1080

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO.6, JUNE 2012

Scalable Learning of Collective Behavior
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Abstract—This study of collective behavior is to understand how individuals behave in a social networking environment. Oceans of
data generated by social media like Facebook, Twitter, Flickr, and YouTube present opportunities and challenges to study collective
behavior on a large scale. In this work, we aim to learn to predict collective behavior in social media. In particular, given information
about some individuals, how can we infer the behavior of unobserved individuals in the same network? A social-dimension-based
approach has been shown effective in addressing the heterogeneity of connections presented in social media. However, the networks
in social media are normally of colossal size, involving hundreds of thousands of actors. The scale of these networks entails scalable
learning of models for collective behavior prediction. To address the scalability issue, we propose an edge-centric clustering scheme to
extract sparse social dimensions. With sparse social dimensions, the proposed approach can efficiently handle networks of millions of
actors while demonstrating a comparable prediction performance to other nonscalable methods.

Index Terms—Classification with network data, collective behavior, community detection, social dimensions.

1 INTRODUCTION

HE advancement in computing and communication

technologies enables people to get together and share
information in innovative ways. Social networking sites (a
recent phenomenon) empower people of different ages and
backgrounds with new forms of collaboration, communica-
tion, and collective intelligence. Prodigious numbers of
online volunteers collaboratively write encyclopedia articles
of unprecedented scope and scale; online marketplaces
recommend products by investigating user shopping
behavior and interactions; and political movements also
exploit new forms of engagement and collective action. In
the same process, social media provides ample opportu-
nities to study human interactions and collective behavior
on an unprecedented scale. In this work, we study how
networks in social media can help predict some human
behaviors and individual preferences. In particular, given
the behavior of some individuals in a network, how can we
infer the behavior of other individuals in the same social
network [1]? This study can help better understand
behavioral patterns of users in social media for applications
like social advertising and recommendation.

Typically, the connections in social media networks are
not homogeneous. Different connections are associated with
distinctive relations. For example, one user might maintain
connections simultaneously to his friends, family, college
classmates, and colleagues. This relationship information,
however, is not always fully available in reality. Mostly, we
have access to the connectivity information between users,
but we have no idea why they are connected to each other.
This heterogeneity of connections limits the effectiveness of
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a commonly used technique—collective inference for network
classification. A recent framework based on social dimensions
[2] is shown to be effective in addressing this heterogeneity.
The framework suggests a novel way of network classifica-
tion: first, capture the latent affiliations of actors by
extracting social dimensions based on network connectivity,
and next, apply extant data mining techniques to classifica-
tion based on the extracted dimensions. In the initial study,
modularity maximization [3] was employed to extract social
dimensions. The superiority of this framework over other
representative relational learning methods has been verified
with social media data in [2].

The original framework, however, is not scalable to handle
networks of colossal sizes because the extracted social
dimensions are rather dense. In social media, a network of
millions of actors is very common. With a huge number of
actors, extracted dense social dimensions cannot even be held
in memory, causing a serious computational problem.
Sparsifying social dimensions can be effective in eliminating
the scalability bottleneck. In this work, we propose an
effective edge-centric approach to extract sparse social dimen-
sions [4]. We prove that with our proposed approach,
sparsity of social dimensions is guaranteed. Extensive
experiments are then conducted with social media data.
The framework based on sparse social dimensions, without
sacrificing the prediction performance, is capable of effi-
ciently handling real-world networks of millions of actors.

2 COLLECTIVE BEHAVIOR

Collective behavior refers to the behaviors of individuals in
a social networking environment, but it is not simply the
aggregation of individual behaviors. In a connected
environment, individuals’ behaviors tend to be interde-
pendent, influenced by the behavior of friends. This
naturally leads to behavior correlation between connected
users [5]. Take marketing as an example: if our friends buy
something, there is a better than average chance that we
will buy it, too.

This behavior correlation can also be explained by
homophily [6]. Homophily is a term coined in the 1950s to
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explain our tendency to link with one another in ways that
confirm, rather than test, our core beliefs. Essentially, we are
more likely to connect to others who share certain
similarities with us. This phenomenon has been observed
not only in the many processes of a physical world, but also
in online systems [7], [8]. Homophily results in behavior
correlations between connected friends. In other words,
friends in a social network tend to behave similarly.

The recent boom of social media enables us to study
collective behavior on a large scale. Here, behaviors include
a broad range of actions: joining a group, connecting to a
person, clicking on an ad, becoming interested in certain
topics, dating people of a certain type, etc. In this work, we
attempt to leverage the behavior correlation presented in a
social network in order to predict collective behavior in
social media. Given a network with the behavioral informa-
tion of some actors, how can we infer the behavioral
outcome of the remaining actors within the same network?
Here, we assume the studied behavior of one actor can be
described with K class labels {cy, ..., cx}. Each label, ¢;, can
be 0 or 1. For instance, one user might join multiple groups
of interest, so ¢; = 1 denotes that the user subscribes to
group i, and ¢; =0 otherwise. Likewise, a user can be
interested in several topics simultaneously, or click on
multiple types of ads. One special case is K = 1, indicating
that the studied behavior can be described by a single label
with 1 and 0. For example, if the event is the presidential
election, 1 or 0 indicates whether or not a voter voted for
Barack Obama. The problem we study can be described
formally as follows.

Suppose there are K class labels Y = {ci,...,cx}. Given

network G = (V,E,Y) where V is the vertex set, F is the

edge set, and Y; C Y are the class labels of a vertex v; € V,

and known values of Y; for some subsets of vertices V%, how

can we infer the values of Y; (or an estimated probability
over each label) for the remaining vertices V¥ =V — VL?

It should be noted that this problem shares the same
spirit as within-network classification [9]. It can also be
considered as a special case of semi-supervised learning
[10] or relational learning [11] where objects are connected
within a network. Some of these methods, if applied
directly to social media, yield only limited success [2]. This
is because connections in social media are rather noisy and
heterogeneous. In the next section, we will discuss the
connection heterogeneity in social media, review the
concept of social dimension, and anatomize the scalability
limitations of the earlier model proposed in [2], which
provides a compelling motivation for this work.

3 SociAL DIMENSIONS

Connections in social media are not homogeneous. People
can connect to their family, colleagues, college classmates, or
buddies met online. Some relations are helpful in determin-
ing a targeted behavior (category) while others are not. This
relation-type information, however, is often not readily
available in social media. A direct application of collective
inference [9] or label propagation [12] would treat connec-
tions in a social network as if they were homogeneous. To
address the heterogeneity present in connections, a frame-
work (SocioDim) [2] has been proposed for collective
behavior learning.
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TABLE 1
Social Dimension Representation

Actors | Affiliation-1  Affiliation-2 Affiliation-k
1 0 1 e 0.8
2 0.5 0.3 e 0

The framework SocioDim is composed of two steps:
1) social dimension extraction, and 2) discriminative
learning. In the first step, latent social dimensions are
extracted based on network topology to capture the
potential affiliations of actors. These extracted social
dimensions represent how each actor is involved in diverse
affiliations. One example of the social dimension represen-
tation is shown in Table 1. The entries in this table denote
the degree of one user involving in an affiliation. These
social dimensions can be treated as features of actors for
subsequent discriminative learning. Since a network is
converted into features, typical classifiers such as support
vector machine and logistic regression can be employed.
The discriminative learning procedure will determine
which social dimension correlates with the targeted
behavior and then assign proper weights.

A key observation is that actors of the same affiliation
tend to connect with each other. For instance, it is reason-
able to expect people of the same department to interact
with each other more frequently. Hence, to infer actors’
latent affiliations, we need to find out a group of people
who interact with each other more frequently than at
random. This boils down to a classic community detection
problem. Since each actor can get involved in more than one
affiliation, a soft clustering scheme is preferred.

In the initial instantiation of the framework SocioDim, a
spectral variant of modularity maximization [3] is adopted
to extract social dimensions. The social dimensions corre-
spond to the top eigenvectors of a modularity matrix. It has
been empirically shown that this framework outperforms
other representative relational learning methods on social
media data. However, there are several concerns about the
scalability of SocioDim with modularity maximization:

e Social dimensions extracted according to soft
clustering, such as modularity maximization and
probabilistic methods, are dense. Suppose there are
1 million actors in a network and 1,000 dimensions
are extracted. If standard double precision numbers
are used, holding the full matrix alone requires
1M x 1K x 8=28G memory. This large-size dense
matrix poses thorny challenges for the extraction of
social dimensions as well as subsequent discrimi-
native learning.

e  Modularity maximization requires us to compute the
top eigenvectors of a modularity matrix, which is the
same size as a given network. In order to extract
k communities, typically k—1 eigenvectors are
computed. For a sparse or structured matrix, the
eigenvector computation costs O(h(mk + nk? + k%))
time [13], where h, m, and n are the number of
iterations, the number of edges in the network, and
the number of nodes, respectively. Though comput-
ing the top single eigenvector (i.e., k = 1), such as
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Fig. 1. A Toy example.

PageRank scores, can be done very efficiently,
computing thousands of eigenvectors or even more
for a mega-scale network becomes a daunting task.

e Networks in social media tend to evolve, with new

members joining and new connections occurring
between existing members each day. This dynamic
nature of networks entails an efficient update of the
model for collective behavior prediction. Efficient
online updates of eigenvectors with expanding
matrices remain a challenge.

Consequently, it is imperative to develop scalable meth-
ods that can handle large-scale networks efficiently without
extensive memory requirements. Next, we elucidate on an
edge-centric clustering scheme to extract sparse social dimen-
sions. With such a scheme, we can also update the social
dimensions efficiently when new nodes or new edges arrive.

4 SPARSE SoclAL DIMENSIONS

In this section, we first show one toy example to illustrate the
intuition of communities in an “edge” view and then present
potential solutions to extract sparse social dimensions.

4.1 Communities in an Edge-Centric View
Though SocioDim with soft clustering for social dimension
extraction demonstrated promising results, its scalability is
limited. A network may be sparse (ie., the density of
connectivity is very low), whereas the extracted social
dimensions are not sparse. Let’s look at the toy network
with two communities in Fig. 1. Its social dimensions
following modularity maximization are shown in Table 2.
Clearly, none of the entries is zero. When a network expands
into millions of actors, a reasonably large number of social
dimensions need to be extracted. The corresponding
memory requirement hinders both the extraction of social
dimensions and the subsequent discriminative learning.
Hence, it is imperative to develop some other approach so
that the extracted social dimensions are sparse.

It seems reasonable to state that the number of affilia-
tions one user can participate in is upper bounded by his
connections. Consider one extreme case that an actor has

TABLE 2
Social Dimension(s) of the Toy Example

Actors Modularity

Maximization
-0.1185
-0.4043
-0.4473
-0.4473
0.3093
0.2628
0.1690
0.3241
0.3522

Edge
Partition
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Fig. 2. Edge clusters.

only one connection. It is expected that he is probably active
in only one affiliation. It is not necessary to assign a nonzero
score for each of the many other affiliations. Assuming each
connection represents one involved affiliation, we can
expect the number of affiliations an actor has is no more
than that of his connections. Rather than defining a
community as a set of nodes, we redefine it as a set of
edges. Thus, communities can be identified by partitioning
edges of a network into disjoint sets.

An actor is considered associated with one affiliation if one of
his connections is assigned to that affiliation. For instance,
the two communities in Fig. 1 can be represented by two
edge sets in Fig. 2, where the dashed edges represent one
affiliation, and the remaining edges denote the second
affiliation. The disjoint edge clusters in Fig. 2 can be
converted into the representation of social dimensions as
shown in the last two columns in Table 2, where an entry is
1 (0) if an actor is (not) involved in that corresponding social
dimension. Node 1 is affiliated with both communities
because it has edges in both sets. By contrast, node 3 is
assigned to only one community, as all its connections are
in the dashed edge set.

To extract sparse social dimensions, we partition edges
rather than nodes into disjoint sets. The edges of those
actors with multiple affiliations (e.g., actor 1 in the toy
network) are separated into different clusters. Though the
partition in the edge view is disjoint, the affiliations in the
node-centric view can overlap. Each node can engage in
multiple affiliations.

In addition, the extracted social dimensions following
edge partition are guaranteed to be sparse. This is because the
number of one’s affiliations is no more than that of her
connections. Given a network with m edges and n nodes, if
k social dimensions are extracted, then each node v; has no
more than min(d;, k) nonzero entries in her social dimen-
sions, where d; is the degree of node v;. We have the
following theorem about the density of extracted social
dimensions.

Theorem 1. Suppose k social dimensions are extracted from a
network with m edges and n nodes. The density (proportion of
nonzero entries) of the social dimensions based on edge
partition is bounded by the following:

> min(d;, k)
nk
i<k Gt s R
nk '
Moreover, for many real-world networks whose node degree

follows a power law distribution, the upper bound in (1) can be
approximated as follows:

a—11 a—1
[ ==_1 kfzwrl 2
a—2k (a—Q ) ’ @

density <

(1)

where o > 2 is the exponent of the power law distribution.
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Fig. 3. Density upper bound of social dimensions.

The proof is given in the appendix, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2011.38. To give a
concrete example, we examine a YouTube network! with 1+
million actors and verify the upper bound of the density. The
YouTube network has 1,128,499 nodes and 2,990,443 edges.
Suppose we want to extract 1,000 dimensions from the
network. Since 232 nodes in the network have a degree larger
than 1,000, the density is upper bounded by (5,472,909 +
232 % 1,000) /(1,128,499 x 1,000) = 0.51% following (1). The
node distribution in the network follows a power law with
exponent a = 2.14 based on maximum likelihood estimation
[14]. Thus, the approximate upper bound in (2) for this
specific case is 0.54 percent.

Note that the upper bound in (1) is network specific,
whereas (2) gives an approximate upper bound for a family
of networks. It is observed that most power law distributions
occurring in nature have 2 < a < 3[14]. Hence, the bound in
(2) is valid most of the time. Fig. 3 shows the function in terms
of o and k. Note that when k is huge (close to 10,000), the
social dimensions become extremely sparse (<107%), alle-
viating the memory demand and thus enabling scalable
discriminative learning.

Now, the remaining question is how to partition edges
efficiently. Below, we will discuss two different approaches
to accomplish this task: partitioning a line graph or
clustering edge instances.

4.2 Edge Partition via Line Graph Partition

In order to partition edges into disjoint sets, one way is to
look at the “dual” view of a network, i.e., the line graph
[15]. We will show that this is not a practical solution. In a
line graph L(G), each node corresponds to an edge in the
original network G, and edges in the line graph represent
the adjacency between two edges in the original graph. The
line graph of the toy example is shown in Fig. 4. For
instance, e(1,3) and e(2, 3) are connected in the line graph
as they share one terminal node 3.

Given a network, graph partition algorithms can be
applied to its corresponding line graph. The set of commu-
nities in the line graph corresponds to a disjoint edge
partition in the original graph. Recently, such a scheme has
been used to detect overlapping communities [16], [17]. It is,
however, prohibitive to construct a line graph for a mega-
scale network. We notice that edges connecting to the same
node in the original network form a clique in the correspond-

1. More details are in Section 6.
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Fig. 4. The line graph of the toy example in Fig. 1. Each node in the line
graph corresponds to an edge in the original graph.

ing line graph. For example, edges e(1, 3), e(2, 3), and e(3,4)
are all neighboring edges of node 3 in Fig. 1. Hence, they are
adjacent to each other in the line graph in Fig. 4, forming a
clique. This property leads to many more edges in a line
graph than in the original network.

Theorem 2. Let n and m denote the numbers of nodes and
connections in a network, respectively, and N and M the
numbers of nodes and connections in its line graph. It
follows that:

2
N =m, MZm(%n—l). (3)
Equality is achieved if and only if the original graph is regular,
i.e., all nodes have the same degree.

Many real-world large-scale networks obey a power law
degree distribution [14]. Consequently, the lower bound in
(3) is never achievable. The number of connections in a line
graph grows without a constant bound with respect to the
size of a given network.

Theorem 3. Let o denote the exponent of a power law degree
distribution for a given network, n the size of the network, and
M the number of connections in its corresponding line graph.
It follows that:

diverges f2<a<=3
BeM/n){ _ o=l (4)
“@=3)a=2) if > 3.

The divergence of the expectation tells us that as we go to
larger and larger data sets, our estimate of number of
connections with respect to the original network size will
increase without bound. As we have mentioned, the majority
of large-scale networks follow a power law with a lying
between 2 and 3. Consequently, the number of connections in
a line graph can be extremely huge. Take the aforementioned
YouTube network as an example again. It contains approxi-
mately 1 million nodes and 3 million links. Its resultant line
graph will contain 4,436,252,282 connections, too large to be
loaded into memory. Recall that the original motivation to
use sparse social dimensions is to address the scalability
concern. Now, we end up dealing with a much larger sized
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TABLE 3
Edge Instances of the Toy Network in Fig. 1
Features
Bdge | 1 » 3 4 5 6 7 8 9
e(1,3) [T 0 1 0 0 0 0 0 0
e(l,4) |1 0 0 1 0 0 O 0 O
e2,3) /0 1 1 0 0 0 0 0 0

line graph. Hence, the line graph is not suitable for practical
use. Next, we will present an alternative approach to edge
partition, which is much more efficient and scalable.

4.3 Edge Partition via Clustering Edge Instances
In order to partition edges into disjoint sets, we treat edges
as data instances with their terminal nodes as features. For
instance, we can treat each edge in the toy network in Fig. 1
as one instance, and the nodes that define edges as features.
This results in a typical feature-based data format as in
Table 3. Then, a typical clustering algorithm like k-means
clustering can be applied to find disjoint partitions.

One concern with this scheme is that the total number of
edges might be too huge. Owing to the power law
distribution of node degrees presented in social networks,
the total number of edges is normally linear, rather than
square, with respect to the number of nodes in the network.
That is, m = O(n) as stated in the following theorem.

Theorem 4. The total number of edges is usually linear, rather
than quadratic, with respect to the number of nodes in the
network with a power law distribution. In particular, the
expected number of edges is given as

Blm) = 35— o)
m]=_—
2a—2’

where « is the exponent of the power law distribution. Please

see the appendix, available in the online supplemental material,

for the proof.

Still, millions of edges are the norm in a large-scale
network. Direct application of some existing k-means
implementation cannot handle the problem. For example,
the k-means code provided in the Matlab package requires
the computation of the similarity matrix between all pairs of
data instances, which would exhaust the memory of normal
PCs in seconds. Therefore, an implementation with online
computation is preferred.

On the other hand, the data of edge instances are quite
sparse and structured. As each edge connects two nodes,
the corresponding edge instance has exactly only two
nonzero features as shown in Table 3. This sparsity can help
accelerate the clustering process if exploited wisely. We
conjecture that the centroids of k-means should also be
feature sparse. Often, only a small portion of the data
instances share features with the centroid. Hence, we just
need to compute the similarity of the centroids with their
relevant instances. In order to efficiently identify instances
relevant to one centroid, we build a mapping from features
(nodes) to instances (edges) beforehand. Once we have the
mapping, we can easily identify the relevant instances by
checking the nonzero features of the centroid.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO.6, JUNE 2012

Input: data instances {z;]1 <1i < m}

number of clusters k
Output: {idz;}
1. construct a mapping from features to instances
2. initialize the centroid of cluster {C;|1 < j < k}
3. repeat

4. Reset {MaxSim;}, {idz;}

5. forj=1:k

6. identify relevant instances S; to centroid Cj
7 for i in S

8 compute sim(z’ C;) of instance ¢ and C;
9. if sim(i,Cj) > Maszml

10. Ma:BSzmz = sim(i, C;)

11. idx; = j;

12. for i=1:m

13. update centroid Cigq,
14. until change of objective value < €

Fig. 5. Algorithm of scalable k-means variant.

By taking into account the two concerns above, we
devise a k-means variant as shown in Fig. 5. Similar to k-
means, this algorithm also maximizes within cluster
similarity as shown in

arg maxz Z Tl (6)

= 25 il

where k is the number of clusters, S = {51, Ss,..., S} is the
set of clusters, and y; is the centroid of cluster S;. In Fig. 5,
we keep only a vector of MaxzSim to represent the
maximum similarity between one data instance and a
centroid. In each iteration, we first identify the instances
relevant to a centroid, and then compute similarities of
these instances with the centroid. This avoids the iteration
over each instance and each centroid, which will cost O(mk)
otherwise. Note that the centroid contains one feature
(node), if and only if any edge of that node is assigned to the
cluster. In effect, most data instances (edges) are associated
with few (much less than k) centroids. By taking advantage
of the feature-instance mapping, the cluster assignment for
all instances (lines 5-11 in Fig. 5) can be fulfilled in
O(m) time. Computing the new centroid (lines 12-13) costs
O(m) time as well. Hence, each iteration costs O(m) time
only. Moreover, the algorithm requires only the feature-
instance mapping and network data to reside in main
memory, which costs O(m + n) space. Thus, as long as the
network data can be held in memory, this clustering
algorithm is able to partition its edges into disjoint sets.

As a simple k-means is adopted to extract social
dimensions, it is easy to update social dimensions if a
given network changes. If a new member joins the network
and a new connection emerges, we can simply assign the
new edge to the corresponding clusters. The update of
centroids with the new arrival of connections is also
straightforward. This k-means scheme is especially applic-
able for dynamic large-scale networks.

4.4 BRegularization on Communities

The extracted social dimensions are treated as features of
nodes. Conventional supervised learning can be conducted.
In order to handle large-scale data with high dimensionality
and vast numbers of instances, we adopt a linear SVM,



TANG ET AL.: SCALABLE LEARNING OF COLLECTIVE BEHAVIOR 1085
Input: network data, labels of some nodes, TABLE 4
number of social dimensions; Statistics of Social Media Data
Output: labels of unlabeled nodes.
1. convert network into edge-centric view. Data | BlogCatalog Flickr YouTube
2. perform edge clustering as in Figure 5. Categories 39 195 47
3. construct social dimensions based on edge partition. Nodes (n) 10, 312 80,513 1,138, 499
A node belongs to one community as long as any of Networ]lzlr[‘)iimg?; 6 3353{09?5 15,8 839{08§§ 426 9301’6%2
A gs nlelghbofm.g edges is in .ﬂ}actl.commumty‘ Maximum Degree 3,992 5, 706 28, 754
. apply regularization to social dimensions. Average Degree 65 146 5

5. construct classifier based on social dimensions of
labeled nodes.

6. use the classifier to predict labels of unlabeled ones
based on their social dimensions.

Fig. 6. Algorithm for learning of collective behavior.

which can be finished in linear time [18]. Generally, the
larger a community is, the weaker the connections within
the community are. Hence, we would like to build an SVM
relying more on communities of smaller sizes by modifying
the typical SVM objective function as follows:

n 1

min A;|1—yi(x?w+b)|++§WT2w, (7)
where ) is a regularization parameter,” |2|, = maz(0, 2) the
hinge loss function, and ¥ a diagonal matrix to regularize
the weights assigned to different communities. In particu-
lar, ¥;; = h(|Cj|) is the penalty coefficient associated with
community Cj;. The penalty function h should be mono-
tonically increasing with respect to the community size. In
other words, a larger weight assigned to a large community
results in a higher cost.

Interestingly, with a little manipulation, the formula in
(7) can be solved using a standard SVM with modified
input. Let X represent the input data with each row being
an instance (e.g., Table 2), and W = X'?w. Then, the
formula can be rewritten as

1 1 1

nAS 1=y (xTw + b —wiyey

min Z| y,(xler )|++2w w
) 1l 1,9
=min A D 1=y (2w D)L 5

1 ’
— min )\Z 1=y (&% 0)] + 5 w3,
where %7 = x5, Hence, given an input data matrix X,
we only need to left multiply X by %2, It is observed that
community sizes of a network tend to follow a power law
distribution. Hence, we recommend h(|C}|) = log|C;| or
(log |Cy1)*.

Meanwhile, one node is likely to engage in multiple
communities. Intuitively, a node which is devoted to a few
select communities has more influence on other group
members than those who participate in many communities.
For effective classification learning, we regularize node
affiliations by normalizing each node’s social dimensions to
sum to one. Later, we will study which regularization
approach has a greater effect on classification.

2. We use a different notation \ from standard SVM formulation to avoid
the confusion with community C.

In summary, we conduct the following steps to learn a
model for collective behavior. Given a network (say, Fig. 1),
we take the edge-centric view of the network data (Table 3)
and partition the edges into disjoint sets (Fig. 2). Based on
the edge clustering, social dimensions can be constructed
(Table 2). Certain regularizations can be applied. Then,
discriminative learning and prediction can be accomplished
by considering these social dimensions as features. The
detailed algorithm is summarized in Fig. 6.

5 EXPERIMENT SETUP

In this section, we present the data collected from social
media for evaluation and the baseline methods for
comparison.

5.1 Social Media Data

Two data sets reported in [2] are used to examine our
proposed model for collective behavior learning. The first
data set is acquired from BlogCatalog,” the second from a
popular photo sharing site Flickr.* Concerning behavior,
following [2], we study whether or not a user joins a group
of interest. Since the BlogCatalog data do not have this
group information, we use blogger interests as the behavior
labels. Both data sets are publicly available at the first
author’s homepage. To examine scalability, we also include
a mega-scale network’ crawled from YouTube.® We remove
those nodes without connections and select the interest
groups with 500 + subscribers. Some statistics of the three
data sets can be found in Table 4.

5.2 Baseline Methods

As we discussed in Section 4.2, constructing a line graph is
prohibitive for large-scale networks. Hence, the line-graph
approach is not included for comparison. Alternatively, the
edge-centric clustering (or EdgeCluster) in Section 4.2 is
used to extract social dimensions on all data sets. We adopt
cosine similarity while performing the clustering. Based on
cross validation, the dimensionality is set to 5,000, 10,000,
and 1,000 for BlogCatalog, Flickr, and YouTube, respec-
tively. A linear SVM classifier [18] is then exploited for
discriminative learning.

Another related approach to finding edge partitions is bi-
connected components [19]. Bi-connected components of a
graph are the maximal subsets of vertices such that the
removal of a vertex from a particular component will not
disconnect the component. Essentially, any two nodes in a
bi-connected component are connected by at least two

3. http:/ /www .blogcatalog.com/.

4. http:/ /www flickr.com/.

5. http:/ /socialnetworks.mpi-sws.org/data-imc2007.html.
6. http:/ /www.youtube.com/.
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TABLE 5
Performance on BlogCatalog Network
[ Proportion of Labeled Nodes | 10%  20%  30% 40% 50% 60% 70% 80%  90% |
EdgeCluster 2794 30.76 31.85 3299 3412 3500 3463 3599 36.29
Micro-F1(%) | BiComponents | 16.54 1659 16.67 16.83 1721 1726 17.04 1776 17.61
ModM azx 2735 3074 3177 3297 3409 3613 36.08 37.23 38.18
NodeCluster 1829 19.14 20.01 1980 2081 20.86 2053 20.74 20.78
EdgeCluster 16.16 19.16 2048 22.00 23.00 23.64 23.82 24.61 2492
Macro-F1(%) | BiComponents 2.77 2.80 2.82 3.01 3.13 3.29 3.25 3.16 3.37
ModM ax 17.36  20.00 20.80 21.85 22.65 2341 23.89 2420 24.97
NodeCluster 7.38 7.02 7.27 6.85 7.57 7.27 6.88 7.04 6.83
TABLE 6
Performance on Flickr Network
[ Proportion of Labeled Nodes | 1% 2% 3% 4% 5% 6% 7% 8% 9%  10% |
EdgeCluster 25.75 2853 29.14 30.31 30.85 31.53 3175 3176 3219 32.84
Micro-F1(%) BiComponents | 1645 1646 1645 1649 1649 1649 1649 1648 16.55 16.55
ModMazx 2275 2529 2730 27.60 28.05 2933 2943 2889 2917 29.20
NodeCluster 2294 2409 2542 2643 2753 2818 2832 2858 2870 2893
EdgeCluster 10.52 14.10 1591 16.72 18.01 18.54 19.54 20.18 20.78 20.85
Macro-F1(%) | BiComponents 0.45 0.46 0.45 0.46 0.46 0.46 0.46 0.46 0.47 0.47
ModMazx 1021 1337 1524 1511 1614 16.64 1702 1710 17.14 1712
NodeCluster 7.90 999 1142 1110 1233 1229 1258 1326 12.79 12.77
TABLE 7
Performance on YouTube Network
[ Proportion of Labeled Nodes | 1% 2% 3% 4% 5% 6% 7% 8% 9%  10% |
EdgeCluster 2390 31.68 35.53 36.76 37.81 38.63 3894 39.46 39.92 40.07
Micro-F1(%) | BiComponents | 23.90 2451 2480 25.39 2520 2542 2524 2444 2562 25.53
ModM ax — — — — — — — — — —
NodeCluster 20.89 2457 2691 2865 29.56 30.72 31.15 31.85 3229 32.67
EdgeCluster 19.48 25.01 28.15 29.17 29.82 30.65 30.75 31.23 3145 31.54
Macro-F1(%) | BiComponents 6.80 7.05 7.19 7.44 7.48 7.58 7.61 7.63 7.76 791
ModM ax — — e — — — — — e —
NodeCluster 1791 2111 2238 2391 2447 2526 2550 26.02 2644 26.68

paths. It is highly related to cut vertices (a.k.a. articulation
points) in a graph, whose removal will result in an increase
in the number of connected components. Those cut vertices
are the bridges connecting different bi-connected compo-
nents. Thus, searching for bi-connected components boils
down to searching for articulation points in the graph,
which can be solved efficiently in O(n 4+ m) time. Here n
and m represent the number of vertices and edges in a
graph, respectively. Each bi-connected component is con-
sidered a community, and converted into one social
dimension for learning.

We also compare our proposed sparse social dimension
approach with classification performance based on dense
representations. In particular, we extract social dimensions
according to modularity maximization (denoted as
ModMazx) [2]. ModMax has been shown to outperform
other representative relational learning methods based on
collective inference. We study how the sparsity in social
dimensions affects the prediction performance as well as
the scalability.

Note that social dimensions allow one actor to be involved
in multiple affiliations. As a proof of concept, we also
examine the case when each actor is associated with only one
affiliation. Essentially, we construct social dimensions based
onnode partition. A similar idea has been adopted in a latent
group model [20] for efficient inference. To be fair, we adopt
k-means clustering to partition nodes of a network into

disjoint sets, and convert the node clustering result into a set
of social dimensions. Then, SVM is utilized for discrimina-
tive learning. For convenience, we denote this method as
NodeCluster.

Note that our prediction problem is essentially multi-
label. It is empirically shown that thresholding can affect
the final prediction performance drastically [21], [22]. For
evaluation purposes, we assume the number of labels of
unobserved nodes is already known, and check whether the
top-ranking predicted labels match with the actual labels.
Such a scheme has been adopted for other multilabel
evaluation works [23]. We randomly sample a portion of
nodes as labeled and report the average performance of
10 runs in terms of Micro-F1 and Macro-F1 [22].

6 EXPERIMENT RESULTS

In this section, we first examine how prediction perfor-
mances vary with social dimensions extracted following
different approaches. Then, we verify the sparsity of social
dimensions and its implication for scalability. We also study
how the performance varies with dimensionality. Finally,
concrete examples of extracted social dimensions are given.

6.1 Prediction Performance

The prediction performance on all data is shown in Tables 5,
6, and 7. The entries in bold face denote the best performance



TANG ET AL.: SCALABLE LEARNING OF COLLECTIVE BEHAVIOR

1087

TABLE 8

Sparsity Comparison on BlogCatalog Data with 10,312 Nodes
Methods | Time Space Density Upper Bound Max-Aff  Ave-Aff
ModMax — 500 1944 412M 1 — 500 500
EdgeCluster — 100 | 300.8 38M 1.1 x 10! 2.2 x 1071 187 23.5
EdgeCluster — 500 | 357.8  49M 6.0 x 1072 1.1 x 1071 344 30.0
EdgeCluster — 1000 | 3072  52M 3.2 x 1072 6.0 x 1072 408 31.8
EdgeCluster — 2000 | 2946  53M 1.6 x 10~2 3.1 x 1072 598 32.4
EdgeCluster — 5000 | 230.3  55M 6 x 1073 1.3 x 1072 682 32.4
EdgeCluster — 10000 | 195.6  5.6M 3x 1073 7x 1073 882 33.3

ModMax-500 corresponds to modularity maximization to select 500 social dimensions and EdgeCluster-x denotes edge-centric clustering to
construct x dimensions. Time denotes the total time (seconds) to extract the social dimensions; Space represent the memory footprint (mega-byte)
of the extracted social dimensions; Density is the proportion of nonzeros entries in the dimensions; Upper bound is the density upper bound
computed following (1); Max-Aff and Ave-Aff denote the maximum and average number of affiliations one user is involved in.

TABLE 9
Sparsity Comparison on Flickr Data with 80,513 Nodes

Methods \ Time Space Density Upper Bound Max-Aff  Ave-Aff
ModMax — 500 2.2 x 1035 322.1IM 1 — 500 500.0
EdgeCluster — 200 1.2 x 10% 31.0M 1.2x 1071 39x 10T 156 24.1
EdgeCluster — 500 1.3 x10*  448M 7.0 x 1072 2.2 x 1071 352 34.8
EdgeCluster — 1000 | 1.6 x 10*  573M 4.5 x 10~2 1.3 x 1071 619 445
EdgeCluster — 2000 | 2.2x10*  701M 2.7 x 10~2 7.2 x 1072 986 54.4
EdgeCluster — 5000 | 2.6 x 104  847M 1.3 x 1072 2.9 x 1072 1405 65.7
EdgeCluster — 10000 | 1.9 x 10*  91.4M 7x 1073 1.5 x 1072 1673 70.9
TABLE 10
Sparsity Comparison on YouTube Data with 1,138,499 Nodes
Methods | Time  Space Density Upper Bound Max-Aff  Ave-Aff
ModMax — 500 N/A 4.6G 1 — 500 500.00
EdgeCluster — 200 574.7 362M 9.9 x 103 2.3 x 1072 121 1.99
EdgeCluster — 500 | 606.6 399M 4.4 x 1073 9.7 x 1073 255 2.19
EdgeCluster — 1000 | 779.2 423M 2.3 x 1073 5.0 x 1073 325 2.32
EdgeCluster — 2000 | 558.9 442M 1.2 x 1073 2.6 x 1073 375 2.43
EdgeCluster — 5000 | 554.9 45.6M 5.0 x 10~4 1.0 x 1073 253 2.50
EdgeCluster — 10000 | 561.2 464M 2.5 x 10~* 5.1 x 10~% 356 2.54
EdgeCluster — 20000 | 507.5 47.0M 1.3 x 10~4 2.6 x 104 305 2.58
EdgeCluster — 50000 | 597.4 482M 5.2 x 107° 1.1 x 1074 297 2.62

in each column. Obviously, EdgeCluster is the winner most
of the time. Edge-centric clustering shows comparable
performance to modularity maximization on BlogCatalog
network, yet it outperforms ModMax on Flickr. ModMax on
YouTube is not applicable due to the scalability constraint.
Clearly, with sparse social dimensions, we are able to achieve
comparable performance as that of dense social dimensions.
But the benefit in terms of scalability will be tremendous as
discussed in the next section.

The NodeCluster scheme forces each actor to be involved
in only one affiliation, yielding inferior performance
compared with EdgeCluster. BiComponents, similar to
EdgeCluster, also separates edges into disjoint sets, which
in turn deliver a sparse representation of social dimensions.
However, BiComponents yields a poor performance. This is
because BiComponents outputs highly imbalanced commu-
nities. For example, BiComponents extracts 271 bi-connected
components in the BlogCatalog network. Among these
271 components, a dominant one contains 10,042 nodes,
while all others are of size 2. Note that BlogCatalog contains
in total 10,312 nodes. As a network’s connectivity increases,
BiComponents performs even worse. For instance, only
10 bi-connected components are found in the Flickr data, and
thus its Macro-F1 is close to 0. In short, BiComponents is very

efficient and scalable. However, it fails to extract informative
social dimensions for classification.

We note that the prediction performance on the studied
social media data is around 20-30 percent for F1 measure.
This is partly due to the large number of distinctive labels in
the data. Another reason is that only the network informa-
tion is exploited here. Since SocioDim converts a network
into attributes, other behavioral features (if available) can be
combined with social dimensions for behavior learning.

6.2 Scalability Study

As we have introduced in Theorem 1, the social dimensions
constructed according to edge-centric clustering are guar-
anteed to be sparse because the density is upper bounded
by a small value. Here, we examine how sparse the social
dimensions are in practice. We also study how the
computation time (with a Core2Duo E8400 CPU and 4 GB
memory) varies with the number of edge clusters. The
computation time, the memory footprint of social dimen-
sions, their density, and other related statistics on all three
data sets are reported in Tables 8, 9, and 10.

Concerning the time complexity, it is interesting that
computing the top eigenvectors of a modularity matrix is
actually quite efficient as long as there is no memory
concern. This is observed on the Flickr data. However,
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when the network scales to millions of nodes (YouTube),
modularity maximization becomes difficult (though an
iterative method or distributed computation can be used)
due to its excessive memory requirement. On the contrary,
the EdgeCluster method can still work efficiently as shown
in Table 10. The computation time of EdgeCluster for
YouTube is much smaller than for Flickr, because the
YouTube network is extremely sparse. The number of edges
and the average degree in YouTube are smaller than those
in Flickr, as shown in Table 4.

Another observation is that the computation time of
EdgeCluster does not change much with varying numbers
of clusters. No matter how many clusters exist, the computa-
tion time of EdgeClusteris of the same order. Thisis due to the
efficacy of the proposed k-means variant in Fig. 5. In the
algorithm, we do not iterate over each cluster and each
centroid to do the cluster assignment, but exploit the sparsity
of edge-centric data to compute only the similarity of a
centroid and those relevant instances. This, in effect, makes
the computational cost independent of the number of edge
clusters.

As for the memory footprint reduction, sparse social
dimension does an excellent job. On Flickr, with only
500 dimensions, ModMax requires 322.1 M, whereas
EdgeCluster requires less than 100 M. This effect is stronger
on the mega-scale YouTube network, where ModMax
becomes impractical to compute directly. It is expected that
the social dimensions of ModMaxz would occupy 4.6 G
memory. On the contrary, the sparse social dimensions
based on EdgeCluster requires only 30-50 M.

The steep reduction of memory footprint can be explained
by the density of the extracted dimensions. For instance, in
Table 10, when we have 50,000 dimensions, the density is
only 5.2 x 107°. Consequently, even if the network has more
than 1 million nodes, the extracted social dimensions still
occupy only a tiny memory space. The upper bound of the
density is not tight when the number of clusters kis small. As
k increases, the bound becomes tight. In general, the true
density is roughly half of the estimated bound.

6.3 Sensitivity Study

Our proposed EdgeCluster model requires users to specify
the number of social dimensions (edge clusters). One
question which remains to be answered is how sensitive the
performance is with respect to the parameter. We examine all
three data sets, but find no strong pattern to determine
optimal dimensionality. Due to the space limit, we include
only one case here. Fig. 7 shows the Macro-F1 performance
change on YouTube data. The performance, unfortunately, is
sensitive to the number of edge clusters. It thus remains a
challenge to determine the parameter automatically.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

VOL. 24, NO. 6, JUNE 2012

—6— None —6— None
—0— Node Afiation —0— Node Affiation

0.2} [ —@— Communi ity Size 032} | —@— Communi ity Size
—e—Bath —e—Both

Macro F1-Measure
Micro F1-Measure

2 s 10 1 2 9 10

3 4 5 6 7 8 4 5 6 7
Percentage of Training set(%) Percentage of Training set(%)

Fig. 8. Regularization effect on Flickr.

However, a general trend across all three data sets is
observed. The optimal dimensionality increases as the
portion of labeled nodes expands. For instance, when there
is 1 percent of labeled nodes in the network, 500 dimensions
seem optimal. But when the labeled nodes increase to
10 percent, 2,000-5,000 dimensions becomes a better choice.
In other words, when label information is scarce, coarse
extraction of latent affiliations is better for behavior
prediction. But when the label information multiplies, the
affiliations should be zoomed to a more granular level.

6.4 Regularization Effect

In this section, we study how EdgeCluster performance
varies with different regularization schemes. Three different
regularizations are implemented: regularization based on
community size, node affiliation, and both (we first apply
community size regularization, then node affiliation). The
results without any regularization are also included as a
baseline for comparison. In our experiments, the community
size regularization penalty function is set to (log(|C;|))*, and
node affiliation regularization normalizes the summation of
each node’s community membership to 1. As shown in Fig. 8,
regularization on both community size and node affiliation
consistently boosts the performance on Flickr data. We also
observe that node affiliation regularization significantly
improves performance. It seems like community-size reg-
ularization is not as important as the node-affiliation
regularization. Similar trends are observed in the other two
data sets. We must point out that, when both community-size
regularization and node affiliation are applied, it is indeed
quite similar to the tf-idf weighting scheme for representation
of documents [24]. Such a weighting scheme actually canlead
to a quite different performance in dealing with social
dimensions extracted from a network.

6.5 Visualization of Extracted Social Dimensions

As shown in previous sections, EdgeCluster yields an
outstanding performance. But are the extracted social
dimensions really sensible? To understand what the
extracted social dimensions are, we investigate tag clouds
associated with different dimensions. Tag clouds, with font
size denoting tags’ relative frequency, are widely used in
social media websites to summarize the most popular
ongoing topics. In particular, we aggregate tags of
individuals in one social dimension as the tags of that
dimension. However, it is impossible to showcase all the
extracted dimensions. Hence, we pick the dimension with
the maximum SVM weight given a category.

Due to the space limit, we show only two examples from
BlogCatalog. To make the figure legible, we include only
those tags whose frequency is greater than 2. The dimension
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in Fig. 9 is about cars, autos, automobile, pontiac, ferrari, etc. It
is highly relevant to the category Autos. Similarly, the
dimension in Fig. 10 is about baseball, mlb, basketball, and
football. Tt is informative for classification of the category
Sports. There are a few less frequent tags, such as movies and
ipod, associated with selected dimensions as well, suggest-
ing the diverse interests of each person. EdgeCluster, by
analyzing connections in a network, is able to extract social
dimensions that are meaningful for classification.

7 RELATED WORK

Classification with networked instances are known as within-
network classification [9], or a special case of relational learning
[11]. The data instances in a network are not independently
identically distributed (i.i.d.) as in conventional data mining.
To capture the correlation between labels of neighboring
data objects, typically a Markov dependency assumption is
assumed. That is, the label of one node depends on the labels
(or attributes) of its neighbors. Normally, a relational
classifier is constructed based on the relational features of
labeled data, and then an iterative process is required to
determine the class labels for the unlabeled data. The class
label or the class membership is updated for each node while
the labels of its neighbors are fixed. This process is repeated
until the label inconsistency between neighboring nodes is
minimized. It is shown that [9] a simple weighted vote
relational neighborhood classifier [25] works reasonably
well on some benchmark relational data and is recom-
mended as a baseline for comparison.

However, a network tends to present heterogeneous
relations, and the Markov assumption can only capture the
local dependency. Hence, researchers propose to model
network connections or class labels based on latent groups
[20], [26]. A similar idea is also adopted in [2] to differentiate
heterogeneous relations in a network by extracting social
dimensions to represent the potential affiliations of actors in
a network. The authors suggest using the community
membership of a soft clustering scheme as social dimen-
sions. The extracted social dimensions are treated as
features, and a support vector machine based on that can
be constructed for classification. It has been shown that the
proposed social dimension approach significantly outper-
forms representative methods based on collective inference.

There are various approaches to conduct soft clustering
for a graph. Some are based on matrix factorization, like
spectral clustering [27] and modularity maximization [3].
Probabilistic methods are also developed [28], [29]. Please
refer to [30] for a comprehensive survey. A disadvantage
with soft clustering is that the resultant social dimensions
are dense, posing thorny computational challenges.

Another line of research closely related to the method
proposed in this work is finding overlapping communities.
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Palla et al. propose a clique percolation method to discover
overlapping dense communities [31]. It consists of two steps:
first find out all the cliques of size k in a graph. Two k-cliques
are connected if they share k—1 nodes. Based on the
connections between cliques, we can find the connected
components with respect to k-cliques. Each component then
corresponds to one community. Since a node can be involved
in multiple different k-cliques, the resultant community
structure allows one node to be associated with multiple
different communities. A similar idea is presented in [32], in
which the authors propose to find out all the maximal cliques
of a network and then perform hierarchical clustering.

Gregory [33] extends the Newman-Girvan method [34]
to handle overlapping communities. The original Newman-
Girvan method recursively removes edges with highest
betweenness until a network is separated into a prespeci-
fied number of disconnected components. It outputs
nonoverlapping communities only. Therefore, Gregory
proposes to add one more action (node splitting) besides
edge removal. The algorithm recursively splits nodes that
are likely to reside in multiple communities into two, or
removes edges that seem to bridge two different commu-
nities. This process is repeated until the network is
disconnected into the desired number of communities.
The aforementioned methods enumerate all the possible
cliques or shortest paths within a network, whose computa-
tional cost is daunting for large-scale networks.

Recently, a simple scheme proposed to detect overlapping
communities is to construct aline graph and then apply graph
partition algorithms [16], [17]. However, the construction of
the line graph alone, as we discussed, is prohibitive for a
network of a reasonable size. In order to detect overlapping
communities, scalable approaches have to be developed.

In this work, the k-means clustering algorithm is used to
partition the edges of a network into disjoint sets. We also
propose a k-means variant to take advantage of its special
sparsity structure, which can handle the clustering of
millions of edges efficiently. More complicated data
structures such as kd-tree [35], [36] can be exploited to
accelerate the process. If a network might be too huge to
reside in memory, other k-means variants can be considered
to handle extremely large data sets like online k-means [37],
scalable k-means [38], and distributed k-means [39].

8 CoONCLUSIONS AND FUTURE WORK

It is well known that actors in a network demonstrate
correlated behaviors. In this work, we aim to predict the
outcome of collective behavior given a social network and
the behavioral information of some actors. In particular, we
explore scalable learning of collective behavior when
millions of actors are involved in the network. Our approach
follows a social-dimension-based learning framework. Social



1090

dimensions are extracted to represent the potential affilia-
tions of actors before discriminative learning occurs. As
existing approaches to extract social dimensions suffer from
scalability, it is imperative to address the scalability issue.
We propose an edge-centric clustering scheme to extract
social dimensions and a scalable k-means variant to handle
edge clustering. Essentially, each edge is treated as one data
instance, and the connected nodes are the corresponding
features. Then, the proposed k-means clustering algorithm
can be applied to partition the edges into disjoint sets, with
each set representing one possible affiliation. With this edge-
centric view, we show that the extracted social dimensions
are guaranteed to be sparse. This model, based on the sparse
social dimensions, shows comparable prediction perfor-
mance with earlier social dimension approaches. An
incomparable advantage of our model is that it easily scales
to handle networks with millions of actors while the earlier
models fail. This scalable approach offers a viable solution to
effective learning of online collective behavior on a large
scale.

In social media, multiple modes of actors can be involved
in the same network, resulting in a multimode network [40].
For instance, in YouTube, users, videos, tags, and comments
are intertwined with each other in coexistence. Extending
the edge-centric clustering scheme to address this object
heterogeneity can be a promising future direction. Since the
proposed EdgeCluster model is sensitive to the number of
social dimensions as shown in the experiment, further
research is needed to determine a suitable dimensionality
automatically. It is also interesting to mine other behavioral
features (e.g., user activities and temporal-spatial informa-
tion) from social media, and integrate them with social
networking information to improve prediction performance.
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