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Abstract—We have witnessed the exponential growth of images
and videos with the prevalence of capture devices and the ease
of social services such as Flickr and Facebook. Meanwhile, enor-
mous media collections are along with rich contextual cues such as
tags, geo-locations, descriptions, and time. To obtain desired im-
ages, users usually issue a query to a search engine using either an
image or keywords. Therefore, the existing solutions for image re-
trieval rely on either the image contents (e.g., low-level features)
or the surrounding texts (e.g., descriptions, tags) only. Those solu-
tions usually suffer from low recall rates because small changes
in lighting conditions, viewpoints, occlusions, or (missing) noisy
tags can degrade the performance significantly. In this work, we
tackle the problem by leveraging both the image contents and as-
sociated textual information in the social media to approximate
the semantic representations for the two modalities. We propose a
general framework to augment each image with relevant semantic
(visual and textual) features by using graphs among images. The
framework automatically discovers relevant semantic features by
propagation and selection in textual and visual image graphs in
an unsupervised manner. We investigate the effectiveness of the
framework when using different optimization methods for max-
imizing efficiency. The proposed framework can be directly ap-
plied to various applications, such as keyword-based image search,
image object retrieval, and tag refinement. Experimental results
confirm that the proposed framework effectively improves the per-
formance of these emerging image retrieval applications.

Index Terms—Image graph, image object retrieval, semantic fea-
ture discovery, tag refinement.

I. INTRODUCTION

M OST of us have are to sharing personal photos on the
social services (or media) such as Flickr and Facebook.

More and more users are also willing to contribute related
tags or comments on the photos for photo management and
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Fig. 1. Comparison in the image object retrieval performance of the traditional
BoW model [5] and the proposed approach. (a) An example of object-level
query image. (b) The retrieval results of a BoW model, which generally suffers
from the low recall rate. (c) The results of the proposed system, which obtains
more accurate and diverse images, with the help of automatically discovered
visual features. Note that the number below each image is its rank in the re-
trieval results and the number in a parenthesis represents the rank predicted by
the BoW model.

social communication [1]. Such user-contributed contextual
information provides promising research opportunities for
understanding the images in social media. Image retrieval
(either content-based or keyword-based) over large-scale photo
collections is one of the key techniques for managing the
exponentially growing media collections. Lots of applications
such as annotation by search [2], [3] and geographical informa-
tion estimation [4] are keen to the accuracy and efficiency of
content-based image retrieval (CBIR) [5], [6]. Nowadays, the
existing image search engines employ not only the surrounding
texts but also the image contents to retrieve images (e.g.,
Google and Bing).
For CBIR systems, bag-of-words (BoW) model is popular

and shown effective [5]. BoW representation quantizes high-
dimensional local features into discrete visual words (VWs).
However, traditional BoW-like methods fail to address issues
related to noisily quantized visual features and vast variations
in viewpoints, lighting conditions, occlusions, etc., commonly
observed in large-scale image collections [6], [7]. Thus, the
methods suffer from low recall rate as shown in Fig. 1(b). Due
to varying capture conditions and large VW vocabulary (e.g.,
1 million word vocabulary), the features for the target images
might have different VWs [cf. Fig. 1(c)]. Besides, it is also dif-
ficult to obtain these VWs through query expansion (e.g., [8])
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Fig. 2. A system diagram of the proposed method. Based on multiple modal-
ities such as image contents and tags from social media, we propose an un-
supervised semantic feature discovery which exploits both textual and visual
information. The general framework can discover semantic features (e.g., se-
mantically related visual words and tags) in large-scale community-contributed
photos. Therefore, we can apply semantic features to various applications.

or even varying quantization methods (e.g., [6]) because of the
large differences in visual appearance between the query and the
target objects.
For keyword-based image retrieval in social media, textual

features such as tags are more semantically relevant than visual
features. However, it is sill difficult to retrieve all the target im-
ages by keywords only because users might annotate non-spe-
cific keywords such as “Travel” [9]. Meanwhile, in most photo-
sharing websites, tags and other forms of text are freely entered
and are not associated with any type of ontology or categoriza-
tion. Tags are therefore often inaccurate, wrong or ambiguous
[10].
In response to the above challenges for content-based and

keyword-based image retrieval in social media, we propose a
general framework, which integrates both visual and textual
information,1 for unsupervised semantic feature discovery
as shown in Fig. 2. In particular, we augment each image
in the image collections with semantic features—additional
features that are semantically relevant to the search targets
[cf. Fig. 1(c)]—such as specific VWs for certain landmarks or
refined tags for certain scenes and events. Aiming at large-scale
image collections for serving different queries, we mine the
semantic features in an unsupervised manner by incorporating
both visual and (noisy) textual information. We construct
graphs of images by visual and textual information (if avail-
able) respectively. We then automatically propagate and select
the informative semantic features across the visual and textual
graphs (cf. Fig. 5). The two processes are formulated as opti-
mization formulations iteratively through the subtopics in the
image collections. Meanwhile, we also consider the scalability
issues by leveraging distributed computation frameworks (e.g.,
MapReduce).
We demonstrate the effectiveness of the proposed framework

by applying it to two specific tasks, i.e., image object retrieval
and tag refinement. The first task—image object retrieval—is a

1We aim to integrate different contextual cues (e.g., visual and textual) to
generate semantic (visual or textual) features for database images in the offline
process. In dealing with the online query, i.e., when users issue either an image
or keywords to the search engine, we can retrieve diverse search results as shown
in Fig. 1(c). Of course, if the query contains both image and keywords, we can
utilize the two retrieval results or adopt advanced schemes like the reranking
process for obtaining better retrieval accuracy [11]–[13].

challenging problem because the target object may cover only
a small region in the database images as shown in Fig. 1. We
apply the semantic feature discovery framework to augment
each image with auxiliary visual words (AVW). The second task
is tag refinementwhich augments each image with semantically
related texts. Similarly, we apply the framework on the textual
domain by exchanging the role of visual and textual graphs so
that we can propagate (in visual graph) and select (in textual
graph) relative and representative tags for each image.
Experiments show that the proposed method greatly im-

proves the recall rate for image object retrieval. In particular,
the unsupervised auxiliary visual words discovery greatly out-
performs BoW models (by 111% relatively) and is complemen-
tary to conventional pseudo-relevance feedback. Meanwhile,
AVW discovery can also derive very compact (i.e., 1.4% of
the original features) and informative feature representations
which will benefit the indexing structure [5], [14]. Besides,
experimental results for tag refinement show that the proposed
method can improve text-based image retrieval results (by
10.7% relatively).
The primary contributions of the paper2 include:
• observing the problems in image object retrieval by con-
ventional BoW model (Section III);

• proposing semantic feature discovery through visual
and textual clusters in an unsupervised and scalable
fashion, and deriving semantically related visual and tex-
tual features in large-scale social media (Section IV and
Section VI);

• investigating different optimization methods for efficiency
and accuracy in semantic feature discovery (Section V);

• conducting experiments on consumer photos and showing
great improvement of retrieval accuracy for image object
retrieval and tag refinement (Section VIII).

II. RELATED WORK

In order to utilize different kinds of features from social web-
sites, we propose a general framework for semantic feature dis-
covery through image graphs in an unsupervised manner. The
semantic visual features can be visual words or user-provided
tags. To evaluate the effect of semantic feature discovery, we
adopt the proposed framework to image object retrieval and tag
refinement. Next, we introduce some related work for these is-
sues in the following paragraphs.
Most image object retrieval systems adopt the scale-invariant

feature transform (SIFT) descriptor [16] to capture local infor-
mation and adopt BoW model [5] to conduct object matching
[8], [17]. The SIFT descriptors are quantized to visual words
(VWs), such that indexing techniques well developed in the text
domain can be directly applied.
The learned VW vocabulary will directly affect the image

object retrieval performance. The traditional BoWmodel adopts
K-means clustering to generate the vocabulary. A few attempts
try to impose extra information for visual word generation such
as visual constraints [18], textual information [19]. However, it
usually needs extra (manual) information during the learning,
which might be formidable in large-scale image collections.

2Note that the preliminary results were presented in [15]. We extend the orig-
inal method to a general framework and further apply it in the text domain.
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Instead of generating new VW vocabulary, some researches
work on the original VW vocabulary such as [20]. It suggested
to select useful feature from the neighboring images to enrich
the feature description. However, its performance is limited for
large-scale problems because of the need to perform spatial
verification, which is computationally expensive. Moreover, it
only considers neighboring images in the visual graph, which
provides very limited semantic information. Other selection
methods for the useful features such as [21] and [22] are based
on different criteria—the number of inliers after spatial veri-
fication, and pairwise constraints for each image, thus suffer
from limited scalability and accuracy.
Authors in [9] consider both visual and textual information

and adopt unsupervised learning methods. However, they only
use global features and adopt random-walk-like methods for
post-processing in image retrieval. Similar limitations are ob-
served in [23], where only the image similarity scores are prop-
agated between textual and visual graphs. Different from the
prior works, we use local features for image object retrieval
and propagate features directly between the textual and visual
graphs. The discovered semantic visual features are thus readily
effective in retrieving diverse search results, eliminating the
need to apply a random walk in the graphs again.
Similar to [9], we can also apply our general framework to

augment keyword-based image retrieval by tag refinement to
improve text (tag) quality for image collections. Through tag
propagation and selection processes, we can annotate images
and refine the original tags. Annotation by search [3] is a data-
driven approach which relies on retrieving (near) duplicate im-
ages for better annotation results. The authors in [24] propose
a voting-based approach to select proper tags via visually sim-
ilar images. Different from annotation by search [3] and voting-
based tag refinement [24], we propagate and select informative
tags across images in the same image clusters. Meanwhile, the
tag propagation step can also assign suitable tags for those im-
ages without any tags in database.

III. KEY OBSERVATIONS—REQUIRING SEMANTIC FEATURE
FOR IMAGE RETRIEVAL

Nowadays, BoW representation [5] is widely used in image
retrieval and has been shown promising in several content-based
image retrieval (CBIR) tasks (e.g., [17]). However, most ex-
isting systems simply apply the BoW model without carefully
considering the sparse effect of the VW space, as detailed in
Section III-A. Another observation (explained in Section III-B)
is that VWs are merely for describing visual appearances and
lack the semantic descriptions for retrieving more diverse re-
sults [cf. Fig. 1(b)]. The proposed semantic feature discovery
method is targeted to address these issues.

A. Sparseness of the Visual Words

For better retrieval accuracy, most systems will adopt one
million VWs for their image object retrieval system as sug-
gested in [17]. As mentioned in [25], one observation is the
uniqueness of VWs—visual words in images usually do not ap-
pear more than once. Moreover, our statistics shows that the oc-
currence of VWs in different images is very sparse. We calcu-
late it on two image databases of different sizes, i.e., Flickr550

Fig. 3. Cumulative distribution of the frequency of VW occurrence in two dif-
ferent image databases, cf. Section III-A. It shows that half of the VWs occur
in less than 0.11% of the database images (i.e., 12 and 617 images, respec-
tively). The statistics represent that VWs are distributed over the database im-
ages sparsely. Note that the x-axis only shows partial values (0%–1.2% images)
because the cumulative distribution almost saturates % at 1.2% level and
we skip the remaining parts (1.2%–100%).

Fig. 4. Illustration of the roles of semantic related features in image object
retrieval. Images in the blue rectangle are visually similar, whereas those images
in the red dotted rectangle are textually similar. The semantic (textual) features
are promising to establish the in-between connection (Section IV) to help the
query image (the top-left one) retrieve the right-hand side image.

and Flickr11K (cf. Section VII-A), and obtain similar curves
as shown in Fig. 3. We can find that half of the VWs only
occur in less than 0.11% of the database images and most of
the VWs (i.e., around 96%) occur in less than the 0.5% ones
(i.e., 57 and 2702 images, respectively). That is to say, two
images sharing one specific VW seldom contain similar fea-
tures. In other words, those similar images might only have few
common VWs. This phenomenon is the sparseness of the VWs.
It is partly due to some quantization errors or noisy features.
Besides, [14] found that only partial features are important for
image retrieval and proposed to select the most descriptive vi-
sual words according to the TF-IDF weighting. Therefore, in
Section IV, we propose to augment each image with auxiliary
visual words and further consider similar images to retain more
representative VWs.

B. Lacking Semantics Related Features

Since VWs are merely low-level visual features, it is very
difficult to retrieve images with different viewing angles,
lighting conditions, partial occlusions, etc. An example is
shown in Fig. 4. By using BoW models, the query image (e.g.,
the top-left one) can easily obtain visually similar results (e.g.,
the bottom-left one) but often fails to retrieve the ones in a
different viewing angle (e.g., the right-hand side image). This
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Fig. 5. (a) Visual cluster groups visually similar images in the same cluster, whereas (b) the textual cluster favors semantic similarities. The two clusters facilitate
representative feature selection and semantic feature propagation, e.g., visual words, tags. Based on visual and textual graphs in (c), we can propagate auxiliary
features among the associated images in the extended visual or textual clusters. (d) shows the two extended visual clusters as the units for propagation respectively;
each extended visual cluster include the visually similar images and those co-occurrences in other textual clusters. Similarly, (e) shows three extended textual
clusters include the semantically (by expanded tags) similar images and those co-occurrences in other visual clusters.

problem can be alleviated by taking benefits of the textual
semantics. That is, by using the textual information associated
with images, we are able to obtain semantically similar images
as shown in the red dotted rectangle in Fig. 4. If those seman-
tically similar images can share (propagate) their VWs to each
other, the query image can retrieve similar but more visually
and semantically diverse results.

IV. SEMANTIC FEATURE DISCOVERY FRAMEWORK

Based on the observations above, it is necessary to discover
semantic features for each image. Unlike previous works that
focus on constructing the features in one single domain, we
propose a general framework for semantic feature discovery
based on multiple modalities such as image contents and tags.
Meanwhile, such framework can also discover semantically
related visual words and tags in large-scale community-con-
tributed photos. In this section, we first illustrate the framework
from the view of the visual domain. Then we adapt the frame-
work for applications in the textual domain in Section VI.
As mentioned in Section III, it is important to propagate VWs

to those visually or semantically similar images. We follow the
intuition to propose an offline stage for unsupervised semantic
feature discovery. We augment each image with AWV—addi-
tional and important features relevant to the target image—by
considering semantically related VWs in its textual cluster and
representative VWs in its visual cluster. When facing large-
scale datasets, we can deploy the processes in a parallel way
(e.g., MapReduce [26]). Besides, AVW reduces the number of
VWs to be indexed (i.e., better efficiency in time and memory
[14]). Such AVW might potentially benefit the further image
queries and can greatly improve the recall rate as demonstrated
in Section VIII-A and in Fig. 8. For mining AVWs, we first gen-
erate image graphs and image clusters in Section IV-A. Then
based on the image clusters, we propagate auxiliary VWs in
Section IV-B and select representative VWs in Section IV-C.
Finally, we combine both selection and propagation methods in
Section IV-D.

A. Graph Construction and Image Clustering

The proposed framework starts by constructing a graph
which embed image similarities from the image collection. We
adopt efficient algorithms to construct the large-scale image

graph by MapReduce. We apply [27] to calculate the image
similarity since we observe that most of the textual and visual
features are sparse for each image and the correlation between
images are sparse as well. We take the advantage of the sparse-
ness and use cosine measure as the similarity measure. The
measure is essentially an inner product of two feature vectors
and only the nonzero dimensions will affect the similarity
value—i.e., skipping the dimensions that either feature has a
zero value. To cluster images on the image graph, we apply
affinity propagation (AP) [28] for graph-based clustering. AP
passes and updates messages among nodes on graph iteratively
and locally—associating with the sparse neighbors only. AP’s
advantages include automatic determining the number of clus-
ters, automatic exemplar (canonical image) detection within
each cluster.
In this work, the images are represented by 1 M VWs and

90 K text tokens expanded by Google snippets from their asso-
ciated (noisy) tags. The image clustering results are sampled in
Fig. 5(a) and (b). Note that if an image is close to the canonical
image (center image), it has a higher AP score, indicating that
it is more strongly associated with the cluster.

B. Auxiliary Visual Word Propagation

Seeing the limitations in BoWmodel, we propose to augment
each image with additional VWs propagated from the visual and
textual clusters [Fig. 5(c)]. Propagating the VWs from both vi-
sual and textual domains can enrich the visual descriptions of
the images and be beneficial for further image object queries.
For example, it is promising to derive more semantic VWs by
simply exchanging the VWs among (visually diverse but se-
mantically consistent) images of the same textual cluster [cf.
Fig. 5(b)].
We actually conduct the propagation on each extended

visual cluster, containing the images in a visual cluster and
those additional ones co-occurring with these images in certain
textual clusters. The intuition is to balance visual and semantic
consistence for further VW propagation and selection (cf.
Section IV-C). Fig. 5(d) shows two extended visual clusters
derived from Fig. 5(c). More interestingly, image has no tags
and is thus singular in the textual cluster; however, still be-
longs to a visual cluster and can receive AVWs in its associated
extended visual cluster. Similarly, if there is a single image in
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a visual cluster such as image , it can also obtain auxiliary
VWs (i.e., from image and ) in the extended visual cluster.
Assuming matrix represents the image his-

tograms in the extended visual cluster and each image has
(i.e., 1 million) dimensions. Let be the VW histogram of
image and assume among images are from the same
visual cluster. For example, and in the left
extended visual cluster in Fig. 5(d). The visual propagation is
conducted by the propagation matrix , which con-
trols the contributions from different images in the extended vi-
sual cluster. weights the whole features propagated from
image to . If we multiply the propagation matrix and
(i.e., ), we can obtain a new VW histograms, as the
AVWs. Each row of represents the new VW histogram for
each image which augmented by the images.
For each extended visual cluster, we desire to find a better

propagation matrix , given the initial propagation matrix
(i.e., , if both and are semantically related and
within the same textual cluster). The following is an example of
an initial propagation matrix :

Each row represents the relationship between the image and its
semantically similar images (i.e., in the same textual cluster).
For example, image (the first row) is related to image
and as shown in Fig. 5(c). Note that we can also modify the
weights in based on the similarity score or AP score. We
propose to formulate the propagation operation as

(1)

The goal of the first term is to avoid from propagating too many
VWs (i.e., propagating conservatively) since becomes new
VW histogram matrix after the propagation. And the second
term is to keep the similarity to the original propagation ma-
trix (i.e., similar in textual cluster). Here stands for the
Frobenius norm. and are two
normalization terms and modulates the importance between
the first and the second terms. We will investigate the effects of
in Section VIII-C. Note that the propagation process updates

the propagation matrix on each extended visual cluster sep-
arately as shown in Fig. 5(d); therefore, this method is scalable
for large-scale dataset and easy to adopt in a parallel way.

C. Common Visual Word Selection

Though the propagation operation is important to obtain dif-
ferent VWs, it may include too many VWs and thus decrease
the precision. To mitigate this effect and remove those irrele-
vant or noisy VWs, we propose to select those representative
VWs in each visual cluster. We observe that images in the same
visual cluster are visually similar to each other (cf. Fig. 5(a));
therefore, the selection operation is to retain those representa-
tive VWs in each visual cluster.

Fig. 6. Illustration of the selection operation for auxiliary visual words. The
VWs should be similar in the same visual cluster; therefore, we select those
representative visual features (red rectangle). (b) illustrates the importance (or
representativeness) for different VWs. And we can further remove some noisy
features (less representative) which appeared on the people or boat. The similar
idea can be used to select informative tags from the noisy ones for each image.
(a) Common VWs selection. (b) Two examples.

As shown in Fig. 6(a), represents VW histogram of
image and selection indicates the weight on each dimen-
sion. So indicates the total number of features retained after
the selection. The goal of selection is to keep those common
VWs in the same visual cluster [cf. Fig. 6(b)]. That is to say,
if emphasizes more on those common (representative) VWs,
the will be relatively large. Then the selection operation can
be formulated as

(2)

The second term is to reduce the number of selected features
in the visual clusters. The selection is expected to be compact
but should not incur too many distortions from the original fea-
tures in the visual clusters and thus regularized in the first term,
showing the difference of feature numbers before and after

the selection process. Note that will be assigned by one
which means we select all the dimensions. and

are the normalization terms and stands for the
influence between the first and the second terms and will be in-
vestigated in Section VIII-C.

D. Iteration of Propagation and Selection

The propagation and selection operations described above
can be performed iteratively. The propagation operation ob-
tains semantically relevant VWs to improve the recall rate,
whereas the selection operation removes visually irrelevant
VWs and improves memory usage and efficiency. An empirical
combination of propagation and selection methods is reported
in Section VIII-A.

V. OPTIMIZATION

In this section, we study the solvers for (1) and (2). Before we
start, note that the two formulations are very similar. In partic-
ular, let , the selection formulation (2) is equivalent
to

(3)
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Given the similarity between (1) and (3), we can focus on
solving the former and then applying the same technique on
the latter.

A. Convexity of the Formulations

We shall start by computing the gradient and the Hessian
of (1) with respect to the propagation matrix . Consider the
by matrices and . We can first stack the columns

of the matrices to form two vectors and
, each of length . Then, we replace with

, where is an identity matrix of size and
is the Kronecker product. Let and

, the objective function of (1) becomes

Thus, the gradient and the Hessian are

(4)

(5)

Note that the Hessian (5) is a constant matrix. The first term
of the Hessian is positive semi-definite, and the second term is
positive definite because . Thus, (1) is strictly convex
and enjoys an unique optimal solution.
From the analysis above, we see that (1) and (2) are strictly

convex, unconstrained quadratic programming problems. Thus,
any quadratic programming solver can be used to find their op-
timal solutions. Next, we study two specific solvers: the gra-
dient descent solver which iteratively updates and can easily
scale up to large problems; the analytic one which obtains the
optimal by solving a linear equation and reveals a connection
with the Tikhonov regularization technique in statistics and ma-
chine learning.

B. Gradient Descent Solver (GD)

The gradient descent solver optimizes (1) by starting from an
arbitrary vector and iteratively updates the vector by

where a small is called the learning rate. We can then
use (4) to compute the gradient for the updates. Nevertheless,
computing may be unnecessarily time-
and memory-consuming. We can rearrange the matrices and get

Then

That is, we can update as a matrix with the gradient
also represented in its matrix form. Coupling the update scheme
with an adaptive learning rate , we get update propagation ma-
trix by

(6)

Note that we simply initialize to .
For the selection formulation (Section IV-C), we can adopt

similar steps with two changes. And let and
. First, (6) is replaced with

(7)

Second, the initial point is set to a zero matrix since the
goal of selection formulation is to select representative visual
words (i.e., retain a few dimensions).
There is one potential caveat of directly using (7) for up-

dating. The matrix can be huge (e.g., ). To
speed up the computation, we could keep only the dimensions
that occurred in the same visual cluster, because the other di-
mensions would contribute 0 to .

C. Analytic Solver (AS)

Next, we compute the unique optimal solution of (1) ana-
lytically. The optimal solution must satisfy . Note
that From (4)

where is the constant and positive definite Hessian matrix.
Thus,

Similar to the derivation in the gradient descent solver, we can
write down the matrix form of the solution, which is

For the selection formulation, a direct solution from the steps
above would lead to

(8)

Nevertheless, as mentioned in the previous subsection, the
matrix in (8) can be huge (e.g., ). It is a time-

consuming task to compute the inverse of an ma-
trix. Thus, instead of calculating directly, we transform

to which is by and is much smaller (e.g.,
100 100). The transformation is based on the identity of the
inverse function

Then, we can rewrite (8) as

(9)

Note that the analytic solutions of (1) and (2) are of a sim-
ilar form to the solutions of ridge regression (Tikhonov regu-
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Fig. 7. Query examples in the Flickr11K dataset used for evaluating image
object retrieval and text-based image retrieval. The query objects are enclosed
by the blue rectangles and the corresponding query keywords are listed below
each object image. (a) Colosseum, (b) Eiffel tower, (c) Golden gate bridge,
(d) Leaning tower of Pisa, (e) Starbucks, (f) Tower bridge, (g) Arc de Triomphe.

larization) in statistics and machine learning. The fact is of no
coincidence. Generally speaking, we are seeking to obtain some
parameters ( and ) from some data ( and ) while reg-
ularizing by the norm of the parameters. The use of the regular-
ization not only ensures the strict convexity of the optimization
problem, but also eases the hazard of overfitting with a suitable
choice of and .

VI. TAG REFINEMENT

Textual features are generally semantically richer than vi-
sual features. However, tags (or photo descriptions) are often
missing, inaccurate, or ambiguous as annotated by the ama-
teurs [10]; e.g., adding the tag “honeymoon” to all images of a
newly married couple’s trip. Traditional keyword-based image
retrieval systems are thus limited in retrieving these photos with
noisy or missing textual descriptions. Hence, there arise strong
needs for effective image annotation and tag refinement. To
tackle this problem, most recent researches focus on annotation
by search [2], [3] or discovering relevant tags from the votes
by its visually similar images [24], [29], [30]. These previous
work solely rely on visual modality to improve the tag quality.
In this work, we further propose to annotate and refine tags by
jointly leveraging the visual and textual information. The pro-
posed method concentrates on obtaining more (new) semanti-
cally related tags from semantically related images. We further
select representative tags to suppress noisy or incorrect tags.
In Section IV, we propose a framework for semantic feature

discovery, where we utilize the image graphs to propagate and
select auxiliary visual words starting from the images’ textual
relations for introducing more diverse but semantically relevant
visual features. In this section, we will show that the proposed
framework is general and can be extended to tag refinement and
photo annotation by exchanging the roles of visual and textual
graphs. That is, starting from the visual graph, we propagate
and then select representative tags in the textual graph. We will
introduce tag propagation in Section VI-A and representative
tag selection, where we further considered the sparsity of tags
in Section VI-B. Note than we apply our proposed method on
the same image graphs constructed in Section IV-A.

A. Tag Propagation

In order to obtain more semantically relevant tags for each
image, we propose to propagate tags through its visually sim-
ilar images. We will then remove noisy tags and preserve repre-
sentative ones in Section VI-B. Following the auxiliary feature
propagation in Section IV-B, we construct the extended textual
cluster to propagate relevant tags. As shown in Fig. 5(e), we
conduct the propagation on each extended textual cluster which
contains the images in a textual cluster and those additional ones
co-occurring with any of these images in certain visual clusters
(in the image graph).
To find a proper propagation matrix for each extended tex-

tual cluster, we can adopt the same formulation as mentioned
in Section IV-B. That is, we can directly apply (1) to propagate
related tags on the extended textual clusters. It brings some ad-
vantages as discussed in Section IV-B and is also applicable to
the textual domain. For example, as shown in Fig. 5(c), image
has no tags and thus is singular in the textual cluster. However,
through the tag propagation, image can obtain some related
tags from the images of , and [cf. Fig. 5(e)]. Note that
this process is similar to image annotation. In the same way,
image is singular in the visual cluster, we can still propagate
related tags to image through extended textual cluster. For
example, an image might obtain different tags such as “Tower
bridge,” “London,” or “Travel.”

B. Tag Selection and Sparsity of Tags

After the previous tag propagation step, each image can
obtain more different tags. However, it is possible to obtain
some incorrect ones. Similar to visual feature selection in
Section IV-C, we propose to retain important (representative)
tags and suppress the incorrect ones. To select important tags
for each image, we can directly adopt the same selection for-
mulation (2) as mentioned in Section IV-C. Following (2), we
select representative tags in each textual cluster since images
in the same textual cluster are semantically similar to each
other. For example, in Fig. 5(b), the more specific tag, “Tower
bridge,” would have higher score than a general one, “London.”
Through tag selection, we can highlight the representative

tags and reject the noisy ones. However, as the system con-
verges, we observed that each image tends to have many tags
with very small confidence scores; an ad-hoc thresholding
process is required to cut those low-confidence (probably
noisy) tags. Meanwhile, users usually care about few important
(representative) tags for each image rather than plenty of tags.
Thus, we need to further consider the sparsity of selected
tags. We do so by modifying the original regularization term
(L2-norm) to L1-norm. That is, the objective function of (2) is
adjusted as:

(10)

is a regularization parameter. Since the L1-norm regulariza-
tion term is non-differentiable, we can not obtain the analytic
solution directly. However, recent researches have provided cer-
tain solutions for this problem [31], [32], we can derive the so-
lution by way of [33] or SPAMS (SPArse Modeling Software).3

3http://www.di.ens.fr/willow/SPAMS/
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Fig. 8. More search results by auxiliary VWs. The number represents its retrieval ranking. The results show that the proposed AVW method, though conducted
in an unsupervised manner in the image collections, can retrieve more diverse and semantic related results.

VII. EXPERIMENTAL SETUP

A. Dataset

We use Flickr5504 [34] as our main dataset in the experi-
ments. To evaluate the proposed approach, we select 56 query
images (1282 ground truth images) which belong to the fol-
lowing 7 query categories: Colosseum, Eiffel Tower (Eiffel),
Golden Gate Bridge (Golden), Leaning tower of Pisa (Pisa),
Starbucks logo (Starbucks), Tower Bridge (Tower), and Arc de
Triomphe (Triomphe). Also, we randomly pick up 10 000 im-
ages from Flickr550 to form a smaller subset called Flickr11K.5

Some query examples are shown in Fig. 7.

B. Performance Metrics

In the experiments, we use the average precision, a perfor-
mance metric commonly used in the previous work [17], [34],
to evaluate the retrieval accuracy. It approximates the area under
a non-interpolated precision-recall curve for a query. A higher
average precision indicates better retrieval accuracy. Since av-
erage precision only shows the performance for a single image
query, we also compute the mean average precision (MAP) over
all the queries to evaluate the overall system performance.

C. Evaluation Protocols

As suggested by the previous work [17], our image object re-
trieval system adopts 1 million visual words as the basic vocab-
ulary. The retrieval is then conducted by comparing (indexing)
the AVW features for each database image. To further improve
the recall rate of retrieval results, we apply the query expan-
sion technique of pseudo-relevance feedback (PRF) [8], which
expands the image query set by taking the top-ranked results as
the new query images. This step also helps us understand the im-
pacts of the discovered AVWs because in our system the ranking
of retrieved images is related to the associated auxiliary visual
words. They are the key for our system to retrieve more diverse

4http://mpac.ee.ntu.edu.tw/%7Eyihsuan/reranking/contextseer
5http://www.cmlab.csie.ntu.edu.tw/%7Ekuonini/Flickr11K

and accurate images as shown in Fig. 8 and Section VIII-A. We
take L1 distance as our baseline for BoW model [5]. The MAP
for the baseline is 0.245 with 22 M (million) feature points and
the MAP after PRF is 0.297 % .
For evaluating tag refinement, we seek text-based image re-

trieval to evaluate the overall tag quality. We also include se-
mantic queries in text-based image retrieval tasks. We use the
following keywords as the query for the 12 categories: Colos-
seum, Eiffel tower, Golden gate bridge, Leaning tower of Pisa,
Starbucks, Tower bridge, Arc de Triomphe, Beach, Football,
Horse, Louvre, and Park. Note that we use the same ground truth
images as content-based image retrieval for evaluation.

VIII. RESULTS AND DISCUSSIONS

In this section, we conduct experiments on the proposed
framework—unsupervised semantic feature discovery. Since
we target a general framework for serving different applica-
tions, we will first adopt the proposed method to visual domain
for image object retrieval in Section VIII-A and then the textual
domain for tag refinement (by keyword-based retrieval and
annotation) in Section VIII-B. Moreover, in Section VIII-C,
we also investigate the impact of different parameters in the
formulations.

A. The Performance of Auxiliary Visual Words

The overall retrieval accuracy is listed in Table I. As men-
tioned in Section IV-D, we can iteratively update the features
according to (1) and (2). It shows that the iteration with prop-
agation first (propagation selection) lead to the best results.
Since the first propagation will share all the VWs with related
images and then the selection will choose those common VWs
as representative VWs. However, if we do the iteration with se-
lection first (i.e., selection propagation), we might lose some
possible VWs after the first selection. Experimental results show
that we only need one or two iterations to achieve better results
because those informative and representative VWs have been
propagated or selected in the early iteration steps. Besides, the
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TABLE I
THE MAP OF AVW RESULTS WITH THE BEST ITERATION NUMBER AND PRF IN FLICKR11K WITH TOTALLY 22 M (SIFT) FEATURE POINTS. NOTE THAT

THE MAP OF THE BASELINE BOW MODEL [5] IS 0.245 AND AFTER PRF IS 0.297 % . #F REPRESENTS THE TOTAL NUMBER OF FEATURES RETAINED;
M IS SHORT FOR MILLION. ‘%’ INDICATES THE RELATIVE MAP GAIN OVER THE BOW BASELINE

Fig. 9. Performance breakdown with AVWs and PRF for image object re-
trieval. Consistent improvements across queries are observed. The right most
is the average performance across seven queries (by MAP).

number of features are significantly reduced from 22.2 M to 0.3
M (only 1.4% retained), essential for indexing those features by
inverted file structure [5], [14]. The required memory size for
indexing is proportional to the number of features.
In order to have the timely solution by gradient descent

solver, we set a loose convergence criteria for both propagation
and selection operations. Therefore, the solution of the two
solvers might be different. Nevertheless, Table I still shows that
the retrieval accuracy of the two solvers are very similar. The
learning time for the first propagation is 2720s (GD) and 123s
(AS), whereas the first selection needs 1468s and 895s for GD
and AS respectively. Here we fixed and to
evaluate the learning time.6 By using analytic solver, we can
get a direct solution and much faster than the gradient descent
method. Note that the number of features will affect the running
time directly; therefore, in the remaining iteration steps, the
time required will decrease further since the number of features
is greatly reduced iteratively. Meanwhile, only a very small
portion of visual features retained.
Besides, we find that the proposed AVW method is comple-

mentary to PRF since we yield another significant improvement
after conducting PRF on the AVW retrieval results. For ex-
ample, the MAP of AVW is 0.375 and we can have 0.516
37.6% after applying PRF. The relative improvement is

even much higher than PRF over the traditional BoW model
(i.e., 0.245 to 0.297, 21.2%). More retrieval results by AVW
PRF are illustrated in Fig. 8, which shows that the proposed

AVW method can even retrieve semantically consistent but
visually diverse images. Note that the AVW is conducted in an
unsupervised manner in the image collections and requires no
manual labels.
Fig. 9 shows the performance breakdown for the seven

queries. It can be found that the combination of AVW and PRF
consistently improves the performance across all query cate-
gories. Especially, the proposed method works well for small
objects such as “Starbucks logo,” whereas the combination of

6The learning time is evaluated in MATLAB at a regular Linux server with
Intel CPU and 16 G RAM.

TABLE II
MAP OF TAG REFINEMENT RESULTS EVALUATED BY TEXT-BASED IMAGE
RETRIEVAL. NOTE THAT WE USE THE FIRST COLUMN OF THE TABLE
AS QUERY KEYWORDS TO RETRIEVE IMAGES. IT SHOWS THAT THE
COMBINATION OF TAG PROPAGATION AND TAG SELECTION CAN
ENHANCE TAG QUALITY AND THEN IMPROVE RETRIEVAL RESULTS.
BESIDES, WE FURTHER IMPROVE THE PERFORMANCE BY COMBINING
THE VOTING-BASED METHOD AND OUR APPROACH. “%” INDICATES
THE RELATIVE MAP GAIN OVER THE ORIGINAL TAGS (0.498 MAP)

BoW and PRF just marginally improves the retrieval accuracy.
Besides, it is worthy to notice that the proposed method can
achieve large improvements in “Tower bridge” query although
the ground-truth images of “Tower bridge” usually have var-
ious lighting conditions and viewpoint changes as shown in
Fig. 5(b) and the fourth row of Fig. 8.

B. Performance of Tag Refinement

For the tag refinement task introduced in Section VI, we em-
ployed text-based image retrieval to evaluate the MAP by using
predefined queries as mentioned in Section VII. The goal is to
evaluate the overall tag quality before and after the tag refine-
ment in the image collection. The overall retrieval accuracy is
shown in Table II. It shows that our proposed method (Propaga-
tion Selection) in general achieves better retrieval accuracy
10.7% because the tag propagation process obtains more

semantically related tags and the tag selection process further
preserves representative ones. However, the proposed method
might slightly degrade after the tag refinement. For example, the
“Starbucks” query does not gain from the proposed method be-
cause “Starbucks” images in the visual cluster tend to have more
semantically diverse tags as the small objects do not necessarily
correlate with semantically and visually similar images. In addi-
tion, incorrect (noisy) tags might be kept through the tag propa-
gation process. Although the tag selection mechanism can help
to alleviate this problem, it sometimes degrades the retrieval ac-
curacy due to the loss of some important tags. For example, the
“Triomphe” query obtains higher retrieval accuracy right after
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Fig. 10. Examples for tag refinement by tag propagation and selection
(Section VI). (a) shows the original tags from the Flickr website. After tag
propagation, each image can have more related (new) tags (b). To reduce
incorrect (noisy) tags, we adopt tag selection to select the informative and
representative tags (c). We further consider sparsity for tag selection to retain
few (salient) tags (d). Note that the correct tags are indicated in bold style.

the tag propagation (0.729) but decreases slightly after the se-
lection (0.701).
Besides, the voting-based method [24] reaches better accu-

racy in few queries (e.g., “Beach”) since it merely reweighs
the tags originally existing in the photo. Different from [24],
the proposed method aims to obtain more semantically re-
lated tags through the propagation process. Therefore, the
proposed method might slightly degrade in few queries (e.g.,
“Park”) due to the limitation of the BoW feature for describing
the visual graph among scene-related images.7 Although the
propagation process highly relies on the visual similarity, the
selection process can alleviate this effect by retaining more
representative tags (e.g., “Football:” from 0.366 (propagation)
to 0.628 ( selection)) so that the overall retrieval accuracy
is still better. Moreover, we notice that there is an advantage
for the voting-based method as mentioned above so that we
further combine it and our method to achieve
the best results % . In the experiment, for each tag,
we simply combine the scores detected by both methods (i.e.,
voting-based method and our proposed method) as the final
result. Each detection score is normalized by L1-norm to ensure
that the confidence scores over all (candidate) tags are summed
to one.
We also show tag refinement examples in Fig. 10. As men-

tioned above, each image can obtain more related (new) tags
after tag propagation as shown in Fig. 10(b) (e.g., “Colosseum”
or “Eiffel tower”). And each image can further retain those rep-
resentative tags and reject incorrect (or less frequent) ones (e.g.,
“Visiteiffel”) after the tag selection in Fig. 10(c). Interestingly,
through the processes, we could also correct typos or seldom
used tags such as “Colloseum” (widely used: “Colosseum,”
“Coliseum” or “Colosseo”). To further consider the tag sparsity,
we can retain few representative tags (e.g., “Eiffel tower”) as
shown in Fig. 10(d). However, it is possible to retain only some
common tags such as “Paris” or “London.”
Moreover, the tag refinement process can also annotate those

images which initially do not have any tags. Fig. 11 shows
some image annotation results after the tag refinement process.

7We believe the fusion of additional visual features (e.g., texture, color) will
enhance this part. In this work, we emphasize the proposed general framework
for deriving semantic (visual or textual) features by leveraging more contextual
cues along with the large-scale photo collections.

Fig. 11. Example results for image annotation on those images originally not
associated with any tags. Though initially each image is singular in the tex-
tual cluster, through extended textual cluster and the following semantic feature
(tag) discovery, each image can obtain semantically related tags. However, if
the image object is too small to derive visually similar images (e.g., Starbucks
logos), it might incur poor annotations.

During the tag propagation step, a single image (node) in the
textual graph will obtain tags via its related visual clusters. This
approach is similar to annotation by search; however, we base
on the extended textual clusters to propagate tags rather than the
search results.8 As shown in Fig. 11, we can correctly annotate
some images on the left-hand side; nevertheless, it is still pos-
sible to propagate some incorrect tags such as the rightmost case
because the visual (textual) clusters might be noisy. This can be
improved if more effective clustering methods and contextual
cues are employed.
To provide another view for evaluating annotation quality, we

first remove the original (user-provided) tags before conducting
our proposedmethod. As shown in Fig. 12, the proposedmethod
can annotate semantically related tags if the image has more
supporting photos from its visual cluster. It is interesting that
we may annotate more specific tags (e.g., “London” or “Tower
bridge”) than the original ones (e.g., “Europe”) as the left ex-
ample given in Fig. 12. This is because other photographers
may accurately name the exact spot [29] and our approach can
effectively leverage such cues to provide more specific tags.
Note that it is still possible that we annotate incorrect tags since
the BoW feature is limited in describing scene-related images
(e.g., park). As we observe and many other literatures [30] have
shown, it is effective to include more visual features for building
the visual similarities. In this work, rather than optimizing the
visual features, we emphasize the proposed general framework
for deriving more semantic (visual and textual) features through
the propagation and selection processes over the supplemental
contextual cues (e.g., (noisy) tags, photos, geo-locations) com-
monly observed in social media.

C. Parameter Sensitivity

Finally, we report the impact of sensitive tests on two im-
portant parameters—propagation formulation and selection
formulation . Here we evaluate the effect on image object
retrieval only and we find the same parameters are applicable to
other applications. The results are shown in Fig. 13. In the prop-
agation formulation, decides the number of features needed
to be propagated. Fig. 13(a) shows that if we propagate all the
possible features to each image (i.e., ), we will obtain

8Note that image annotation is a by-product of tag refinement. It only works
on database images rather than annotates a new image; therefore, we do not
compare with the other methods such as annotation by search [3].
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Fig. 12. Illustration for another evaluation for image annotation by removing
the original (user-provided) tags before conducting the proposed method. In the
left image, we can provide more specific tags than the original ones. However,
we may annotate incorrect tags due to the limitation of the BoW feature for
describing the visual graph among scene-related images.

Fig. 13. Parameter sensitivity on alpha and beta in AVW discovery for image
object retrieval. (a) Shows that propagating too many features is not helpful for
the retrieval accuracy. (b) shows that only partial features are important (rep-
resentative) to each image. More details are discussed in Section VIII-C. Note
that we can further improve retrieval accuracy by iteratively updating semantic
features by the proposed propagation and selection processes. (a) Alpha [ , for
propagation in (1)], (b) Beta [ , for selection in (2)].

too many irrelevant and noisy features which is helpless for the
retrieval accuracy. Besides, the curve drops fast after
because it preserved few VWs which might not appear in the
query images. The figure also shows that if we set around 0.6
we can have better result but with fewer features which are es-
sential for large-scale indexing problem.
And for selection formulation, similar to also influences

the number of dimensions needed to be retained. For example,
if , we will not select any dimensions for each image.
And means we will retain all the features, and the re-
sult is equal to the BoW baseline. Fig. 13(b) shows that if we
just keep a few dimensions of VWs, the MAP is still similar
to BoW baseline though with some retrieval accuracy decrease.
Because of the spareness of large VW vocabulary as mentioned
in Section III-A, we only need to keep those important VWs.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we present a general framework for semantic
feature discovery which utilizes both the visual and textual
graphs to propagate and select important (visual or textual)
features. First, we show the problems of current BoW model
and the needs for semantic visual words to improve the recall
rate for image object retrieval. We propose to augment each
database image with semantically related auxiliary visual
words by propagating and selecting those informative and
representative VWs in visual and textual clusters (graphs).
Note that we formulate the processes as unsupervised opti-
mization problems. Experimental results show that we can
greatly improve the retrieval accuracy compared to the BoW
model (111% relatively) for image object retrieval. Besides,
we extend the proposed method to textual domain. It can not
only help to retain representative tags for each image but also
automatically derive meaningful tags to annotate unlabeled
images. Experiments in text-based image retrieval show that
tag refinement can improve the retrieval accuracy effectively
( 10.7% relatively). We are to investigate more advanced con-
textual features, such as geo-tags, time, user attributes, along
with the proposed framework to leverage the rich contexts from
the emerging social media [35], [36].
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