C. Dwork, and L. Stockmeyer, “On the Minimal
Synchronism Needed for Distributed Consensus,” J. ACM,
vol. 34, no. 1, pp. 77-97, Jan. 1987.

[11] T. Chandra and S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems,” J. ACM, vol. 43, no. 2,
pp. 225-267, Mar. 1996.

[12] D. Malkhi and M. Reiter, “Unreliable Intrusion Detection in
Distributed Computations,” Proc. 10th Computer Security Founda-
tions Workshop (CSFW ’97), pp. 116-124, June 1997.

[13] K.P. Kihlstrom, L.E. Moser, and P.M. Melliar-Smith, “Byzantine
Fault Detectors for Solving Consensus,” The Computer J., vol. 46,
no. 1, pp. 16-35, Jan. 2003.

[14] N.F. Neves, M. Correia, and P. Verissimo, “Solving Vector
Consensus with a Wormhole,” IEEE Trans. Parallel and Distributed
Systems, vol. 16, no. 12, Dec. 2005.

[15] M. Ben-Or, “Another Advantage of Free Choice: Completely
Asynchronous Agreement Protocols,” Proc. Second ACM Symp.
Principles of Distributed Computing (PODC ’83), pp. 27-30,
Aug. 1983.

[16] M.O. Rabin, “Randomized Byzantine Generals,” Proc. 24th
Ann. IEEE Symp. Foundations of Computer Science (FOCS ’83),
pp. 403-409, Nov. 1983.

[17] C. Cachin, K. Kursawe, and V. Shoup, “Random Oracles in
Constantinople: Practical Asynchronous Byzantine Agreement
Using Cryptography,” Proc. 19th ACM Symp. Principles of
Distributed Computing (PODC ’00), pp. 123-132, July 2000.

[18] C. Cachin and J.A. Poritz, “Secure Intrusion-Tolerant Replication
on the Internet,” Proc. IEEE Int’l Conf. Dependable Systems and
Networks (DSN ’02), pp. 167-176, June 2002.

[19] H. Moniz, M. Correia, N.F. Neves, and P. Verissimo, “Experi-
mental Comparison of Local and Shared Coin Randomized
Consensus Protocols,” Proc. 25th IEEE Symp. Reliable Distributed
Systems (SRDS ’06), pp. 235-244, Oct. 2006.

[20] R. Friedman, A. Mostefaoui, and M. Raynal, “Simple and Efficient
Oracle-Based Consensus Protocols for Asynchronous Byzantine
Systems,” Trans. Dependable and Secure Computing, vol. 2, no. 1,
pp. 46-56, Jan.-Mar. 2005.

[21] S. Kent and R. Atkinson, “Security Architecture for the
Internet Protocol,” IETF Request for Comments: RFC 2093,
Nov. 1998.

[22] G. Bracha, “An Asynchronous bðn� 1Þ=3c-Resilient Consensus
Protocol,” Proc. Third ACM Symp. Principles of Distributed Comput-
ing (PODC ’84), pp. 154-162, Aug. 1984.

[23] M. Reiter, “Secure Agreement Protocols: Reliable and Atomic
Group Multicast in Rampart,” Proc. Second ACM Conf. Computer
and Comm. Security (CCS ’94), pp. 68-80, Nov. 1994.

[24] S. Toueg, “Randomized Byzantine Agreements,” Proc. Third ACM
Symp. Principles of Distributed Computing (PODC ’84), pp. 163-178,
Aug. 1984.

[25] R. Canetti and T. Rabin, “Fast Asynchronous Byzantine Agree-
ment with Optimal Resilience,” Proc. 25th Ann. ACM Symp. Theory
of Computing (STOC ’93), pp. 42-51, 1993.

[26] L.E. Moser and P.M. Melliar-Smith, “Byzantine-Resistant Total
Ordering Algorithms,” Information and Computation, vol. 150,
pp. 75-111, 1999.

[27] R. Baldoni, J. Helary, M. Raynal, and L. Tanguy, “Consensus in
Byzantine Asynchronous Systems,” Proc. Seventh Int’l Colloquium
on Structural Information and Comm. Complexity (SIROCCO ’00),
pp. 1-16, June 2000.

[28] J.P. Martin and L. Alvisi, “Fast Byzantine Consensus,” Proc.
IEEE Int’l Conf. Dependable Systems and Networks (DSN ’05),
June 2005.

[29] M. Correia, N.F. Neves, L.C. Lung, and P. Verissimo, “Low
Complexity Byzantine-Resilient Consensus,” Distributed Comput-
ing, vol. 17, no. 3, pp. 237-249, 2005.

[30] H. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W.H. Sanders,
“Quantifying the Cost of Providing Intrusion Tolerance in Group
Communication Systems,” Proc. IEEE Int’l Conf. Dependable
Systems and Networks (DSN ’02), pp. 229-238, June 2002.

[31] K.P. Kihlstrom, L.E. Moser, and P.M. Melliar-Smith, “The
SecureRing Group Communication System,” ACM Trans. Informa-
tion and System Security, vol. 4, no. 4, pp. 371-406, 2001.

[32] M. Correia, N.F. Neves, L.C. Lung, and P. Verissimo, “Worm-
IT—A Wormhole-Based Intrusion-Tolerant Group Communica-
tion System,” J. Systems and Software, vol. 80, no. 2, pp. 178-197,
2007.

[33] V. Drabkin, R. Friedman, and A. Kama, “Practical Byzantine
Group Communication,” Proc. 26th IEEE Int’l Conf. Distributed
Computing Systems (ICDCS ’06), p. 36, 2006.

[34] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,”
Proc. Third Symp. Operating Systems Design and Implementation
(OSDI ’99), pp. 173-186, Feb. 1999.

[35] H. Moniz, “Randomized Intrusion-Tolerant Asynchronous
Services, Master’s Thesis,” Dept. Informatics, Univ. of Lisbon,
master’s thesis, DI/FCUL TR-07-2, http://www.di.fc.ul.pt/
tech-reports/07-2.pdf, Feb. 2007.

[36] R. van Renesse, K.P. Birman, and S. Maffeis, “Horus: A Flexible
Group Communication System,” Comm. ACM, vol. 39, no. 4,
pp. 76-83, 1996.

[37] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr,
“Building Adaptive Systems Using Ensemble,” Software—Practice
and Experience, vol. 28, no. 9, pp. 963-979, 1998.

[38] G.R. Wright and W.R. Stevens, TCP/IP Illustrated, Volume 2: The
Implementation. Addison-Wesley, 1995.

[39] G.S. Veronese, M. Correia, L.C. Lung, and P. Verissimo, “On the
Effects of Finite Memory on Intrusion-Tolerant Systems,” Proc.
13th Pacific Rim Int’l Symp. Dependable Computing (PRDC ’07),
pp. 401-404, 2007.

[40] M.K. Reiter, “The Rampart Toolkit for Building High-Integrity
Services,” Proc. Int’l Workshop Theory and Practice in Distributed
Systems, pp. 99-110, 1995.

[41] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: An Overlay
Testbed for Broad-Coverage Services,” SIGCOMM Computer
Comm. Rev., vol. 33, no. 3, pp. 3-12, 2003.

Henrique Moniz is a PhD student in the
Departamento de Informática, Faculdade de
Cincias, Universidade de Lisboa, Portugal. He
is a member of the LASIGE laboratory and the
Navigators research group. He is also a teaching
assistant at the University of Lisbon. His
research interests include distributed algorithms
in hostile environments. He is involved in several
research projects related to intrusion tolerance
and security, including the RITAS (FCT), the

CRUTIAL and HIDENETS (EC-IST) projects, and the ReSIST NoE. He
is a student member of the IEEE.

Nuno Ferreira Neves received the PhD degree
in computer science from the University of
Illinois at Urbana-Champaign in 1998. He is an
assistant professor in the Departamento de
Informática, Faculdade de Cincias, Universi-
dade de Lisboa, Portugal, and also an adjunct
faculty at the Information Network Institute,
Carnegie Mellon University, for activities related
to the MSc in Information Technology-Informa-
tion Security. His main research interests in-

clude dependable and secure parallel and distributed systems. In the
recent years, he has participated in several European and national
research projects in these areas, namely CRUTIAL, Resist, AJECT,
RITAS, and MAFTIA. His work has been recognized with the IBM
Scientific Prize in 2004 and the William C. Carter award at the IEEE
FTCS in 1998. He is currently a member of the editorial board of the
International Journal of Critical Computer-Based Systems. He is a
member of the IEEE.

MONIZ ET AL.: RITAS: SERVICES FOR RANDOMIZED INTRUSION TOLERANCE 135
Downloaded from www.VTUplanet.com

Miguel Correia received the PhD degree in
computer science from the Universidade de
Lisboa, Portugal, in 2003. He is an assistant
professor in the Departamento de Informática,
Faculdade de Cincias, Universidade de Lisboa.
His main research interests include intrusion
tolerance, security, distributed systems, and
distributed algorithms. He is a member of the
LASIGE research unit and the Navigators
research team. He has been involved in several

international and national research projects related to intrusion
tolerance and security, including the MAFTIA and CRUTIAL EC-IST
projects, and the ReSIST NoE. He is currently the coordinator of the
Universidade de Lisboa’s degree on Informatics Engineering and an
instructor at the joint Carnegie Mellon University and Universidade de
Lisboa MSc in Information Technology-Information Security. He is a
member of the IEEE.

Paulo Verissimo is currently a professor in the
Departamento de Informática (DI), Faculdade
de Cincias, Universidade de Lisboa, Portugal
(http://www.di.fc.ul.pt/~pjv) and the director of
LASIGE, a research laboratory of the DI (http://
lasige.di.fc.ul.pt). He leads the Navigators re-
search group of LASIGE. His current research
interests include architecture, middleware, and
protocols for distributed, pervasive, and em-
bedded systems, in the facets of real-time

adaptability and fault/intrusion tolerance. He has authored more than
130 refereed publications in international scientific conferences and
journals in these areas, and has coauthored five books (e.g., http://
www.navigators.di.fc.ul.pt/dssa/). He is an associate editor of the
Elsevier International Journal on Critical Infrastructure Protection and
a past associate editor of the IEEE Transactions on Dependable and
Secure Computing. He belonged to the European Security and
Dependability Advisory Board. He is the past chair of the IEEE
Technical Committee on Fault-Tolerant Computing and of the Steering
Committee of the DSN conference, and belonged to the Executive
Board of the CaberNet European Network of Excellence. He was a
coordinator of the CORTEX IST/FET project (http://cortex.di.fc.ul.pt). He
is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

136 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011
Downloaded from www.VTUplanet.com

