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Abstract—The rapid expansion of wind farms has generated in-
terest in operations and maintenance. An operating wind turbine
undergoes various state changes, including transformation from
a normal to a fault mode. Condition-based maintenance tools are
needed to identify potential faults in the system. The prediction of
turbine fault modes is of particular interest. In this research, data-
mining algorithms are employed to construct prediction models
for wind turbine faults. A three-stage prediction process is fol-
lowed: 1) prediction of a fault of any kind; 2) prediction of spe-
cific faults of the system; and 3) identification on unseen faults.
A comparative analysis of various data-mining algorithms is re-
ported based on the data collected at a large wind farm. Random
forest algorithmmodels provided the best accuracy among all algo-
rithms tested. The robustness of the predictive model is validated
for faults that have occurred at turbines with previously unseen
data. The research results discussed in this paper have been de-
rived from data collected at 17 wind turbines.

Index Terms—Data mining, multiclass classification, prediction,
wind turbine, wind turbine states.

I. INTRODUCTION

W IND energy is regarded as a major renewable resource
destined to grow in importance in the decades to come.

The expansion of wind farms makes their operations and main-
tenance (O&M) an important issue. It is not unusual for the
maintenance/repair cost of wind turbine components to exceed
their procurement cost [1], [2]. According to the data presented
in [3], maintenance cost alone may account for at least 10% of
the total generation cost. To address O&M issues, traditional
maintenance practices such as periodic and corrective mainte-
nance are being replaced with condition-based monitoring and
maintenance.
State-of-the-art condition maintenance applications in the

wind industry are discussed in [4]–[7]. Condition-based mon-
itoring approaches continuously monitor the performance of
wind turbine components with installed sensors and equipment.
Vibration analysis [8], optical strain measurements [9], and oil
particle analysis [10] are commonly used in condition moni-
toring. Performance monitoring is another promising approach
that closely resembles condition monitoring. It utilizes his-
torical wind turbine data to predict wind turbine performance
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Fig. 1. Framework of the proposed approach.

parameters such as gearbox oil temperature, and tower acceler-
ation. Performance monitoring is a cost-effective approach to
analyze wind turbine performance as the Supervisory Control
and Data Acquisition (SCADA) system records various wind
turbine parameters that could be fault informative.
Data mining has been used as a viable approach to perfor-

mance monitoring of wind turbines. Related data-mining algo-
rithm applications include fault diagnosis [1], [11], modeling
of abnormal behavior [12], [13], and power curve monitoring
[14]. Other related research includes identification of status pat-
terns of wind turbines [15], in which the authors employed as-
sociation rule mining to identify patterns within the individual
statuses. Here the term status represents a potential fault. In ref-
erence [16], the authors employed an adaptive control strategy
to gain maximum power and minimum torque ramp.
Considering the role of converters in optimizing wind turbine

performance, a stream of research has focused on reliability as-
sessment of wind turbines [17], [18].
The research reported in this paper utilized data-mining algo-

rithms to predict wind turbine states. The results presented in the
paper are based on the analysis of data obtained from 17 wind
turbines (1.5MW) of a large wind farm in Blairsburg, Iowa. The
values of parameters recorded at 10-s intervals (10-s data) over
a four-month period constitute the dataset for this research.
This paper is organized as follows. Section II describes wind

turbine states along with a discussion of the data preprocessing.
Section III provides the computational results. Section IV con-
cludes the research and presents future research directions.

II. MODELS FOR MONITORING WIND TURBINE STATES

The framework for building prediction models is provided
in Fig. 1. An abstraction of turbine states is used to categorize
the output data into a number of states using expert knowledge.
Model building involves using various data-mining algorithms.
Themodels are then tested. The generated dataset is used to con-
struct models for Phase-I and Phase-II predictions. The main
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TABLE I
TURBINE STATE INFORMATION

objective of Phase-I is to predict a fault of any kind, whereas,
predictions in Phase-II target specific faults. In Phase-III predic-
tions, unseen faults from different wind turbines are identified.
Descriptions of various wind turbine states are provided next.

A. Turbine State Description

The variability of wind speed impacts the performance of
wind turbines and is recorded as fault states. Normal operations,
weather-related downtime, maintenance downtime, fault mode,
and emergency stop are some of the many states recorded by the
SCADA system of a wind turbine.
States changes may vary from insignificant (e.g., when a tur-

bine is changing its state from idle to normal operations) to a po-
tential fault. Table I lists the 17 possible states of a wind turbine.
State number 17 represents the fault mode of wind turbines and
there can be more than 400 possible ways in which a wind tur-
bine can be faulted. Gearbox oil over-temperature, blade angle
asymmetry, pitch thyristor fault, and yaw runaway are some of
the common fault modes of a wind turbine. In the research re-
ported in this paper, the main emphasis was to predict the fault
mode of wind turbine ahead of actual occurrence.

B. Abstraction of Turbine States

A typical turbine may undergo a number of different states in-
cluding turbine normal operations, run-up idling, maintenance/
repair mode, fault mode, weather downtime, etc. The predic-
tion of a turbine’s fault mode is of particular interest as it rep-
resents some potential fault in the system. A turbine in state
17 can be affected by as many as 400 different fault modes of
varying intensity. Fig. 2 shows the histogram of 17 wind tur-
bines plotted over a period of four months (from 8/27/2010 to
12/4/2010). Based on the frequency of fault mode, turbine 12
was considered in the analysis. In order to reduce the compu-
tational effort required by data-mining algorithms, the recorded
states of wind turbines were further categorized using domain
knowledge. Table II represents the initially recorded and cate-
gorized states of turbine 12. The initial 44 turbine states were
categorized into four states: Turbine OK, Fault,Weather down-
time, and Maintenance downtime. The Turbine OK category

Fig. 2. Comparison of wind turbines states.

corresponds to normal functioning operations, including run-up
idling, whereas, the Fault category corresponds to an actual or
potential fault in the system. The Weather downtime category
corresponds to turbine downtime due to poor weather condi-
tions, whereas, any other downtime is considered as Mainte-
nance downtime.

C. Learning Strategy

For both prediction phases, the dataset was divided into two
parts, i.e., initial dataset and blind dataset. The data-mining al-
gorithms used two-thirds of the initial data for training, and the
remaining one-third of the initial data was used for testing. The
performance of the data-mining algorithms on the test dataset
was used for algorithm selection. The best performing algo-
rithm was then used to construct prediction models on the blind
dataset (discussed in Section III). Details regarding the param-
eter selection are discussed in the next section.
1) Parameter Selection: A Supervisory Control and Data

Acquisition (SCADA) system records more than 100 wind tur-
bine parameters that can be broadly categorized into: 1) wind
turbine performance parameters, 2) wind turbine control param-
eters, and 3) wind turbine noncontrollable parameters. Parame-
ters such as power, generator speed, and rotor speed are the per-
formance parameters, whereas, blade pitch angle and generator
torque are controllable parameters. Wind speed is the only non-
controllable parameter. In the research reported in this paper,
a combination of turbine performance parameters, control pa-
rameters, and noncontrollable parameters are used to predict
the wind turbine states. To minimize the data dimensionality
and to remove irrelevant parameters, parameter selection algo-
rithms are used. A month of data was used for parameter selec-
tion and algorithm learning. A stratified subset of the original
data was used for parameter selection to make the process com-
putationally efficient. Fig. 3 displays the original and stratified
data. Distribution of the output class is preserved in stratified
data to avoid bias towards any specific class. Three different
data-mining algorithms, wrapper with genetic search (WGS)
[19], [20], wrapper with best first search (WBFS) [21], and
boosting tree algorithm (BTA) [22] were selected to determine
relevant parameters for prediction of turbine states. Wrapper is a
supervised learning approach using different search techniques
to select the relevant parameters by performing ten-fold cross
validation. Table III lists the ten best parameters from each pa-
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TABLE II
TURBINE STATE CATEGORIES

TABLE III
SELECTED PARAMETERS USING DATA-MINING ALGORITHMS

Fig. 3. Output class distribution.

rameter selection algorithm. Parameters for nacelle revolution,
blade (1–3) pitch angle, current Phase C, temperature hub, and
generator/gearbox speed were finally selected to build the pre-
diction models.
2) Evaluation Metric: The evaluation of data-mining algo-

rithms is based on the prediction accuracy of each output class.
Considering the imbalance in an output class, geometric mean
(gmean) of the output class is used as criteria for selecting data-

mining algorithms for the prediction task. The evaluation of ac-
curacy is presented in a confusion matrix (see Fig. 4).
Equation (1) defines the geometric mean of the

output class, whereas, is the accuracy of class , is the
total number of output classes

(1)

3) Algorithm Selection: Five data-mining algorithms: neural
network (NN), support vector machine (SVM), random forest
algorithm (RFA), boosting tree algorithm (BTA), and general
chi-square automatic interaction detector (CHAID) algorithm
were initially selected for building models at time stamp. NN
uses backpropagation to classify instances [23]. Twenty NN
models with different kernels and structures were built in this
research, and the most accurate and robust model was selected.
SVM constructs a hyperplane or set of hyperplanes in a high
dimensional space, which can be used for classification, or
regression. In SVM the hyperplane with the largest distance
to the nearest training data points of any class (so-called func-
tional margin), yields good accuracy [24]. RFA is an ensemble

Downloaded from www.VTUplanet.com



KUSIAK AND VERMA: DATA-MINING APPROACH TO MONITORING WIND TURBINES 153

Fig. 4. Confusion matrix.

TABLE IV
PHASE-I PREDICTION RESULTS

learning method where multiple random trees are generated
during classification. It selects random input parameters for
each node split [25]. BTA generates multiple models and ap-
plies a weighted combination of the predictions from individual
models to derive a single prediction model [22]. CHAID is
a tree-based data-mining algorithm that performs multilevel
splits for classification [26].
The prediction accuracy for each class (Phase-I predictions)

is provided in Table IV. Essentially, all the algorithms per-
formed well while predicting Turbine OK and Fault class,
however, the output class Weather downtime and Maintenance
downtime were predicted with relatively low accuracy. The
geometric mean metric indicates that when all classes
are predicted with perfect accuracy its value is 1. The algorithm
with the highest value of was selected to build predic-
tion models at different time stamps. From the graph in Fig. 5
and Phase-I prediction results (Table IV), both the boosting tree
algorithm and the random forest algorithms outperformed the
remaining three data-mining algorithms. However, RFA was
selected to build the prediction models, as it possesses great
generalization ability and it is almost insensitive to the size of
the dataset. Fig. 6 illustrates the tree complexity of the random
forest algorithm as a function of the misclassification rate. The
optimal number of trees was found to be 91.
The same five algorithms were considered for constructing

Phase-II prediction models. The output class Fault from the
Phase-I prediction was replaced by actual fault type, resulting in

Fig. 5. Performance of different data-mining algorithms using as a
criterion.

Fig. 6. Misclassification rate of RFA as a function of tree size.

Fig. 7. Distribution of output class at time stamp .

overall seven output classes. Fig. 7 displays the distribution of
data at time stamp . In the figure, pitch overrun 0 is triggered
when limit switch experience a nonpositive angle at least one
of the rotor blades. Pitch thyristor 2 fault is triggered when the
thyristor is not ready even though the grid conductor is switched
ON. Pitch thyristor fault indicate defective axle cabinet. Axle 1
fault pitch controller reports axle disturbance. Pulse sensor rotor
monitor defect is due to no pulses to overspeed monitor when
the generator over speeds. Table V illustrates the performance
of different data-mining algorithms on a time stamped dataset.
It can be seen from Table V that most of the algorithms failed
to predict minority output classes (a class with few instances)
and thereby resulted in a equal to 0. Only NN and RFA
yielded a value greater than 0 (Fig. 8). As anticipated,
RFA outperforms the other data-mining algorithms, providing
better accuracy for each output class.
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TABLE V
PHASE-II PREDICTION RESULTS AT TIME STAMP

TABLE VI
PREDICTION ACCURACY OF OUTPUT CLASS USING RFA (PHASE-I PREDICTION)

Fig. 8. Performance of different data-mining algorithms using as a cri-
terion (Phase-II prediction).

III. COMPUTATIONAL RESULTS

In this section, the random forest algorithm (RFA) was used
to build eight prediction models at various time stamps, with a
maximum prediction length of 5 min. The maximum tree size
for the random forest algorithm was set to 300. The accuracy
was found to be in the range of 81%–99% for all output classes
(Table VI).

A. Phase-II Prediction

In this phase, output class Fault was replaced with the actual
fault types, these being pitch overrun 0 , pitch thyristor 2 fault,
axle 1 fault pitch controller, and pulse sensor motor defect.
Table VII displays the prediction results produced by the RFA

at different time stamps. The accuracy of each output class was
found to be in the range 68%–100%, except for output class pulse
sensor rotor monitor defect for which accuracy was low (e.g.,
40.67%–61.9%). Fig. 9 presents the value of both predic-
tion phases. Phase-I predictions had overall better values

Fig. 9. Values of at various time stamps.

Fig. 10. Distribution of output classes (Turbine 10).

(0.435–0.817) than Phase-II predictions (0.242–0.659), because
of the poor accuracy of one output class, the pulse sensor rotor
monitor defect. In the next section, Phase-III prediction results
are illustrated and unobserved faults are identified.

B. Phase-III Predictions

While the results on the testing dataset indicated the effec-
tiveness of the random forest algorithm, in order to validate the
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TABLE VII
PREDICTION ACCURACY OF OUTPUT CLASS USING RFA (PHASE-II PREDICTION)

Fig. 11. Distribution of output classes (Turbine 14).

Fig. 12. Distribution of output classes (Turbine 17).

robustness of the proposed model, data from other fault-prone
turbines were analyzed with the additional objective of seeing
how the model would respond to unseen states types. Due to
the inherent variability in wind turbines, faults in a wind turbine
vary from one to another. It is interesting to observe the models’
responsiveness when some unseen faults are presented. In this
section, data from three other fault-prone wind turbines, Tur-
bine 10, Turbine 14, and Turbine 17 are analyzed. Month-long
data, from 8/28/2010 until 9/28/2010, were used for the anal-
ysis. The models built for Phase-I predictions were deployed
for analysis of this dataset. Faults such as yaw runaway, brush
wear warning, blade angle implausibility, and reply generator
high stage were studied. Figs. 10–12 display the actual distribu-
tion of output classes for Turbines 10, 14, and 17, respectively.

The numbers of faults vary across turbines, however, the tur-
bines were found to be operating normally with no errors most
of the time. Tables VIII–X display the accuracy of output classes
across turbines 10, 14, and 17, respectively. It is clear from the
results that the algorithms are robust enough to identify unseen
faults such as yaw runaway, blade angle not plausible axis 2,
etc. The accuracy for correctly identifying unseen fault cases
was found to be in the range of 60%–100%, except for faults
related to gearboxes (e.g., gearbox over-temperature, gearbox
oil pressure too low) which were always identified as Turbine
OK. The reasons for this include a lack of related input param-
eters (e.g., gearbox temperature, gearbox oil pressure, etc.) in
the model. The results shown in Tables VIII–X confirm that the
proposed model can be used to predict most wind turbine faults.
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TABLE VIII
MODEL ANALYSIS ON TURBINE 10

TABLE IX
MODEL ANALYSIS ON TURBINE 14

TABLE X
MODEL ANALYSIS ON TURBINE 17

IV. CONCLUSION

In this paper, a methodology for predicting wind turbine
states was presented. The proposed approach involved three
key steps: turbine state abstraction, algorithm learning, and
state prediction. In the first step, the initial wind turbine states
were separated into classes using domain knowledge. To reduce
the computational effort, data-mining algorithms were trained
using a stratified data set. Turbine parameters such as the blade
pitch angle, generator/gearbox speed, temperature hub, nacelle
revolution, and current Phase C constitute the input to the
prediction model. Among the selected data-mining algorithms,
the random forest algorithm provided the most accurate results.
Prediction models with up to 300-s horizons provided results

with an accuracy in the range 78%–98%. The proposed model
also identified various faults that occurred at wind turbines not
included in the training data.
A month-long data set was available for this research. Future

research will involve further analysis once additional data be-
comes available. New concepts will be researched to improve
model robustness for identifying faults not reflected in the
training data sets.
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