
Large-Scale Learning of Word Relatedness
with Constraints

Guy Halawi§, Gideon Dror†, Evgeniy Gabrilovich‡, Yehuda Koren†,
§Tel Aviv University, Tel Aviv, Israel; †Yahoo! Research, Haifa, Israel; ‡Yahoo! Research, Santa Clara, CA, USA

ghalawi@gmail.com,{gideondr|gabr|yehuda}@yahoo-inc.com

ABSTRACT
Prior work on computing semantic relatedness of words focused
on representing their meaning in isolation, effectively disregard-
ing inter-word affinities. We propose a large-scale data mining
approach to learning word-word relatedness, where known pairs
of related words impose constraints on the learning process. Our
method, called CLEAR, is shown to significantly outperform previ-
ously published approaches. The proposed method is based on first
principles, and is generic enough to exploit diverse types of text
corpora, while having the flexibility to impose constraints on the
derived word similarities. We also make publicly available a new
labeled dataset for evaluating word relatedness algorithms, which
we believe to be the largest such dataset to date.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Experimentation

Keywords
Semantic similarity, word relatedness

1. INTRODUCTION
Computing semantic relatedness of words is an enabling tech-

nology for many natural language applications [5]. In document
clustering, assessment of word relatedness can be used for formu-
lating a better distance metric. In word sense disambiguation, the
correct sense in which a word appears in a given text can be de-
termined by computing the relatedness of the different candidate
senses to the context. Consider also correction of typing errors or
speech recognition errors, where a word is mistakenly replaced by
another valid (i.e., not misspelled) word. Estimating word related-
ness in context can help us determine the user most likely meant
“Web site” rather than “Web sight”.1

Conventional approaches to modeling semantic relatedness rep-
resent the meaning of individual words in a multidimensional space,
and then compute the distance between the resultant word vectors.
However, prior works focused on representation that is completely
agnostic of the task of assessing relatedness, whereas the mean-
ings of words is determined in isolation. Research in human judg-
ment of similarity shows that it crucially depends on the context and
frame of reference [25]. Quoting Tversky’s example [25], “when
subjects are asked to assess the similarity between the USA and the
USSR, they usually assume that the relevant context is the set of
countries and that the relevant frame of reference includes all po-
litical, geographical, and cultural features”. Such context is com-
pletely lost when each word is considered in isolation from others.

Here we propose to learn a suitable word representation—in a
latent factor space—with the particular task (of computing word re-
latedness) in mind. Specifically, we learn to represent word mean-
ings by having observed word co-occurrences within sentences, as
well as numerous pairs of words with different degrees of related-
ness. This is done by incorporating word pairs of known related-
ness as constraints on the learning process. We call our method
CLEAR, which stands for Constrained LEArning of Relatedness.

Computing semantic relatedness using the newly learned repre-
sentation yields statistically significant improvements on a range
of datasets. Importantly, explicit modeling of word relatedness
allows us to learn a signal that is complementary to that learned
from large-scale world knowledge repositories, which were used
in the previous state of the art method (TSA) [17]. Indeed, com-
bining CLEAR with TSA yields significantly better results than
either method alone. On the WS-353 dataset [10], which is the
standard reference in the field, the combination improves the cor-
relation with human judgments from r = 0.8 to 0.85.

The contributions of this paper are threefold. First, we introduce
CLEAR, a novel approach to learning a word relatedness metric
through a latent space embedding of the words, which directly in-
corporates the relatedness of training pairs of words used as con-
straints. Second, the results of using CLEAR for computing se-
mantic relatedness are superior to the previous state of the art on
three different datasets. Finally, we make publicly available a new
dataset of 771 word pairs with human relatedness judgments, which
was acquired as part of this research. To the best of our knowledge,
this is the largest such dataset to date.

1Albeit one can argue that the last example can also be resolved
by simple co-occurrence statistics (e.g., bi-grams), this would only
be true for adjacent words. On the other hand, computing word re-
latedness to the rest of the text can easily handle long-term depen-
dencies, which are very common in natural language (e.g., "Many
people liked my site [or sight ?], which I have recently uploaded to
the Web").

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6/12/08... $15.00.

1406

Downloaded from www.VTUplanet.com

2. RELATED WORK
Prior work on semantic relatedness of words pursued two main

directions, using purely statistical techniques or using repositories
of human knowledge.

Early work on word relatedness formulated the notion of distri-
butional similarity [6, 15], judging the relatedness of words by the
similarity of contexts in which they occur. Later, Latent Seman-
tic Analysis (LSA) [7] was proposed, which also leverages word
co-occurrence information from a large unlabeled corpus of text.
LSA is essentially a dimensionality reduction technique that iden-
tifies a number of most prominent dimensions in the data, which are
assumed to correspond to “latent concepts”. This is done by apply-
ing Singular Value Decomposition to the words-by-documents co-
occurrence matrix. Latent Dirichlet Allocation (LDA) [3] can also
be used for computing word relatedness by representing words as
vectors of probabilities over each topic. Sun et al. [23] used LDA
in a related application of text segmentation, using a Fisher kernel.

Lexical databases such as the WordNet electronic dictionary [8]
or Roget’s Thesaurus [19] encode relations between words such
as synonymy, hypernymy, and meronymy. Quite a few metrics
have been defined that compute word relatedness using various
properties of the underlying graph structure of these resources (see
[5] for an extensive survey). An obvious drawback of these ap-
proaches is that creation of lexical resources requires lexicographic
expertise as well as considerable time and effort, and consequently
such resources cover only a small fraction of the language lexi-
con. Specifically, such resources contain few proper names, neol-
ogisms, slang, and domain-specific technical terms. Indeed, Zesch
et al. [29] showed that using a collaboratively constructed dictio-
nary (Wiktionary) is superior to both WordNet and GermaNet (a
German version of WordNet, [14]).

Dictionaries and thesauri mainly contain information about in-
dividual words but little world knowledge in general. Explicit Se-
mantic Analysis (ESA) [11] was proposed to incorporate substan-
tially large amounts of human knowledge — such as the entire
Open Directory or Wikipedia — into word relatedness computa-
tion. Zesch and Gurevych [28] showed that it is possible to devise
measures of relatedness using lexical resources that are competi-
tive with those based on collaboratively constructed resources such
as Wikipedia. Later, Temporal Semantic Analysis (TSA) [17] was
proposed, which further improved the performance of ESA by ex-
tending it with a temporal dimension. This way, the computation of
word relatedness was augmented with patterns of word occurrence
over time (e.g., in an archive of a 100 years worth of New York
Times articles).

Our approach effectively bridges the above two directions in a
principled way. Similarly to purely statistical approaches, it learns
word relatedness from word occurrence statistics in large text cor-
pora. However, it constrains the learning process using word pairs
that are known to be related, thus incorporating human knowledge.
In Section 6 we compare CLEAR to the best performing statistical
and knowledge-based approaches, and show that it outperforms all
of them.

In this work, we used word pairs from WordNet, but in general
they can come from a variety sources. For example, we can use lists
of entities from Wikipedia (thus implicitly assuming the entities in
the list are related) or Freebase, or lists automatically mined from
the World Wide Web [13]. Domain-specific pairs of related words
can be naturally incorporated in CLEAR.

In the present study we focused on computing semantic related-
ness of individual words. However, in many cases a need arises
to quantify semantic relatedness of longer fragments of text, for
instance, in applications such as information retrieval or text clus-

tering. The conventional approach to comparing fragments of text
in information retrieval represents them as vectors of words, us-
ing the vector space model [20]. A major limitation of this model
is that it assumes words to be independent, which is an oversim-
plification of the richness of natural language. Generalized vector
space model [26] no longer makes this assumption, and explicitly
manipulates a matrix G of term dependencies. Under this model,
the similarity of a pair of documents, a and b, is computed as
simGV SM (a, b) = aT · G · b. Our method for estimating word
relatedness can be immediately used for computing the matrix G,
hence the generalized vector space model provides a principled way
for incorporating CLEAR to refine existing text similarity models.

It should be noted that in this paper we deal with “semantic re-
latedness” rather than “semantic similarity” or “semantic distance”,
which are also often used in the literature. In their extensive survey
of relatedness measures, Budanitsky and Hirst [5] argued that the
notion of relatedness is more general than that of similarity, as the
former subsumes many different kinds of specific relations, includ-
ing meronymy, antonymy, functional association, and others. They
further maintained that computational linguistics applications often
require measures of relatedness rather than the more narrowly de-
fined measures of similarity. For example, word sense disambigua-
tion can use any related words from the context, and not merely
similar words.

3. MODELING RELATEDNESS OF WORDS
We learn relatedness between words by embedding them in a

low-dimensional space (e.g., a 100-D space), which strives to cap-
ture their semantic relations. Positions of words in the latent space
reflect their meaning within sentences. This embedding is con-
structed while modeling the probability of observing a word given
its adjacent context (e.g., the rest of its host sentence).

Before delving into the details of the method, we provide some
necessary notational conventions. We observe words arranged within
sequences. Each sequence annotates a pivot word. The sequence
can be a short sentence containing the pivot word, or when the pivot
word is placed within a long sentence, we limit the sequence to the
words close to the pivot word (e.g., up to 5 words away). In order
to distinguish words from sequences, we index words by i, j and
sequences by s.

Therefore, from the text corpus we extract sequences of at most
2K + 1 consecutive words, which do not exceed single sentence
boundaries. A typical value of K would be in the range 2–8. Each
sequence characterizes its middle pivot word denoted by is. The
pivot word is removed from the sequence, that is is /∈ s. Note that
the extracted sequences can overlap because multiple pivot words
are extracted from the same sentence. The sequences are arranged
within a train set S. After the sequences are identified, the word
order within each sequence is no longer important, and we treat a
sequence as a set of words.

A key component underlying our model is a mapping of words,
and indirectly also of sequences, into a joint low dimensional space
(of dimension `), which we refer to as the latent factor representa-
tion, as follows:

• Each word i is mapped into a vector qi ∈ R`.

• Each sequence s is mapped into a vector ps ∈ R`, defined
by ps = 1

|s|
∑
i∈s qi.

In addition, we introduce biases for words, such that the bias of
word i is denoted by bi. These biases reflect the varying frequencies
of words, independent of the surrounding sequence.

1407

Downloaded from www.VTUplanet.com

We denote by rsi the affinity of word i to sequence s, defined as

rsi = bi + qTi ps (1)

Common words will generally have high bias values, reflecting
their tendency to frequently co-occur with many other words (i.e.,
similar to many words in a distributional sense). However, words
that are “strongly explained” by their context get bias values much
lower than what is “merited” by their frequency. One such exam-
ple is the word “versa”, which almost always appears in the phrase
“vice versa”, hence its learned bias value is very low (actually neg-
ative, -1.25). On the other hand, the word “vice” can occur with
many other words (e.g., “vice president”), hence its bias is much
higher (+1.89).

Both the latent factor representation and the biases are parame-
ters that we need to learn. Henceforth, we denote the model param-
eters by Θ.

The latent space representation strives to capture the semantics
of the words, such that affinities in the latent space reflect semantic
relations. Typically, we use a latent space dimensionality of ` =
100−200, which gives a good trade off between time and accuracy.
We report the results of experimenting with other possible numbers
of dimensions in Section 6.2.

The likelihood of observing word iwithin sequence s is modeled
by the multinomial distribution

P (i|s; Θ) =
exp(rsi)∑
j exp(rsj)

(2)

We seek model parameters (Θ) in a way that maximizes the log-
likelihood of the training set

L(S; Θ)
def
=
∑
s∈S

logP (is|s; Θ) (3)

This modeling follows multinomial logistic regression [12], albeit
with latent factors that make the function non-convex.

In the following, we often omit Θ from the probability definition,
using the notation P (i|s).

3.1 Optimization process
Learning proceeds by stochastic gradient ascent [4, 22]. Given a

training sequence s we update each parameter θ ∈ Θ by

∆θ = η
∂ logP (is|s)

∂θ
= η

(
∂rsis
∂θ
−
∑
j

P (j|s)∂rsj
∂θ

)
(4)

where η is the learning rate.
However, such a training scheme would be too slow to be practi-

cal, as each update rule requires summing over all words. Thus, we
resort to sampling the weighted sum in (4), based on the importance
sampling idea proposed by Bengio and Senécal [2].

With importance sampling we draw words according to a pro-
posal distribution. In our case we assign each word a probabil-
ity proportional to its empirical frequency in the train set, and de-
note this proposal distribution by P (i|S). Consequently, words are
sampled with replacement from P (i|S) into a list J . Thus, the
expensive-to-compute P (i|s) probabilities are approximated with
the weighting scheme

w(i|s) =
exp(rsi)/P (i|S)∑
j∈J exp(rsj)/P (j|S)

(5)

Consequently, the approximated gradient ascent step given a train-

ing sequence s will be

∆θ = η

(
∂rsis
∂θ
−
∑
j∈J

w(j|s)∂rsj
∂θ

)
(6)

As mentioned in [2], it is desirable that the size of set J grows as
the training process proceeds, because at later training phases more
delicate parameter adjustments are needed. We employ a simple
rule for controlling the sample size (|J |) based on the fitness of
current estimate. Given a training sequence s, we keep sampling
words into J until the following condition is satisfied:∑

j∈J

P (j|s) > P (is|s)⇔
∑
j∈J

exp(rsj) > exp(rsis) (7)

The adaptive sampling automatically lets the sample size grow when
parameters are nearing final values and the correct word is getting
a relatively high probability. We impose a minimal size of 50 on
the sample size. For efficiency we also limit the maximal sample
size to 1500.

We now provide a few finer details on the stochastic gradient
ascent algorithm. We cycle through random permutations of the
training examples (pivot words) in order to achieve convergence.
In our implementation we ran the process for 5 sweeps over the
training data, though not much improvement was observed beyond
3 sweeps. Weight decay was not found to be helpful. When train-
ing on the t-th example, we set the learning rate to ηt = η0

t+τ
. This

learning rate schedule satisfies the Robbins-Monro conditions [18],∑
ηt = ∞ and

∑
η2t < ∞. Specifically, in our implementation

we set η0 = 106 and τ = 107. All model parameters were ran-
domly initialized by drawing each fromN (0, 0.01).

3.2 Incorporating similarity constraints
Frequently we have external knowledge relating pairs of words.

For example, WordNet [8] can supply us with numerous pairs of re-
lated words, including synonyms, hypernyms/hyponyms, and me-
ronyms/holonyms. Other sources of such information can be domain-
specific, expert-driven, or Web-based (see Section 2 for additional
examples). We incorporate this knowledge into our approach through
pairwise regularization terms. It should be emphasized that it is
this step that allows CLEAR to incorporate world knowledge. This
way, we no longer represent words in isolation, but rather induce a
representation where related words are located close to one another.

Specifically, let us denote by P the set of word pairs known to be
related. We encourage closeness between such pairs by enhancing
our optimization goal (3) to be

L(S; Θ)
def
=
∑
s∈S

logP (is|s,Θ)− λ
∑

(i1,i2)∈P

‖qi1 − qi2‖
2 (8)

We used the value 0.01 for the constant λ, which controls the
extent of pulling known related words towards each other. We re-
port the results of experimenting with other possible values of this
parameter in Section 6.2.

Note that we only use the fact that particular word pairs are re-
lated, but do not use the actual degree of their relatedness. In prac-
tice, automatic acquisition of related word pairs is fairly easy from
electronic dictionaries, thesauri, or world knowledge repositories
such as Wikipedia. Consider, for example, the list of mathematical
functions in Wikipedia (http://en.wikipedia.org/wiki/
List_of_mathematical_functions). Pairing all the en-
tries in this list can easily create many pairs of related concepts, yet
requiring each such pair to be accompanied with a human judgment
of relatedness would adversely affect large-scale data acquisition.

1408

Downloaded from www.VTUplanet.com

In our future work, we plan to experiment with annotating con-
straints with automatic assessment of relatedness.

Prior work on semantic relatedness represented individual words
in isolation, effectively disregarding known affinities among the
words in the language. Thus, we view the easiness of incorpo-
rating such information as a core component of our method, which
augments statistical processing with human world knowledge in a
principled way.

3.3 Deriving word relatedness
The latent factors yield a compact representation of the words

that allows their direct comparison. Given two words i and j, we
estimate their relatedness by comparing their respective factor vec-
tors qi and qj . In this work, the word-word relatedness is defined
by the cosine function:

relij =
qTi qj
‖qi‖‖qj‖

(9)

4. DATA CREATION AND PROCESSING
In this section we discuss the data sources used in this work, in-

cluding the corpora used for model training, word relatedness con-
straints, and test datasets. The next section motivates the choice of
evaluation metric and the baselines we used. Then, we report the
experimental results in Section 6.

4.1 Text corpora
As explained in Section 3, our method learns word relatedness

from text corpora. In this work, we used three text corpora from
very different domains. With the intent of modeling the word re-
latedness judgments of a layman, we refrained from using more
formal sources such as Reuters’ RCV1 or Wikipedia2, but focused
on corpora that reflect informal language use:
• Yahoo! Answers: This dataset is available through the Yahoo!

Webscope program3. The dataset contains questions and answers
posted to the Yahoo! Answers service prior to October 2007. The
corpus contains a wide spectrum of questions, such as factual, ad-
vice seeking, and social, on topics ranging from Arts & Entertain-
ment to Sports, Travel, Health, or Politics. We used the first half
of the corpus comprising of 2,215,396 questions. For the purpose
of this work, the concatenation of all the text related to a single
question, namely, the question title, body, and the best answer, was
considered as a single document.
• UKWaC [1] is a corpus built by crawling of the .uk Web do-

main. It contains more than a billion words, and is considered one
of the largest Web resources for British English. It is part-of-speech
tagged and lemmatized. We used the first file of the UKWaC corpus
distribution version 1.0, which contains 110,165 documents.
• Subtitles: We extracted English subtitles for 9,950 random

movies and television series from the OpenSubtitle API4.

4.2 Processing
Each corpus was separately processed using the following pre-

processing steps:
1. Parsing, tokenization and stopword removal.
2. Lemmatization of tokens, which amounts to reducing each

token to its morphological stem. For example, this step identifies
2Recent research shows that Wikipedia—despite being collabora-
tively authored by numerous contributors around the world—can
hardly be viewed as easily readable text [24].
3http://webscope.sandbox.yahoo.com/
4http://trac.opensubtitles.org/projects/
opensubtitles

Corpus # Sentences Dictionary size #Tokens
Y! Answers 4,778,784 41,102 41,170,886
UKWaC 3,499,361 42,717 34,382,199
Subtitles 695,482 40,000 4,927,282

Table 1: Number of sentences, dictionary size and total number
of word tokens comprising the final corpora

as equivalent different tense forms of the same verb (e.g., ‘climbed’
and ‘climb’), including irregular verbs (e.g., ‘go’ and ‘went’). For
this task we used the LemmaGen tool5.

3. Removal of rare tokens: tokens occurring fewer than 30 times
were removed from the dictionary as well as from the text. For the
Subtitles dataset, which is considerably smaller, we reduced the
dictionary size by simply taking the 40,000 most frequent tokens.

4. The corpus was split into sentences, and sentences with fewer
than 4 tokens were discarded. We used the SharpNLP Project6 for
sentence boundary detection.

Table 1 details the characteristics of the processed datasets. Ad-
ditionally, to give the reader a glimpse into the different corpora we
used, Figure 1 pictorially depicts the most frequent tokens in each
corpus using word clouds.

4.3 WordNet synonyms as similarity constraints
As explained in Section 3.2, our method can be constrained with

a collection of word pairs, which are known to be related. In Sec-
tion 2 we discussed a variety of suitable resources that can provide
lists of related word pairs. In this work, we used the WordNet elec-
tronic dictionary [8], and the constraints were based on the syn-
onymy relation.

The basic unit of information in WordNet is a synset, which is a
set of synonyms that share the same word sense. For each word in
our datasets, we queried WordNet for synonyms. The most com-
mon synset was picked if the word was ambiguous. Overall, 10,148
tokens were found to be related through the synonymy relations.
These provided a total of 21,929 synonym pairs, which were used
by method as relatedness constraints.

4.4 Evaluation datasets
The standard practice of evaluating word relatedness models is

to compute the correlation between their predictions and human
judgments [5]. In this study, we used three evaluation datasets.

The WordSimilarity-353 (WS-353) is the standard reference dataset
in the field, which contains 353 word pairs. Each word pair was
judged by 13–16 human annotators. This dataset, which was so
far the largest publicly available collection of this kind, was exten-
sively used for word relatedness evaluation [29, 11, 28, 27, 17].

In addition, we used the dataset constructed by Radinsky et al.
[17], comprising of 287 word pairs. In this dataset, word related-
ness was evaluated by Amazon’s Mechanical Turk workers, with
an average of 23 worker ratings for each word pair. We call this
dataset MTURK-287.

To enhance the statistical strength of our findings, we also con-
structed a third, larger dataset, which we make publicly available
at http://www2.mta.ac.il/~gideon/datasets/. We
discuss the process of its construction in the next section.

4.5 Constructing a new evaluation dataset
Word pairs were constructed to get a comprehensive sampling

of both related and unrelated words, and we specifically aimed at
5http://lemmatise.ijs.si/
6http://sharpnlp.codeplex.com/

1409

Downloaded from www.VTUplanet.com

(a) (b) (c)

Figure 1: Word clouds depicting most frequent tokens in (a) Yahoo! Answers dataset; (b) UKWaC dataset; (c) Subtitles dataset.
Displayed token size is proportional to token frequency. Pictures produced by wordle.net.

various types of relatedness. To this end we considered WordNet
[8] as a graph linking nouns. For two nouns i and j, the following
relations (graph edges) are possible:
• i and j are synonyms (synonymy relation).
• i is a part of j (meronymy relation), for example ‘leg’ and

‘table’.
• i is a type of j (holonymy relation), for example ‘table’ and

‘furniture’.

Construction of word pairs.
From this graph we uniformly sampled noun pairs with (undi-

rected) graph distances between 1 and 4. In order to ensure quality
of collected human evaluations, we eliminated rare words. To this
end, we used the Yahoo! Web search engine to count the number
of search results when a word is used as a query. We discarded all
pairs containing a word with fewer than 40 million search results.

Human estimation of word relatedness.
Word relatedness was evaluated by Amazon’s Mechanical Turk

workers, with an average of 20 ratings for each word pair, where
each judgment task consisted of a batch of 50 word pairs. Rat-
ings were collected on a 1–5 scale, where 5 stands for “highly
related” and 1 stands for “not related”. In order to discard poor-
quality work, each batch contained 10 trap word pairs with known
extreme relatedness values (WordNet synonyms or extremely unre-
lated words as indicated by WS-353), serving as binary indicators.
A batch that failed on more than one of the binary indicators was
discarded. This guarantees an over 98% probability for detecting
random workers (e.g., bots). The relatedness value of each word-
pair was taken as the mean score given by the workers. This dataset
has 771 word-pairs, and is accordingly named MTURK-771.

Figure 2 depicts the word-relatedness scores, sorted by their mean
value. The error bars represent a one standard deviation confi-
dence interval of each value. The horizontal axis represents the
rank of each word-pair when sorted by relatedness in ascending or-
der, such that the least related word-pair is ranked 1 and the most
related word-pair is ranked 771. Importantly, our dataset includes
the full range of word relatedness, with a clear signal, demonstrated
by the relatively small error bars. In particular we observe that
word-pairs which are with extremal value of relatedness have sig-
nificantly lower variance in human judgements, as evident from the
shorter error bars on both extremes of the relatedness range.

Consistency assessment.
To verify the agreement between raters, following Snow et al. [21],

we randomly split the raters into two groups, each including 10 Me-
chanical Turk workers. We then averaged the numeric judgements
for each word pair among the raters in each of the two sets, thus

Figure 2: Word-pair relatedness (with error bars), sorted by
value

yielding a (771 element long) vector of average judgments for each
set. Finally, we computed the correlation between the vectors of
the two sets. We repeated this process 1000 times, and over these
1000 random splits the mean correlation between the two sets of
raters was 0.8957, with extremely small variance, attesting to the
quality of the collected data.

5. EVALUATION SETUP
We now discuss the evaluation metric we employed, as well as

the procedure for assessing the significance of the results observed.
Following prior literature [11, 17], we compute Spearman’s rank-

order correlation coefficient between the algorithm’s predictions
and the average human judgments on a list of word pairs. Being
non-parametric, Spearman’s correlation coefficient is considered to
be much more robust than Pearson’s linear correlation. We report
Spearman’s correlation separately for each test dataset, because the
datasets have been collected by different methods.

5.1 Significance testing
We now discuss our methodology for testing the significance of

the obtained results. Given two algorithms for computing word
relatedness, let r1 and r2 be the values of their (Spearman rank)
correlation with human judgments, obtained on a set of n word
pairs. Let zi be their Fisher transformed values [9]:

zi =

√
n− 3

1.06

1

2
ln

1 + ri
1− ri

(10)

1410

Downloaded from www.VTUplanet.com

The zi scores approximately follow a standard normal distribu-
tion, and therefore it is straightforward to determine whether the
difference z1 − z2 is significantly different from zero. Specifically,
to show the superiority of CLEAR we use a one-sided t-test.

5.2 Baseline methods
In what follows, we compare CLEAR to the two methods that

showed best reported results to date, namely, ESA [11] and TSA
[17] (see Section 2). We also compare CLEAR to two additional
strong baselines, namely, distributional similarity and LDA, which
share certain aspects with CLEAR. These two baselines are de-
scribed below.

Distributional similarity (DS).
The notion of distributional similarity of words was formulated

by Lee [15] and Dagan et al. [6].
Let n be the number of unique words in the dataset. For each

word we maintain an n-dimensional vector, which reflects the fre-
quency with which it co-occurs with every other word in the dataset.
We consider two words to co-occur if they are collocated within
the same sentence, no more than K tokens apart. We used K = 3,
which yielded the best results. Word frequency was normalized by
dividing it by the overall word count (standard IDF normalization
was also tried, but yielded inferior results). Formally, let nij be the
number of co-occurrences of words i and j, and let nj be the over-
all frequency of word j. Then, word i is represented via vi ∈ Rn,
where vij = nij/nj . Finally, the distributional similarity (DS)
between words i and j is defined by cos(i, j).

Distributional similarity shares with CLEAR the principle of defin-
ing the word semantics using the words that frequently co-occur
with it. However, unlike CLEAR, it is not based on an optimization
process, and does not use a latent factor representation for com-
pactly capturing the words semantics.

Latent Dirichlet allocation (LDA).
LDA [3] is a generative model that explains word occurrences in

documents through latent topics underlying the document and the
word distributions. We used the open source LDA implementation
called Mallet [16]. We report results using 200 topics (best per-
forming setting). For each word i, we compute its probability dis-
tribution over topics, denoted by pi. Semantic relatedness between
words i and j is then computed as the Jensen-Shannon divergence
between their respective probability distributions.

CLEAR shares resemblance with LDA in terms of modeling
the words through latent factor vectors. However, CLEAR dif-
fers in modeling short word sequences, or sentences, whereas LDA
requires longer documents for good performance. Furthermore,
CLEAR incorporates external-supplied similarity relations, which
are given as constraints.

5.3 New evaluation scenario: finding word syn-
onyms

We also used a new evaluation scenario, where we employed
CLEAR to identify word synonyms (which are obviously related in
meaning), and used WordNet to validate our predictions. When do-
ing so, we did not use WordNet synonyms as learning constraints
(cf. Section 4.3). Note that WordNet synonyms comprise a larger
dataset than any of the three word relatedness datasets (cf. Sec-
tions 4.4 and 4.5); however, this particular dataset lacks negative or
weak positive examples.

6. EXPERIMENTAL RESULTS
We trained CLEAR on the three text corpora described in Sec-

tion 4.1, and a combination thereof. The method was implemented
in C#, and was run on a machine with Intel Dual Core E840 3GHz
processor and 2GB RAM. Typical training time for 5 sweeps over
the Yahoo! Answers corpus was 5 hours. To give the reader a flavor
of the results, we show in Table 2 examples of related words found
by our method.

In what follows, we first report the performance of our method
on the three datasets described in Sections 4.4 and 4.5, and then on
the task of identifying word synonyms described in Section 5.3.

6.1 Quantifying word relatedness with CLEAR
We compare the performance of CLEAR with that of prior meth-

ods (discussed in Sections 2 and 5.2). The choices of parameter
values used for the experiments in this subsection, as well as the
results of experimentation with other possible parameter settings,
are discussed in Section 6.2.

Several variants of CLEAR are reported, which differ by the
training corpus. First, we trained CLEAR separately on Y!Answers,
UKWaC, and Subtitles. As can be seen in Table 3, models trained
on Y!Answers deliver the best performance on all datasets, fol-
lowed closely by UKWaC-trained models. Training on Subtitles
yields significantly poorer results, which might be explained by the
significantly smaller size of this corpus.

Clearly, there is no need to limit the training to only one of
the corpora. Therefore, we also present the results obtained with
the two more informative training corpora (Yahoo! Answers and
UKWaC) combined, as well as the results due to the combination
of all three corpora. When combining these corpora, we let the
training process run on each, and then employ the average of the
cosine similarities computed on each corpus separately. As we can
see in Table 3, the performance of CLEAR is obviously improving
when it learns from diverse corpora. Interestingly, even the smaller
Subtitles corpus, which delivered poorer results on its own, adds a
non-negligible value when integrated with the others. This proba-
bly reflects on its unique nature of representing spoken, rather than
written, language.

In the remainder of this subsection (6.1), we report CLEAR re-
sults with training on all the three training corpora.

Method WS-353 MTURK-287 MTURK-771
CLEAR on Y!Answers 0.771 0.697 0.690
CLEAR on UKWaC 0.748 0.653 0.673
CLEAR on Subtitles 0.635 0.636 0.610
CLEAR on Y!Answers+ 0.795 0.712 0.716
UKWaC
CLEAR on Y!Answers+ 0.810 0.737 0.727
UKWaC+Subtitles

Table 3: Performance of CLEAR on different training corpora
and their combinations.

Table 4 compares CLEAR with previously published methods.
The results of prior methods (ESA [11] and TSA [17]) were achieved
using their original code through their respective authors. As we
can readily see, CLEAR outperforms these state of the art methods
with a notable margin, especially on the two MTURK test sets. In
almost all the cases, the difference between CLEAR and each of
the other methods is statistically significant. Table 4 shows the sta-
tistical significance of the difference between the performance of
each method and that of CLEAR; we use the symbols § and † to
represent significance levels of α = 0.0001 and α = 0.01, respec-
tively.

1411

Downloaded from www.VTUplanet.com

coke mile religion sheep university webcam
pepsi (0.813) mi (0.826) relgion (0.779) ox (0.648) suny (0.809) cam (0.636)
cola (0.567) kilometer (0.690) abrahamic (0.771) ewe (0.620) nyu (0.806) logitech (0.581)

sprite (0.491) nautical (0.607) spirituality (0.717) goat (0.614) devry (0.804) messenge (0.519)
coca (0.477) kilometre (0.589) religon (0.715) herd (0.612) polytechnic (0.801) messenger (0.484)

pepsico (0.471) furlong (0.563) secularism (0.674) cattle (0.596) univeristy (0.795) camera (0.474)

Table 2: Word relatedness examples: top-5 lists of most related for six sample words, obtained by running our method on the Yahoo!
Answers corpus; cosine similarity values are reported in parentheses. (Spelling errors are in original data.)

We remark that unlike ESA and TSA, CLEAR follows more gen-
eral principles, as it does not require elaborate knowledge resource
or text corpora spanning long periods of time. In fact, CLEAR can
be trained on virtually any text corpus. Hence, we would expect the
CLEAR advantage to grow even further when it is trained on more
diverse corpora.

We further analyze the performance of CLEAR by comparing it
to two other methods, which isolate two of its founding principles.
First, we compare it to distributional similarity (DS), which models
words based on their contextual neighborhood. The best results for
this method were obtained when trained on the three corpora com-
bined. Second, we compare CLEAR to LDA, which demonstrates
the importance of mapping words to a latent factor space, thus cap-
turing their semantic relations. Again, combining the three training
text corpora improved LDA accuracy. We observe that both DS and
LDA cannot match the performance of CLEAR. Yet, LDA delivers
results much stronger than DS, indicating the greater importance of
latent factor modeling.

Method WS-353 MTURK-287 MTURK-771
CLEAR 0.810 0.737 0.727
TSA 0.8 0.61§ 0.606§

ESA 0.75§ 0.607§ 0.603§

LDA 0.736§ 0.677† 0.619§

DS 0.61§ 0.625§ 0.578§

Table 4: Comparing the performance of CLEAR with compet-
ing methods. The symbols § and † represent statistically signif-
icant differences (vs. CLEAR) at the levels of 0.0001 and 0.01,
respectively.

We also evaluated whether other methods can add value on top
of CLEAR. To this end, we formed linear combinations of CLEAR
values with those produced by other methods. The linear combi-
nation coefficients were learned by linear regression on the human
judgments. When evaluating on each one of the datasets, we used
the other two datasets for training the regressor.

The results are reported in Table 5. We can see that the accuracy
is further improved by combining CLEAR with other methods, im-
plying that CLEAR learns signals that are complementary to the
other methods. We also tried to combine the previous methods,
without involving CLEAR (the bottom two rows of Table 5). We
found that the linear combination of ESA and TSA could not im-
prove performance. This is possible because linear regression is
suboptimal when optimizing Spearman’s correlation. We also tried
a simple average, but it did not improve the performance either.
Even though some smarter combinations of the two methods may
be successful, we suspect that the signals captured by these two
methods are not sufficiently different to justify their combination.
Indeed, TSA extends the ESA model with temporal analysis, there-
fore, the results of the two methods are correlated. As for DS and
LDA, their linear combination does improve the performance; this

is not surprising given their very different nature. However, their
combination is still inferior to the standalone CLEAR.

Method WS-353 MTURK-287 MTURK-771
CLEAR + ESA 0.826 0.746 0.732
CLEAR + TSA 0.850 0.751 0.742
CLEAR + DS 0.809 0.738 0.729
CLEAR + LDA 0.818 0.749 0.731
ESA+TSA 0.772 0.601 0.604
DS + LDA 0.757 0.694 0.638

Table 5: Performance of pairs of methods combined

To further compare CLEAR with TSA, we examined the ranking
of word pairs by their relatedness according to each algorithm. To
this end, for each dataset we ranked all the words by their related-
ness according to CLEAR, TSA, and humans. We denote the resul-
tant rankings asRCLEAR,RTSA, andRhuman, respectively. We
foundRCLEAR to be consistently closer toRhuman thanRTSA.

Indeed, on WS-353, the average improvement in rank fromRTSA
toRCLEAR was 5.8 positions (median 3.5). For MTURK-287, the
average improvement was 10.2 positions (median 3). Finally, for
MTURK-771, the average improvement was 29.8 positions (me-
dian 19).

6.2 Parameter setting study
We now explore the dependency of CLEAR performance on the

following parameters:
(a) The parameter K controls the context size, i.e., the maxi-

mum distance between the pivot word and other words in its con-
text (Section 3).

(b) The parameter λ controls the extent of using the similarity
constraints (Section 3.2).

(c) The parameter ` represents the dimensionality of the latent
factor space (Section 3).

The results reported here were obtained by training on the Ya-
hoo! Answers corpus (the results using the other two training cor-
pora exhibited very similar patterns).

Table 6 analyzes the effect of different context sizes. We see a
mild variation of performance as K changes, with the best results
around K = 6. Hence we set K = 6 throughout the other experi-
ments. We also observe that the results on the WS-353 test set are
consistently higher than those on the two MTURK datasets, which
remains true through all our evaluations.

Table 7 studies the effect of the similarity constraints (see Sec-
tion 3.2). For the WS-353 and MTURK-771 datasets, optimal per-
formances is obtained when similarity constraints are taken with
the weight of λ = 0.01; however, further emphasis of these con-
straints with λ = 0.1 becomes counter-productive. As for the
smaller MTURK-287 test set, even λ = 0.01 was too large with
a negative impact on performance. Therefore, we set λ = 0.01 for
all our reported results.

Finally, we report in Table 8 the effect of the dimensionality of

1412

Downloaded from www.VTUplanet.com

Context size WS-353 MTURK-287 MTURK-771
K = 2 0.744 0.664 0.682
K = 4 0.756 0.670 0.700
K = 6 0.767 0.687 0.695
K = 7 0.761 0.686 0.688
K = 8 0.747 0.678 0.686

Table 6: Impact of context size: CLEAR performance for vari-
ous values of K (measured by Spearman correlation; higher is
better). Here λ = 0.01 and ` = 100.

λ WS-353 MTURK-287 MTURK-771
0 0.744 0.692 0.674
0.01 0.767 0.687 0.695
0.1 0.742 0.684 0.666

Table 7: Impact of similarity constraints: CLEAR perfor-
mance for various values of λ. Here K = 6 and ` = 100.

the latent factor space. We see steady accuracy gains until reaching
` = 100 − 150, demonstrating the added expressive power of the
increased dimensionality. However, as dimensionality further in-
creases towards 500, the sparser latent space does not translate into
a measurably better performance. Therefore, we set ` = 150 for
the remainder of the experiments.

Latent dim. WS-353 MTURK-287 MTURK-771
` = 20 0.681 0.662 0.610
` = 50 0.722 0.675 0.670
` = 100 0.767 0.687 0.695
` = 150 0.771 0.697 0.690
` = 200 0.759 0.668 0.680
` = 500 0.758 0.665 0.700

Table 8: Impact of dimensionality: CLEAR performance for
various values of `. Here λ = 0.01 and K = 6.

6.3 Identifying word synonyms
Test sets based on human judgments are expensive to collect and

hence small in size. Therefore, we also evaluated the performance
of CLEAR on an additional task, namely, identifying word syn-
onyms. We used WordNet as a gold-standard repository of syn-
onyms. In this experiment, we used a version of our algorithm
trained without similarity constraints (i.e., we set λ = 0), so that no
explicit knowledge on the synonyms leaks into the training phase
(cf. Section 4.3).

First, we computed similarities between 21,929 WordNet syn-
onym pairs, henceforth called SynPairs. Second, for each word
in SynPairs, we formed 100 test instances by pairing it with 100
random words; we refer to this collection as RndPairs. Naturally,
one would expect the similarities computed on SynPairs (i.e., be-
tween true synonyms) to be significantly higher than those com-
puted on RndPairs (i.e., random pairs of words). We repeated the
same experiment with LDA. As explained in Section 5.2, we used
the Jensen-Shannon distance for comparing the LDA word vectors,
which gave there better results than cosine similarity.

Figure 3 shows the performance of CLEAR and LDA on identi-
fying word synonyms. For both methods, the results visibly indi-
cate that the distribution of pairwise similarity values for synonyms
(SynPairs) is very different from that for random word pairs (Rnd-
Pairs). We used the Jensen-Shannon divergence to compute the
distance between the two distributions. For CLEAR, the JS diver-

gence between the two distributions is 0.275, whereas for LDA it
is 0.178. This implies better discriminative power of CLEAR com-
pared to LDA.

Note also that LDA topic vectors tend to be sparse (sparseness
factor of 97.87%), so both SynPairs and RndPairs distributions are
peaking near 1, indicating no overlap between the topic vectors of
the respective words. In fact, we observed that the sparseness of
LDA topic vectors, which is helpful for unsupervised exploratory
analysis, harms its predictive abilities. As many topics are corre-
lated, a sparse representation of words over topics masks important
signals. At CLEAR, the sparseness factor is virtually zero, thus
reducing the issues raised by correlative factors.

−0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

0.06

Cosine Similarity

P
ro

b
a
b
ili

ty

Random Pairs

Synonym Pairs

0 0.2 0.4 0.6 0.8 1
10

−6

10
−4

10
−2

10
0

Jensen–Shannon Distance

P
ro

b
a
b
ili

ty

Random Pairs

Synonym Pairs

CLEAR LDA

Figure 3: The distributions of pairwise similarities (or, dis-
tances) for both WordNet synonyms and for random pairs.

6.4 The effect of the consistency of human judg-
ments

Interestingly, we found a dependency between the accuracy of
CLEAR and the consistency of human judgments. For the MTURK-
771 dataset, we ranked all word pairs by the CLEAR relatedness
and by the human-judged relatedness. Then, for each word pair we
calculated the difference in its ranks according to CLEAR and ac-
cording to humans, denoted as D. We also calculated the variance
between human raters for each word pair, denoted by V .

We found D and V to be significantly correlated, with Pearson’s
coefficient r = 0.18. In other words, when raters tend to disagree
about a particular word pair, we find CLEAR to systematically err
more about the relatedness of these words. This result is highly
significant statistically and cannot be explained by chance, with p-
value p = 1.96 · 10−7.

7. CONCLUDING REMARKS
This paper introduced CLEAR, a method for estimating relat-

edness between natural language words. Prior works represented
the meaning of words in isolation, even though cognitive research
proves humans represent word meanings in context. CLEAR cir-
cumvents this limitation by learning word semantics from actual
contexts in which the word occurs. CLEAR can be trained on any
text corpus, without limiting the nature of the analyzed text, and
hence can learn from virtually all kinds of textual corpora. Indeed,
we have shown that training the method on texts from very different
domains and styles improves its accuracy.

The main principle behind CLEAR is learning to embed words in
a low-dimensional latent space, thus explaining the composition of
short word sequences. Furthermore, CLEAR can leverage existing
knowledge on word relatedness, which is directly encoded using
similarity constraints.

We believe that the following ingredients contribute to the suc-
cess of CLEAR:

1413

Downloaded from www.VTUplanet.com

• Modeling informal language, such as that used in the Yahoo!
Answers and the movie subtitles corpora, was found beneficial to
modeling human judgments of word relatedness.
• An ability to anchor the model with existing lists of related

words boosts the accuracy of the method.
• Analysis of short contexts, rather than full documents or para-

graphs, assists in better identification of related words.
• Embedding the words in a latent semantic space is helpful for

identifying related words, and also for treating rare words correctly
based on models learned for their more frequent relatives.
• A model learned through global optimization captures large

scale signals, and thus shows higher robustness against local arti-
facts.

In a comprehensive set of empirical tests, CLEAR was shown
to outperform prior works, as it achieves the best known results
on a host of highly competitive benchmarks. We also showed that
the signal learned by CLEAR is complementary to that learned by
other state of the art methods. Indeed, combining CLEAR with
TSA yields even better results. Interestingly, we found a notable
correlation between the agreement of human raters and the perfor-
mance of CLEAR—the method shines on word pairs that are un-
ambiguous for humans, while tends to err more on word pairs that
are also difficult for humans to agree on.

In the future work, we plan to augment our method by incorpo-
rating new types of constraints. For instance, in addition to syn-
onyms, we can use other word relations such as hypernyms, hy-
ponyms, meronyms, and holonyms, to name but a few. These rela-
tions imply different degrees of word relatedness, and quantifying
the degree of relatedness in each constraint can further refine our
method.

As an additional contribution of this research, we collected a new
human-judged dataset for evaluating word relatedness algorithms.
We believe this dataset, called MTURK-771, is the largest such
test collection to date. We make it publicly available at http:
//www2.mta.ac.il/~gideon/datasets/.

Acknowledgments
We thank Kira Radinsky for running experiments on the TSA method.
We also thank Greg Druck, Bo Pang, and Sujith Ravi for pointers
to relevant literature.

8. REFERENCES
[1] M. Baroni, S. Bernardini, A. Ferraresi, and E. Zanchetta. The

WaCky wide web: a collection of very large linguistically
processed web-crawled corpora. Language Resources and
Evaluation, 2009.

[2] Y. Bengio and J.-S. Senécal. Quick training of probabilistic
neural nets by sampling. In Proc. 9th International Workshop
on Artificial Intelligence and Statistics (AISTATS’03), 2003.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[4] L. Bottou. Stochastic learning. In Advanced Lectures on
Machine Learning, LNAI 3176, pages 146–168. Springer
Verlag, 2004.

[5] A. Budanitsky and G. Hirst. Evaluating wordnet-based
measures of lexical semantic relatedness. Computational
Linguistics, 32(1):13–47, 2006.

[6] I. Dagan, L. Lee, and F. C. N. Pereira. Similarity-based
models of word cooccurrence probabilities. Machine
Learning, 34(1–3):43–69, 1999.

[7] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman. Indexing by latent semantic analysis. JASIS,
41(6):391–407, 1990.

[8] C. Fellbaum, editor. WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, MA, 1998.

[9] E. Fieller, H. Hartley, and E. Pearson. Tests for rank
correlation coefficients. Biometrika, 44:470–Ű481, 1957.

[10] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan,
G. Wolfman, and E. Ruppin. Placing search in context: The
concept revisited. ACM TOIS, 20(1):116–131, January 2002.

[11] E. Gabrilovich and S. Markovitch. Wikipedia-based semantic
interpretation for natural language processing. Journal of
Artificial Intelligence Research, 34:443–498, 2009.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer Series in Statistics. Springer
New York Inc., New York, NY, USA, 2009.

[13] R. Hoffmann, C. Zhang, and D. S. Weld. Learning 5000
relational extractors. In ACL, pages 286–295, 2010.

[14] C. Kunze. Computerlinguistik und sprachtechnologie. In
Lexikalisch-semantische Wortnetze, pages 423–431.
Spektrum Akademischer Verlag, 2004.

[15] L. Lee. Measures of distributional similarity. In Proceedings
of the 37th Annual Meeting of the ACL, pages 25–32, 1999.

[16] A. K. McCallum. Mallet: A machine learning for language
toolkit. http://mallet.cs.umass.edu, 2002.

[17] K. Radinsky, E. Agichtein, E. Gabrilovich, and
S. Markovitch. A word at a time: Computing word
relatedness using temporal semantic analysis. In WWW,
2011.

[18] H. Robbins and S. Monro. A stochastic approximation
method. Annals of Math. Statistics, 22:400–407, 1951.

[19] P. Roget. Roget’s Thesaurus of English Words and Phrases.
Longman Group Ltd., 1852.

[20] G. Salton, editor. The SMART Retrieval System: Experiments
in Automatic Document Processing. Prentice Hall, 1971.

[21] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and
fast — but is it good? Evaluating non-expert annotations for
natural language tasks. In EMNLP, 2008.

[22] J. C. Spall. Introduction to Stochastic Search and
Optimization. John Wiley & Sons, Inc., 2003.

[23] Q. Sun, R. Li, D. Luo, and X. Wu. Text segmentation with
LDA-based fisher kernel. In ACL-HLT Short Papers, pages
269–272, 2008.

[24] C. Tan, E. Gabrilovich, and B. Pang. To each his own:
Personalized content selection based on text
comprehensibility. In WSDM, 2012.

[25] A. Tversky. Features of similarity. Psychological Review,
84(4):327–352, 1977.

[26] S. K. M. Wong, W. Ziarko, and P. C. N. Wong. Generalized
vector spaces model in information retrieval. In SIGIR, 1985.

[27] E. Yeh, D. Ramage, C. D. Manning, E. Agirre, and A. Soroa.
Wikiwalk: Random walks on wikipedia for semantic
relatedness. In 2009 TextGraphs-4 Workshop, 2009.

[28] T. Zesch and I. Gurevych. Wisdom of crowds versus wisdom
of linguists? measuring the semantic relatedness of words.
Natural Language Engineering, 16(1):25–59, 2010.

[29] T. Zesch, C. Mueller, and I. Gurevych. Using Wiktionary for
computing semantic relatedness. In AAAI, pages 861–866,
2008.

1414

Downloaded from www.VTUplanet.com

