10ELE15/25

First/Second Semester B.E. Degree Examination, December 2011 **Basic Electrical Engineering**

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.

3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A

Choose your answers for the following: 1

(04 Marks)

- Two resistors R_1 and R_2 give combined resistance of 4.5 Ω when in series and 1 Ω when in parallel, the resistances are
 - A) 2Ω and 2.5Ω

B) 1 Ω and 3.5 Ω

C) 1.5Ω and 3Ω

D) 4 Ω and 0.5 Ω

- Kirchoff's voltage law applies to circuit with ii)
 - A) linear elements only
 - B) non linear elements only
 - C) linear, non-linear, active and passive elements
 - D) linear, non-linear, active, passive, tine varying as well as time invariant elements.
- Energy consumed by a heater of rating 1000W by operating it for a period of 2 hrs will iii) be
 - A) 1 kWh

B) 2 kWh

C) 2.5 kWh

D) 4 kWh

- A practical voltage source is represented by
 - A) a resistance in parallel with an ideal voltage source
 - B) a resistance in series with an ideal current source
 - C) a resistance in series with an ideal voltage source
 - D) None of the above.
- b. For the circuit shown in Fig.Q.1(b), find the current supplied by each battery and power, dissipated in 1 Ω resistor. (06 Marks)

Fig.Q.1(b)

c. Explain the Fleming's rules and their use in electromagnetism.

(06 Marks)

d. A solenoid 1m in length and 10cm in diameter has 5000 turns. Calculate the inductance and energy stored in the magnetic field when a current of 2A flows in the solenoid. (04 Marks)

htification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice ining blank pages. answers, compulsorily draw diagonal cross lines on the miponan rose: 1. On completing you Any revealing of

2	a.	Choose your answers for the following: (04 Marks)					
		i) Definition of root-mean square value is					
		A) Square root of area under the square curve over half cycle to length of base over					
		half cycle					
		B) Average value by $\sqrt{2}$					
		C) Ratio of maximum value to average value					
		D) None of the above.					
		ii) The equation of an alternating current is i = 42.42 Sin 628t. The effective value will be A) 27A B) 30A C) 2.7A D) 3A					
		iii) The maximum and minimum values of power factor can be					
		A) +1 and -1 B) +1 and -5 C) +1 and 0 D) +5 and -5					
		iv) By adding more resistance to an RC circuit					
		A) the real power increases B) the real power decreases					
	_	C) the power factor decreases D) the phase difference increases					
	b.						
	•	(06 Marks					
	C.	For the circuit shown in Fig.Q.2(c), find the values of R and C so that $v_b = 3 v_a$ and v_b and v_a are in quadrature. (96 Marks)					
		mm ti					
		6-1 0.0256H R C					
		VVV					
		K Va ->					
		V= 240V, 50Hz					
		•					
		Fig.Q.2(c)					
	d. Two impedances $z_1 = (10 + j15)\Omega$ and $z_2 = (5 - j8)\Omega$ are connected in parallel						
		voltage source. If the total current drawn is 10A, calculate currents in z_1 and z_2 , and power					
		factor of the circuit. (04 Marks)					
4							
3	a.	Choose your answers for the following: (04 Marks)					
		i) The sum of the two-wattmeters readings in a 3 phase balanced system is					
		A) $V_{ph} I_{ph} Cos \phi$ B) $3 V_L I_L Cos \phi$ C) $\sqrt{3} V_L I_L Cos \phi$ D) None of the					
		ii) The rated voltage of a 3 phase system is given as					
		ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage					
		ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage					
		ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage iii) A 3 phase star connected load consumes P watts of power from a 400V supply. If the					
		ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage iii) A 3 phase star connected load consumes P watts of power from a 400V supply. If the same balanced load is connected in delta across that same supply, then power					
		ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage iii) A 3 phase star connected load consumes P watts of power from a 400V supply. If the					
		ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage iii) A 3 phase star connected load consumes P watts of power from a 400V supply. If the same balanced load is connected in delta across that same supply, then power consumption is					
		ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage iii) A 3 phase star connected load consumes P watts of power from a 400V supply. If the same balanced load is connected in delta across that same supply, then power					
		 ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage iii) A 3 phase star connected load consumes P watts of power from a 400V supply. If the same balanced load is connected in delta across that same supply, then power consumption is A) 3 P B) √3 P C) P/3 D) P iv) The phase sequence RBY denotes that 					
		 ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage A 3 phase star connected load consumes P watts of power from a 400V supply. If the same balanced load is connected in delta across that same supply, then power consumption is A) 3 P B) √3 P C) P/3 D) P iv) The phase sequence RBY denotes that A) emf of phase-B lags that of phase-R by 120° 					
		 ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage iii) A 3 phase star connected load consumes P watts of power from a 400V supply. If the same balanced load is connected in delta across that same supply, then power consumption is A) 3 P B) √3 P C) P/3 D) P iv) The phase sequence RBY denotes that A) emf of phase-B lags that of phase-R by 120° B) emf of phase-B leads that of phase-R by 120° 					
		 ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage iii) A 3 phase star connected load consumes P watts of power from a 400V supply. If the same balanced load is connected in delta across that same supply, then power consumption is A) 3 P B) √3 P C) P/3 D) P iv) The phase sequence RBY denotes that A) emf of phase-B lags that of phase-R by 120° B) emf of phase-B leads that of phase-R by 120° C) Both (A) and (B) are correct 					
		 ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage iii) A 3 phase star connected load consumes P watts of power from a 400V supply. If the same balanced load is connected in delta across that same supply, then power consumption is A) 3 P B) √3 P C) P/3 D) P iv) The phase sequence RBY denotes that A) emf of phase-B lags that of phase-R by 120° B) emf of phase-B leads that of phase-R by 120° C) Both (A) and (B) are correct D) None of these. 					
	b.	 ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage A 3 phase star connected load consumes P watts of power from a 400V supply. If the same balanced load is connected in delta across that same supply, then power consumption is A) 3 P B) √3 P C) P/3 D) P iv) The phase sequence RBY denotes that A) emf of phase-B lags that of phase-R by 120° B) emf of phase-B leads that of phase-R by 120° C) Both (A) and (B) are correct D) None of these. Derive the relationship between line and phase values of balanced star and delta connected 					
		 ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage iii) A 3 phase star connected load consumes P watts of power from a 400V supply. If the same balanced load is connected in delta across that same supply, then power consumption is A) 3 P B) √3 P C) P/3 D) P iv) The phase sequence RBY denotes that A) emf of phase-B lags that of phase-R by 120° B) emf of phase-B leads that of phase-R by 120° C) Both (A) and (B) are correct D) None of these. Derive the relationship between line and phase values of balanced star and delta connected load with balanced supply. (08 Marks) 					
		 ii) The rated voltage of a 3 phase system is given as					
		 ii) The rated voltage of a 3 phase system is given as A) rms phase voltage B) peak phase voltage C) rms line-to-line voltage D) peak line-to-line voltage A 3 phase star connected load consumes P watts of power from a 400V supply. If the same balanced load is connected in delta across that same supply, then power consumption is A) 3 P B) √3 P C) P/3 D) P iv) The phase sequence RBY denotes that A) emf of phase-B lags that of phase-R by 120° B) emf of phase-B leads that of phase-R by 120° C) Both (A) and (B) are correct D) None of these. Derive the relationship between line and phase values of balanced star and delta connected load with balanced supply. (08 Marks) A 3-phase delta connected load consumes a power of 60 kW taking a lagging current of 200A at a line voltage of 400V, 50Hz. Find the parameters of each phase. What would be 					
		 ii) The rated voltage of a 3 phase system is given as					

4	a.	Choose your answers for the following:		(04 Marks)	
		i) The moving coil in a dynamometer watt	meter is connected		
		A) in series with the fixed coil	B) across the supply		
		C) in series with the load	D) across the load		
		ii) The voltage coil of a single phase energy meter			
		A) is highly resistive			
		B) is highly inductive			
		C) is highly capacitive			
		D) has a phase angle equal to load p.f.	angle.		
•		iii) The meter constant of energy meter is gi			
		A) rev./kW B) rev./watt	C) rev./kWh	D) rev./kVA	
		iv) The primary function of a fuse is to	-,	,	
		A) protect the appliance	B) open the circuit		
		C) prevent excessive current	D) protect the line		
	b.	Explain the principle of operation of dynamon		(06 Marks)	
	c.	With diagrams, explain the three-way control	· -	(04 Marks)	
	d.	With a neat diagram, explain the plate earthing		(06 Marks)	
	u.	with a neat diagram, explain the plate carting	ş .	(OU Mat Ra)	
		PART - 1	R .		
5		Choose your answers for the following:	· ·	(04 Marks)	
J	a.		enerator ic	(04 ividi k5)	
		i) The function of a commutator in a d.c. g A) to collect current from conductors	B) to change d.c. to a	*	
		C) to conduct the current to brushes	D) to change a.c. to a		
		•	. —	1.0.	
		ii) The current drawn by armature of a d.c.		D) #E V/D	
		A) V/Ra B) E _b /R _a	C) $(V-E_b)/R_a$	$D) (E_b-V)/R_a$	
		iii) The speed of a series motor at no-load is			
		A) zero B) 1500 rpm	C) 3000 rpm	D) infinity	
		iv) The torque of a shunt motor is proportion		d.	
		A) armature current	B) applied voltage		
		C) square of the armature current			
	b.	, , , , , , , , , , , , , , , , , , ,			
	C.	Derive the expression for armature torque deve	(06 Marks)		
	d.	A 100 kW belt driven shunt generator runnin			
,		run as a motor when the belt breaks, then ta	•		
		$R_a = 0.025 \Omega$, $R_{sh} = 60\Omega$, BCD = 1V per brush	, and ARD = 0 .	(06 Marks)	
				ar)	
6	a.	Choose your answers for the following:	,	(04 Marks)	
		i) The magnitude of mutual flux in a transf			
		A) low at low loads and high at high loads	ads		
		B) high at low loads and low at high loads	ads		
		C) same at all loads			
		D) varies at low loads and constant at h	igh loads.		
		ii) Transformer cores are laminated in orde			
		A) Simplify its construction	B) minimize eddy cu	rrent loss	
		C) reduce cost	D) reduce hysteresis		
		iii) The transformation ratio of a transforme	•		
		A) V_1/V_2 B) N_2/N_1	C) I ₂ /I ₁	D) All of these	
		iv) A transformer is working at its maximu	· ·		
		copper-loss will be			
		A) 500 W R) 250 W	C) 300 W	D) 400 W	

		of full-load and unity p.f. Determine the iron n, if the terminal voltage on full-load if 195 V. (08 Marks)		
7	a. Choose your answers for the following:	(04 Marks)		
	i) The rotor of the synchronous generato			
	A) 4 slip rings	B) 3 slip rings		
	C) 2 slip rings	D) No slip rings		
	ii) The frequency of emf generated depen	ds on		
	A) Speed	B) Number of poles		
	C) flux	D) both (A) and (B)		
	iii) The distribution factor is defined as the			
	A) arithmetic sum of coil emf's to pl			
	B) phasor sum of emf per coil to the			
	C) phasor sum of coil emf's to the ar			
	D) phasor sum of coil emf's to the pe	r phase voltage.		
	iv) The salient pole type rotors are			
	A) smaller in axial length	F		
	B) larger in axial length			
	C) smaller in diameter			
L	D) larger in diameter and smaller in a			
	b. What are the advantages of rotating field synchronous generator? (05 Marks)			
	c. List the differences between salient and non-salient type rotors. (04 Marks) d. A 3-phase, 6-pole, y-connected a.c. generator revolves at 1000 rpm. The stator has 90 slots			
u	and 8 conductors per alor. The flux per pole :	r revolves at 1000 rpm. The stator has 90 slots		
	by the machine if the winding factor is 0.96.	s 0.05 Wb. Calculate the generated line voltage		
	by the machine if the winding factor is 0.90.	(07 Marks)		
a.	Choose your answers for the following:	(04 Marks)		
	i) The rotor of a 3 phase induction motor a	always runs at		
	A) Synchronous speed	B) Less than synchronous speed		
	C) More than synchronous speed	D) None of these		
	ii) The frequency of rotor current or emf is			
	A) $f_2 = sf_1$ B) $f_2 = f_1/s$	C) $f_2 = (1 - s)f_1$ D) $f_2 = s/f_1$		
	iii) Slip of an induction motor at standstill	is		
	A) zero B) unity	C) greater than unity D) negative		
	iv) If the rotor terminals of a 3 phase slip r	ing induction motor are not short-circuited and		
	the supply is given to the stator, the mot	or will		
	A) not start	B) start running		
	C) run at high speed	D) run at low speed.		
b.	With diagram, explain the concept of rotating	magnetic field. (06 Marks)		
C.	Why starter is necessary? What is the significant	nce of slip in an induction motor? (04 Marks)		
d.	The frequency of the emf in the stator of 4 p	ole induction motor is 50 Hz, and that in the		
	rotor is 1.5 Hz. What is the slip, and at what sp	peed is the motor is running? (06 Marks)		

8

b. Explain the construction and principle of operation of a core type transformer. (08 Mar
c. A 50 kVA, 400/200 V, single phase transformer has an efficiency of 98% at full-load and